Annotation of rpl/lapack/lapack/zcgesv.f, revision 1.22

1.10      bertrand    1: *> \brief <b> ZCGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixed precision with iterative refinement)
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download ZCGESV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcgesv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcgesv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcgesv.f">
1.10      bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
                     22: *                          SWORK, RWORK, ITER, INFO )
1.17      bertrand   23: *
1.10      bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       DOUBLE PRECISION   RWORK( * )
                     30: *       COMPLEX            SWORK( * )
                     31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
                     32: *      $                   X( LDX, * )
                     33: *       ..
1.17      bertrand   34: *
1.10      bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> ZCGESV computes the solution to a complex system of linear equations
                     42: *>    A * X = B,
                     43: *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
                     44: *>
                     45: *> ZCGESV first attempts to factorize the matrix in COMPLEX and use this
                     46: *> factorization within an iterative refinement procedure to produce a
                     47: *> solution with COMPLEX*16 normwise backward error quality (see below).
                     48: *> If the approach fails the method switches to a COMPLEX*16
                     49: *> factorization and solve.
                     50: *>
                     51: *> The iterative refinement is not going to be a winning strategy if
                     52: *> the ratio COMPLEX performance over COMPLEX*16 performance is too
                     53: *> small. A reasonable strategy should take the number of right-hand
                     54: *> sides and the size of the matrix into account. This might be done
                     55: *> with a call to ILAENV in the future. Up to now, we always try
                     56: *> iterative refinement.
                     57: *>
                     58: *> The iterative refinement process is stopped if
                     59: *>     ITER > ITERMAX
                     60: *> or for all the RHS we have:
                     61: *>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
                     62: *> where
                     63: *>     o ITER is the number of the current iteration in the iterative
                     64: *>       refinement process
                     65: *>     o RNRM is the infinity-norm of the residual
                     66: *>     o XNRM is the infinity-norm of the solution
                     67: *>     o ANRM is the infinity-operator-norm of the matrix A
                     68: *>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
                     69: *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
                     70: *> respectively.
                     71: *> \endverbatim
                     72: *
                     73: *  Arguments:
                     74: *  ==========
                     75: *
                     76: *> \param[in] N
                     77: *> \verbatim
                     78: *>          N is INTEGER
                     79: *>          The number of linear equations, i.e., the order of the
                     80: *>          matrix A.  N >= 0.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] NRHS
                     84: *> \verbatim
                     85: *>          NRHS is INTEGER
                     86: *>          The number of right hand sides, i.e., the number of columns
                     87: *>          of the matrix B.  NRHS >= 0.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in,out] A
                     91: *> \verbatim
                     92: *>          A is COMPLEX*16 array,
                     93: *>          dimension (LDA,N)
                     94: *>          On entry, the N-by-N coefficient matrix A.
                     95: *>          On exit, if iterative refinement has been successfully used
1.21      bertrand   96: *>          (INFO = 0 and ITER >= 0, see description below), then A is
1.10      bertrand   97: *>          unchanged, if double precision factorization has been used
1.21      bertrand   98: *>          (INFO = 0 and ITER < 0, see description below), then the
1.10      bertrand   99: *>          array A contains the factors L and U from the factorization
                    100: *>          A = P*L*U; the unit diagonal elements of L are not stored.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDA
                    104: *> \verbatim
                    105: *>          LDA is INTEGER
                    106: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[out] IPIV
                    110: *> \verbatim
                    111: *>          IPIV is INTEGER array, dimension (N)
                    112: *>          The pivot indices that define the permutation matrix P;
                    113: *>          row i of the matrix was interchanged with row IPIV(i).
                    114: *>          Corresponds either to the single precision factorization
1.21      bertrand  115: *>          (if INFO = 0 and ITER >= 0) or the double precision
                    116: *>          factorization (if INFO = 0 and ITER < 0).
1.10      bertrand  117: *> \endverbatim
                    118: *>
                    119: *> \param[in] B
                    120: *> \verbatim
                    121: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    122: *>          The N-by-NRHS right hand side matrix B.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] LDB
                    126: *> \verbatim
                    127: *>          LDB is INTEGER
                    128: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] X
                    132: *> \verbatim
                    133: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    134: *>          If INFO = 0, the N-by-NRHS solution matrix X.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] LDX
                    138: *> \verbatim
                    139: *>          LDX is INTEGER
                    140: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[out] WORK
                    144: *> \verbatim
1.19      bertrand  145: *>          WORK is COMPLEX*16 array, dimension (N,NRHS)
1.10      bertrand  146: *>          This array is used to hold the residual vectors.
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[out] SWORK
                    150: *> \verbatim
                    151: *>          SWORK is COMPLEX array, dimension (N*(N+NRHS))
                    152: *>          This array is used to use the single precision matrix and the
                    153: *>          right-hand sides or solutions in single precision.
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[out] RWORK
                    157: *> \verbatim
                    158: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[out] ITER
                    162: *> \verbatim
                    163: *>          ITER is INTEGER
                    164: *>          < 0: iterative refinement has failed, COMPLEX*16
                    165: *>               factorization has been performed
                    166: *>               -1 : the routine fell back to full precision for
                    167: *>                    implementation- or machine-specific reasons
                    168: *>               -2 : narrowing the precision induced an overflow,
                    169: *>                    the routine fell back to full precision
                    170: *>               -3 : failure of CGETRF
                    171: *>               -31: stop the iterative refinement after the 30th
                    172: *>                    iterations
1.15      bertrand  173: *>          > 0: iterative refinement has been successfully used.
1.10      bertrand  174: *>               Returns the number of iterations
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] INFO
                    178: *> \verbatim
                    179: *>          INFO is INTEGER
                    180: *>          = 0:  successful exit
                    181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    182: *>          > 0:  if INFO = i, U(i,i) computed in COMPLEX*16 is exactly
                    183: *>                zero.  The factorization has been completed, but the
                    184: *>                factor U is exactly singular, so the solution
                    185: *>                could not be computed.
                    186: *> \endverbatim
                    187: *
                    188: *  Authors:
                    189: *  ========
                    190: *
1.17      bertrand  191: *> \author Univ. of Tennessee
                    192: *> \author Univ. of California Berkeley
                    193: *> \author Univ. of Colorado Denver
                    194: *> \author NAG Ltd.
1.10      bertrand  195: *
                    196: *> \ingroup complex16GEsolve
                    197: *
                    198: *  =====================================================================
1.1       bertrand  199:       SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
1.9       bertrand  200:      $                   SWORK, RWORK, ITER, INFO )
1.1       bertrand  201: *
1.22    ! bertrand  202: *  -- LAPACK driver routine --
1.1       bertrand  203: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    204: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    205: *
                    206: *     .. Scalar Arguments ..
                    207:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                    208: *     ..
                    209: *     .. Array Arguments ..
                    210:       INTEGER            IPIV( * )
                    211:       DOUBLE PRECISION   RWORK( * )
                    212:       COMPLEX            SWORK( * )
                    213:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
1.9       bertrand  214:      $                   X( LDX, * )
1.1       bertrand  215: *     ..
                    216: *
1.9       bertrand  217: *  =====================================================================
1.1       bertrand  218: *
                    219: *     .. Parameters ..
                    220:       LOGICAL            DOITREF
                    221:       PARAMETER          ( DOITREF = .TRUE. )
                    222: *
                    223:       INTEGER            ITERMAX
                    224:       PARAMETER          ( ITERMAX = 30 )
                    225: *
                    226:       DOUBLE PRECISION   BWDMAX
                    227:       PARAMETER          ( BWDMAX = 1.0E+00 )
                    228: *
                    229:       COMPLEX*16         NEGONE, ONE
                    230:       PARAMETER          ( NEGONE = ( -1.0D+00, 0.0D+00 ),
1.9       bertrand  231:      $                   ONE = ( 1.0D+00, 0.0D+00 ) )
1.1       bertrand  232: *
                    233: *     .. Local Scalars ..
                    234:       INTEGER            I, IITER, PTSA, PTSX
                    235:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
                    236:       COMPLEX*16         ZDUM
                    237: *
                    238: *     .. External Subroutines ..
                    239:       EXTERNAL           CGETRS, CGETRF, CLAG2Z, XERBLA, ZAXPY, ZGEMM,
1.19      bertrand  240:      $                   ZLACPY, ZLAG2C, ZGETRF, ZGETRS
1.1       bertrand  241: *     ..
                    242: *     .. External Functions ..
                    243:       INTEGER            IZAMAX
                    244:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    245:       EXTERNAL           IZAMAX, DLAMCH, ZLANGE
                    246: *     ..
                    247: *     .. Intrinsic Functions ..
                    248:       INTRINSIC          ABS, DBLE, MAX, SQRT
                    249: *     ..
                    250: *     .. Statement Functions ..
                    251:       DOUBLE PRECISION   CABS1
                    252: *     ..
                    253: *     .. Statement Function definitions ..
                    254:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    255: *     ..
                    256: *     .. Executable Statements ..
                    257: *
                    258:       INFO = 0
                    259:       ITER = 0
                    260: *
                    261: *     Test the input parameters.
                    262: *
                    263:       IF( N.LT.0 ) THEN
                    264:          INFO = -1
                    265:       ELSE IF( NRHS.LT.0 ) THEN
                    266:          INFO = -2
                    267:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    268:          INFO = -4
                    269:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    270:          INFO = -7
                    271:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    272:          INFO = -9
                    273:       END IF
                    274:       IF( INFO.NE.0 ) THEN
                    275:          CALL XERBLA( 'ZCGESV', -INFO )
                    276:          RETURN
                    277:       END IF
                    278: *
                    279: *     Quick return if (N.EQ.0).
                    280: *
                    281:       IF( N.EQ.0 )
1.9       bertrand  282:      $   RETURN
1.1       bertrand  283: *
                    284: *     Skip single precision iterative refinement if a priori slower
                    285: *     than double precision factorization.
                    286: *
                    287:       IF( .NOT.DOITREF ) THEN
                    288:          ITER = -1
                    289:          GO TO 40
                    290:       END IF
                    291: *
                    292: *     Compute some constants.
                    293: *
                    294:       ANRM = ZLANGE( 'I', N, N, A, LDA, RWORK )
                    295:       EPS = DLAMCH( 'Epsilon' )
                    296:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
                    297: *
                    298: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
                    299: *
                    300:       PTSA = 1
                    301:       PTSX = PTSA + N*N
                    302: *
                    303: *     Convert B from double precision to single precision and store the
                    304: *     result in SX.
                    305: *
                    306:       CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
                    307: *
                    308:       IF( INFO.NE.0 ) THEN
                    309:          ITER = -2
                    310:          GO TO 40
                    311:       END IF
                    312: *
                    313: *     Convert A from double precision to single precision and store the
                    314: *     result in SA.
                    315: *
                    316:       CALL ZLAG2C( N, N, A, LDA, SWORK( PTSA ), N, INFO )
                    317: *
                    318:       IF( INFO.NE.0 ) THEN
                    319:          ITER = -2
                    320:          GO TO 40
                    321:       END IF
                    322: *
                    323: *     Compute the LU factorization of SA.
                    324: *
                    325:       CALL CGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
                    326: *
                    327:       IF( INFO.NE.0 ) THEN
                    328:          ITER = -3
                    329:          GO TO 40
                    330:       END IF
                    331: *
                    332: *     Solve the system SA*SX = SB.
                    333: *
                    334:       CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
1.9       bertrand  335:      $             SWORK( PTSX ), N, INFO )
1.1       bertrand  336: *
                    337: *     Convert SX back to double precision
                    338: *
                    339:       CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
                    340: *
                    341: *     Compute R = B - AX (R is WORK).
                    342: *
                    343:       CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    344: *
                    345:       CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
1.9       bertrand  346:      $            LDA, X, LDX, ONE, WORK, N )
1.1       bertrand  347: *
                    348: *     Check whether the NRHS normwise backward errors satisfy the
                    349: *     stopping criterion. If yes, set ITER=0 and return.
                    350: *
                    351:       DO I = 1, NRHS
                    352:          XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
                    353:          RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
                    354:          IF( RNRM.GT.XNRM*CTE )
1.9       bertrand  355:      $      GO TO 10
1.1       bertrand  356:       END DO
                    357: *
                    358: *     If we are here, the NRHS normwise backward errors satisfy the
                    359: *     stopping criterion. We are good to exit.
                    360: *
                    361:       ITER = 0
                    362:       RETURN
                    363: *
                    364:    10 CONTINUE
                    365: *
                    366:       DO 30 IITER = 1, ITERMAX
                    367: *
                    368: *        Convert R (in WORK) from double precision to single precision
                    369: *        and store the result in SX.
                    370: *
                    371:          CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
                    372: *
                    373:          IF( INFO.NE.0 ) THEN
                    374:             ITER = -2
                    375:             GO TO 40
                    376:          END IF
                    377: *
                    378: *        Solve the system SA*SX = SR.
                    379: *
                    380:          CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
1.9       bertrand  381:      $                SWORK( PTSX ), N, INFO )
1.1       bertrand  382: *
                    383: *        Convert SX back to double precision and update the current
                    384: *        iterate.
                    385: *
                    386:          CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
                    387: *
                    388:          DO I = 1, NRHS
                    389:             CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
                    390:          END DO
                    391: *
                    392: *        Compute R = B - AX (R is WORK).
                    393: *
                    394:          CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    395: *
                    396:          CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
1.9       bertrand  397:      $               A, LDA, X, LDX, ONE, WORK, N )
1.1       bertrand  398: *
                    399: *        Check whether the NRHS normwise backward errors satisfy the
                    400: *        stopping criterion. If yes, set ITER=IITER>0 and return.
                    401: *
                    402:          DO I = 1, NRHS
                    403:             XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
                    404:             RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
                    405:             IF( RNRM.GT.XNRM*CTE )
1.9       bertrand  406:      $         GO TO 20
1.1       bertrand  407:          END DO
                    408: *
                    409: *        If we are here, the NRHS normwise backward errors satisfy the
                    410: *        stopping criterion, we are good to exit.
                    411: *
                    412:          ITER = IITER
                    413: *
                    414:          RETURN
                    415: *
                    416:    20    CONTINUE
                    417: *
                    418:    30 CONTINUE
                    419: *
                    420: *     If we are at this place of the code, this is because we have
1.21      bertrand  421: *     performed ITER=ITERMAX iterations and never satisfied the stopping
1.1       bertrand  422: *     criterion, set up the ITER flag accordingly and follow up on double
                    423: *     precision routine.
                    424: *
                    425:       ITER = -ITERMAX - 1
                    426: *
                    427:    40 CONTINUE
                    428: *
                    429: *     Single-precision iterative refinement failed to converge to a
                    430: *     satisfactory solution, so we resort to double precision.
                    431: *
                    432:       CALL ZGETRF( N, N, A, LDA, IPIV, INFO )
                    433: *
                    434:       IF( INFO.NE.0 )
1.9       bertrand  435:      $   RETURN
1.1       bertrand  436: *
                    437:       CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
                    438:       CALL ZGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
1.9       bertrand  439:      $             INFO )
1.1       bertrand  440: *
                    441:       RETURN
                    442: *
1.22    ! bertrand  443: *     End of ZCGESV
1.1       bertrand  444: *
                    445:       END

CVSweb interface <joel.bertrand@systella.fr>