File:  [local] / rpl / lapack / lapack / zcgesv.f
Revision 1.22: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:15 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZCGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixed precision with iterative refinement)
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZCGESV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcgesv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcgesv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcgesv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
   22: *                          SWORK, RWORK, ITER, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   RWORK( * )
   30: *       COMPLEX            SWORK( * )
   31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
   32: *      $                   X( LDX, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZCGESV computes the solution to a complex system of linear equations
   42: *>    A * X = B,
   43: *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
   44: *>
   45: *> ZCGESV first attempts to factorize the matrix in COMPLEX and use this
   46: *> factorization within an iterative refinement procedure to produce a
   47: *> solution with COMPLEX*16 normwise backward error quality (see below).
   48: *> If the approach fails the method switches to a COMPLEX*16
   49: *> factorization and solve.
   50: *>
   51: *> The iterative refinement is not going to be a winning strategy if
   52: *> the ratio COMPLEX performance over COMPLEX*16 performance is too
   53: *> small. A reasonable strategy should take the number of right-hand
   54: *> sides and the size of the matrix into account. This might be done
   55: *> with a call to ILAENV in the future. Up to now, we always try
   56: *> iterative refinement.
   57: *>
   58: *> The iterative refinement process is stopped if
   59: *>     ITER > ITERMAX
   60: *> or for all the RHS we have:
   61: *>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
   62: *> where
   63: *>     o ITER is the number of the current iteration in the iterative
   64: *>       refinement process
   65: *>     o RNRM is the infinity-norm of the residual
   66: *>     o XNRM is the infinity-norm of the solution
   67: *>     o ANRM is the infinity-operator-norm of the matrix A
   68: *>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
   69: *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
   70: *> respectively.
   71: *> \endverbatim
   72: *
   73: *  Arguments:
   74: *  ==========
   75: *
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The number of linear equations, i.e., the order of the
   80: *>          matrix A.  N >= 0.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] NRHS
   84: *> \verbatim
   85: *>          NRHS is INTEGER
   86: *>          The number of right hand sides, i.e., the number of columns
   87: *>          of the matrix B.  NRHS >= 0.
   88: *> \endverbatim
   89: *>
   90: *> \param[in,out] A
   91: *> \verbatim
   92: *>          A is COMPLEX*16 array,
   93: *>          dimension (LDA,N)
   94: *>          On entry, the N-by-N coefficient matrix A.
   95: *>          On exit, if iterative refinement has been successfully used
   96: *>          (INFO = 0 and ITER >= 0, see description below), then A is
   97: *>          unchanged, if double precision factorization has been used
   98: *>          (INFO = 0 and ITER < 0, see description below), then the
   99: *>          array A contains the factors L and U from the factorization
  100: *>          A = P*L*U; the unit diagonal elements of L are not stored.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>          The leading dimension of the array A.  LDA >= max(1,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[out] IPIV
  110: *> \verbatim
  111: *>          IPIV is INTEGER array, dimension (N)
  112: *>          The pivot indices that define the permutation matrix P;
  113: *>          row i of the matrix was interchanged with row IPIV(i).
  114: *>          Corresponds either to the single precision factorization
  115: *>          (if INFO = 0 and ITER >= 0) or the double precision
  116: *>          factorization (if INFO = 0 and ITER < 0).
  117: *> \endverbatim
  118: *>
  119: *> \param[in] B
  120: *> \verbatim
  121: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  122: *>          The N-by-NRHS right hand side matrix B.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LDB
  126: *> \verbatim
  127: *>          LDB is INTEGER
  128: *>          The leading dimension of the array B.  LDB >= max(1,N).
  129: *> \endverbatim
  130: *>
  131: *> \param[out] X
  132: *> \verbatim
  133: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  134: *>          If INFO = 0, the N-by-NRHS solution matrix X.
  135: *> \endverbatim
  136: *>
  137: *> \param[in] LDX
  138: *> \verbatim
  139: *>          LDX is INTEGER
  140: *>          The leading dimension of the array X.  LDX >= max(1,N).
  141: *> \endverbatim
  142: *>
  143: *> \param[out] WORK
  144: *> \verbatim
  145: *>          WORK is COMPLEX*16 array, dimension (N,NRHS)
  146: *>          This array is used to hold the residual vectors.
  147: *> \endverbatim
  148: *>
  149: *> \param[out] SWORK
  150: *> \verbatim
  151: *>          SWORK is COMPLEX array, dimension (N*(N+NRHS))
  152: *>          This array is used to use the single precision matrix and the
  153: *>          right-hand sides or solutions in single precision.
  154: *> \endverbatim
  155: *>
  156: *> \param[out] RWORK
  157: *> \verbatim
  158: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  159: *> \endverbatim
  160: *>
  161: *> \param[out] ITER
  162: *> \verbatim
  163: *>          ITER is INTEGER
  164: *>          < 0: iterative refinement has failed, COMPLEX*16
  165: *>               factorization has been performed
  166: *>               -1 : the routine fell back to full precision for
  167: *>                    implementation- or machine-specific reasons
  168: *>               -2 : narrowing the precision induced an overflow,
  169: *>                    the routine fell back to full precision
  170: *>               -3 : failure of CGETRF
  171: *>               -31: stop the iterative refinement after the 30th
  172: *>                    iterations
  173: *>          > 0: iterative refinement has been successfully used.
  174: *>               Returns the number of iterations
  175: *> \endverbatim
  176: *>
  177: *> \param[out] INFO
  178: *> \verbatim
  179: *>          INFO is INTEGER
  180: *>          = 0:  successful exit
  181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  182: *>          > 0:  if INFO = i, U(i,i) computed in COMPLEX*16 is exactly
  183: *>                zero.  The factorization has been completed, but the
  184: *>                factor U is exactly singular, so the solution
  185: *>                could not be computed.
  186: *> \endverbatim
  187: *
  188: *  Authors:
  189: *  ========
  190: *
  191: *> \author Univ. of Tennessee
  192: *> \author Univ. of California Berkeley
  193: *> \author Univ. of Colorado Denver
  194: *> \author NAG Ltd.
  195: *
  196: *> \ingroup complex16GEsolve
  197: *
  198: *  =====================================================================
  199:       SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
  200:      $                   SWORK, RWORK, ITER, INFO )
  201: *
  202: *  -- LAPACK driver routine --
  203: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  204: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  205: *
  206: *     .. Scalar Arguments ..
  207:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
  208: *     ..
  209: *     .. Array Arguments ..
  210:       INTEGER            IPIV( * )
  211:       DOUBLE PRECISION   RWORK( * )
  212:       COMPLEX            SWORK( * )
  213:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
  214:      $                   X( LDX, * )
  215: *     ..
  216: *
  217: *  =====================================================================
  218: *
  219: *     .. Parameters ..
  220:       LOGICAL            DOITREF
  221:       PARAMETER          ( DOITREF = .TRUE. )
  222: *
  223:       INTEGER            ITERMAX
  224:       PARAMETER          ( ITERMAX = 30 )
  225: *
  226:       DOUBLE PRECISION   BWDMAX
  227:       PARAMETER          ( BWDMAX = 1.0E+00 )
  228: *
  229:       COMPLEX*16         NEGONE, ONE
  230:       PARAMETER          ( NEGONE = ( -1.0D+00, 0.0D+00 ),
  231:      $                   ONE = ( 1.0D+00, 0.0D+00 ) )
  232: *
  233: *     .. Local Scalars ..
  234:       INTEGER            I, IITER, PTSA, PTSX
  235:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
  236:       COMPLEX*16         ZDUM
  237: *
  238: *     .. External Subroutines ..
  239:       EXTERNAL           CGETRS, CGETRF, CLAG2Z, XERBLA, ZAXPY, ZGEMM,
  240:      $                   ZLACPY, ZLAG2C, ZGETRF, ZGETRS
  241: *     ..
  242: *     .. External Functions ..
  243:       INTEGER            IZAMAX
  244:       DOUBLE PRECISION   DLAMCH, ZLANGE
  245:       EXTERNAL           IZAMAX, DLAMCH, ZLANGE
  246: *     ..
  247: *     .. Intrinsic Functions ..
  248:       INTRINSIC          ABS, DBLE, MAX, SQRT
  249: *     ..
  250: *     .. Statement Functions ..
  251:       DOUBLE PRECISION   CABS1
  252: *     ..
  253: *     .. Statement Function definitions ..
  254:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  255: *     ..
  256: *     .. Executable Statements ..
  257: *
  258:       INFO = 0
  259:       ITER = 0
  260: *
  261: *     Test the input parameters.
  262: *
  263:       IF( N.LT.0 ) THEN
  264:          INFO = -1
  265:       ELSE IF( NRHS.LT.0 ) THEN
  266:          INFO = -2
  267:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  268:          INFO = -4
  269:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  270:          INFO = -7
  271:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  272:          INFO = -9
  273:       END IF
  274:       IF( INFO.NE.0 ) THEN
  275:          CALL XERBLA( 'ZCGESV', -INFO )
  276:          RETURN
  277:       END IF
  278: *
  279: *     Quick return if (N.EQ.0).
  280: *
  281:       IF( N.EQ.0 )
  282:      $   RETURN
  283: *
  284: *     Skip single precision iterative refinement if a priori slower
  285: *     than double precision factorization.
  286: *
  287:       IF( .NOT.DOITREF ) THEN
  288:          ITER = -1
  289:          GO TO 40
  290:       END IF
  291: *
  292: *     Compute some constants.
  293: *
  294:       ANRM = ZLANGE( 'I', N, N, A, LDA, RWORK )
  295:       EPS = DLAMCH( 'Epsilon' )
  296:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
  297: *
  298: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
  299: *
  300:       PTSA = 1
  301:       PTSX = PTSA + N*N
  302: *
  303: *     Convert B from double precision to single precision and store the
  304: *     result in SX.
  305: *
  306:       CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
  307: *
  308:       IF( INFO.NE.0 ) THEN
  309:          ITER = -2
  310:          GO TO 40
  311:       END IF
  312: *
  313: *     Convert A from double precision to single precision and store the
  314: *     result in SA.
  315: *
  316:       CALL ZLAG2C( N, N, A, LDA, SWORK( PTSA ), N, INFO )
  317: *
  318:       IF( INFO.NE.0 ) THEN
  319:          ITER = -2
  320:          GO TO 40
  321:       END IF
  322: *
  323: *     Compute the LU factorization of SA.
  324: *
  325:       CALL CGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
  326: *
  327:       IF( INFO.NE.0 ) THEN
  328:          ITER = -3
  329:          GO TO 40
  330:       END IF
  331: *
  332: *     Solve the system SA*SX = SB.
  333: *
  334:       CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
  335:      $             SWORK( PTSX ), N, INFO )
  336: *
  337: *     Convert SX back to double precision
  338: *
  339:       CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
  340: *
  341: *     Compute R = B - AX (R is WORK).
  342: *
  343:       CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  344: *
  345:       CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
  346:      $            LDA, X, LDX, ONE, WORK, N )
  347: *
  348: *     Check whether the NRHS normwise backward errors satisfy the
  349: *     stopping criterion. If yes, set ITER=0 and return.
  350: *
  351:       DO I = 1, NRHS
  352:          XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  353:          RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  354:          IF( RNRM.GT.XNRM*CTE )
  355:      $      GO TO 10
  356:       END DO
  357: *
  358: *     If we are here, the NRHS normwise backward errors satisfy the
  359: *     stopping criterion. We are good to exit.
  360: *
  361:       ITER = 0
  362:       RETURN
  363: *
  364:    10 CONTINUE
  365: *
  366:       DO 30 IITER = 1, ITERMAX
  367: *
  368: *        Convert R (in WORK) from double precision to single precision
  369: *        and store the result in SX.
  370: *
  371:          CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
  372: *
  373:          IF( INFO.NE.0 ) THEN
  374:             ITER = -2
  375:             GO TO 40
  376:          END IF
  377: *
  378: *        Solve the system SA*SX = SR.
  379: *
  380:          CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
  381:      $                SWORK( PTSX ), N, INFO )
  382: *
  383: *        Convert SX back to double precision and update the current
  384: *        iterate.
  385: *
  386:          CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
  387: *
  388:          DO I = 1, NRHS
  389:             CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
  390:          END DO
  391: *
  392: *        Compute R = B - AX (R is WORK).
  393: *
  394:          CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  395: *
  396:          CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
  397:      $               A, LDA, X, LDX, ONE, WORK, N )
  398: *
  399: *        Check whether the NRHS normwise backward errors satisfy the
  400: *        stopping criterion. If yes, set ITER=IITER>0 and return.
  401: *
  402:          DO I = 1, NRHS
  403:             XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  404:             RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  405:             IF( RNRM.GT.XNRM*CTE )
  406:      $         GO TO 20
  407:          END DO
  408: *
  409: *        If we are here, the NRHS normwise backward errors satisfy the
  410: *        stopping criterion, we are good to exit.
  411: *
  412:          ITER = IITER
  413: *
  414:          RETURN
  415: *
  416:    20    CONTINUE
  417: *
  418:    30 CONTINUE
  419: *
  420: *     If we are at this place of the code, this is because we have
  421: *     performed ITER=ITERMAX iterations and never satisfied the stopping
  422: *     criterion, set up the ITER flag accordingly and follow up on double
  423: *     precision routine.
  424: *
  425:       ITER = -ITERMAX - 1
  426: *
  427:    40 CONTINUE
  428: *
  429: *     Single-precision iterative refinement failed to converge to a
  430: *     satisfactory solution, so we resort to double precision.
  431: *
  432:       CALL ZGETRF( N, N, A, LDA, IPIV, INFO )
  433: *
  434:       IF( INFO.NE.0 )
  435:      $   RETURN
  436: *
  437:       CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
  438:       CALL ZGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
  439:      $             INFO )
  440: *
  441:       RETURN
  442: *
  443: *     End of ZCGESV
  444: *
  445:       END

CVSweb interface <joel.bertrand@systella.fr>