File:  [local] / rpl / lapack / lapack / dtpqrt2.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jul 31 11:06:37 2012 UTC (11 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour du répertoire tools et de la bibliothèque lapack.

    1: *> \brief \b DTPQRT2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DTPQRT2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtpqrt2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtpqrt2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtpqrt2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTPQRT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       INTEGER   INFO, LDA, LDB, LDT, N, M, L
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), T( LDT, * )
   28: *       ..
   29: *  
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> DTPQRT2 computes a QR factorization of a real "triangular-pentagonal"
   37: *> matrix C, which is composed of a triangular block A and pentagonal block B, 
   38: *> using the compact WY representation for Q.
   39: *> \endverbatim
   40: *
   41: *  Arguments:
   42: *  ==========
   43: *
   44: *> \param[in] M
   45: *> \verbatim
   46: *>          M is INTEGER
   47: *>          The total number of rows of the matrix B.  
   48: *>          M >= 0.
   49: *> \endverbatim
   50: *>
   51: *> \param[in] N
   52: *> \verbatim
   53: *>          N is INTEGER
   54: *>          The number of columns of the matrix B, and the order of
   55: *>          the triangular matrix A.
   56: *>          N >= 0.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] L
   60: *> \verbatim
   61: *>          L is INTEGER
   62: *>          The number of rows of the upper trapezoidal part of B.  
   63: *>          MIN(M,N) >= L >= 0.  See Further Details.
   64: *> \endverbatim
   65: *>
   66: *> \param[in,out] A
   67: *> \verbatim
   68: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   69: *>          On entry, the upper triangular N-by-N matrix A.
   70: *>          On exit, the elements on and above the diagonal of the array
   71: *>          contain the upper triangular matrix R.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] LDA
   75: *> \verbatim
   76: *>          LDA is INTEGER
   77: *>          The leading dimension of the array A.  LDA >= max(1,N).
   78: *> \endverbatim
   79: *>
   80: *> \param[in,out] B
   81: *> \verbatim
   82: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
   83: *>          On entry, the pentagonal M-by-N matrix B.  The first M-L rows 
   84: *>          are rectangular, and the last L rows are upper trapezoidal.
   85: *>          On exit, B contains the pentagonal matrix V.  See Further Details.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] LDB
   89: *> \verbatim
   90: *>          LDB is INTEGER
   91: *>          The leading dimension of the array B.  LDB >= max(1,M).
   92: *> \endverbatim
   93: *>
   94: *> \param[out] T
   95: *> \verbatim
   96: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
   97: *>          The N-by-N upper triangular factor T of the block reflector.
   98: *>          See Further Details.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LDT
  102: *> \verbatim
  103: *>          LDT is INTEGER
  104: *>          The leading dimension of the array T.  LDT >= max(1,N)
  105: *> \endverbatim
  106: *>
  107: *> \param[out] INFO
  108: *> \verbatim
  109: *>          INFO is INTEGER
  110: *>          = 0: successful exit
  111: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  112: *> \endverbatim
  113: *
  114: *  Authors:
  115: *  ========
  116: *
  117: *> \author Univ. of Tennessee 
  118: *> \author Univ. of California Berkeley 
  119: *> \author Univ. of Colorado Denver 
  120: *> \author NAG Ltd. 
  121: *
  122: *> \date April 2012
  123: *
  124: *> \ingroup doubleOTHERcomputational
  125: *
  126: *> \par Further Details:
  127: *  =====================
  128: *>
  129: *> \verbatim
  130: *>
  131: *>  The input matrix C is a (N+M)-by-N matrix  
  132: *>
  133: *>               C = [ A ]
  134: *>                   [ B ]        
  135: *>
  136: *>  where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal
  137: *>  matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N
  138: *>  upper trapezoidal matrix B2:
  139: *>
  140: *>               B = [ B1 ]  <- (M-L)-by-N rectangular
  141: *>                   [ B2 ]  <-     L-by-N upper trapezoidal.
  142: *>
  143: *>  The upper trapezoidal matrix B2 consists of the first L rows of a
  144: *>  N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N).  If L=0, 
  145: *>  B is rectangular M-by-N; if M=L=N, B is upper triangular.  
  146: *>
  147: *>  The matrix W stores the elementary reflectors H(i) in the i-th column
  148: *>  below the diagonal (of A) in the (N+M)-by-N input matrix C
  149: *>
  150: *>               C = [ A ]  <- upper triangular N-by-N
  151: *>                   [ B ]  <- M-by-N pentagonal
  152: *>
  153: *>  so that W can be represented as
  154: *>
  155: *>               W = [ I ]  <- identity, N-by-N
  156: *>                   [ V ]  <- M-by-N, same form as B.
  157: *>
  158: *>  Thus, all of information needed for W is contained on exit in B, which
  159: *>  we call V above.  Note that V has the same form as B; that is, 
  160: *>
  161: *>               V = [ V1 ] <- (M-L)-by-N rectangular
  162: *>                   [ V2 ] <-     L-by-N upper trapezoidal.
  163: *>
  164: *>  The columns of V represent the vectors which define the H(i)'s.  
  165: *>  The (M+N)-by-(M+N) block reflector H is then given by
  166: *>
  167: *>               H = I - W * T * W**T
  168: *>
  169: *>  where W^H is the conjugate transpose of W and T is the upper triangular
  170: *>  factor of the block reflector.
  171: *> \endverbatim
  172: *>
  173: *  =====================================================================
  174:       SUBROUTINE DTPQRT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
  175: *
  176: *  -- LAPACK computational routine (version 3.4.1) --
  177: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  178: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  179: *     April 2012
  180: *
  181: *     .. Scalar Arguments ..
  182:       INTEGER   INFO, LDA, LDB, LDT, N, M, L
  183: *     ..
  184: *     .. Array Arguments ..
  185:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), T( LDT, * )
  186: *     ..
  187: *
  188: *  =====================================================================
  189: *
  190: *     .. Parameters ..
  191:       DOUBLE PRECISION  ONE, ZERO
  192:       PARAMETER( ONE = 1.0, ZERO = 0.0 )
  193: *     ..
  194: *     .. Local Scalars ..
  195:       INTEGER   I, J, P, MP, NP
  196:       DOUBLE PRECISION   ALPHA
  197: *     ..
  198: *     .. External Subroutines ..
  199:       EXTERNAL  DLARFG, DGEMV, DGER, DTRMV, XERBLA
  200: *     ..
  201: *     .. Intrinsic Functions ..
  202:       INTRINSIC MAX, MIN
  203: *     ..
  204: *     .. Executable Statements ..
  205: *
  206: *     Test the input arguments
  207: *
  208:       INFO = 0
  209:       IF( M.LT.0 ) THEN
  210:          INFO = -1
  211:       ELSE IF( N.LT.0 ) THEN
  212:          INFO = -2
  213:       ELSE IF( L.LT.0 .OR. L.GT.MIN(M,N) ) THEN
  214:          INFO = -3
  215:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  216:          INFO = -5
  217:       ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
  218:          INFO = -7
  219:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  220:          INFO = -9
  221:       END IF
  222:       IF( INFO.NE.0 ) THEN
  223:          CALL XERBLA( 'DTPQRT2', -INFO )
  224:          RETURN
  225:       END IF
  226: *
  227: *     Quick return if possible
  228: *
  229:       IF( N.EQ.0 .OR. M.EQ.0 ) RETURN
  230: *      
  231:       DO I = 1, N
  232: *
  233: *        Generate elementary reflector H(I) to annihilate B(:,I)
  234: *
  235:          P = M-L+MIN( L, I )
  236:          CALL DLARFG( P+1, A( I, I ), B( 1, I ), 1, T( I, 1 ) )
  237:          IF( I.LT.N ) THEN
  238: *
  239: *           W(1:N-I) := C(I:M,I+1:N)^H * C(I:M,I) [use W = T(:,N)]
  240: *
  241:             DO J = 1, N-I
  242:                T( J, N ) = (A( I, I+J ))
  243:             END DO
  244:             CALL DGEMV( 'T', P, N-I, ONE, B( 1, I+1 ), LDB, 
  245:      $                  B( 1, I ), 1, ONE, T( 1, N ), 1 )
  246: *
  247: *           C(I:M,I+1:N) = C(I:m,I+1:N) + alpha*C(I:M,I)*W(1:N-1)^H
  248: *
  249:             ALPHA = -(T( I, 1 ))            
  250:             DO J = 1, N-I
  251:                A( I, I+J ) = A( I, I+J ) + ALPHA*(T( J, N ))
  252:             END DO
  253:             CALL DGER( P, N-I, ALPHA, B( 1, I ), 1, 
  254:      $           T( 1, N ), 1, B( 1, I+1 ), LDB )
  255:          END IF
  256:       END DO
  257: *
  258:       DO I = 2, N
  259: *
  260: *        T(1:I-1,I) := C(I:M,1:I-1)^H * (alpha * C(I:M,I))
  261: *
  262:          ALPHA = -T( I, 1 )
  263: 
  264:          DO J = 1, I-1
  265:             T( J, I ) = ZERO
  266:          END DO
  267:          P = MIN( I-1, L )
  268:          MP = MIN( M-L+1, M )
  269:          NP = MIN( P+1, N )
  270: *
  271: *        Triangular part of B2
  272: *
  273:          DO J = 1, P
  274:             T( J, I ) = ALPHA*B( M-L+J, I )
  275:          END DO
  276:          CALL DTRMV( 'U', 'T', 'N', P, B( MP, 1 ), LDB,
  277:      $               T( 1, I ), 1 )
  278: *
  279: *        Rectangular part of B2
  280: *
  281:          CALL DGEMV( 'T', L, I-1-P, ALPHA, B( MP, NP ), LDB, 
  282:      $               B( MP, I ), 1, ZERO, T( NP, I ), 1 )
  283: *
  284: *        B1
  285: *
  286:          CALL DGEMV( 'T', M-L, I-1, ALPHA, B, LDB, B( 1, I ), 1, 
  287:      $               ONE, T( 1, I ), 1 )         
  288: *
  289: *        T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I)
  290: *
  291:          CALL DTRMV( 'U', 'N', 'N', I-1, T, LDT, T( 1, I ), 1 )
  292: *
  293: *        T(I,I) = tau(I)
  294: *
  295:          T( I, I ) = T( I, 1 )
  296:          T( I, 1 ) = ZERO
  297:       END DO
  298:    
  299: *
  300: *     End of DTPQRT2
  301: *
  302:       END

CVSweb interface <joel.bertrand@systella.fr>