Annotation of rpl/lapack/lapack/dtpqrt2.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b DTPQRT2
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DTPQRT2 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtpqrt2.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtpqrt2.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtpqrt2.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DTPQRT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       INTEGER   INFO, LDA, LDB, LDT, N, M, L
        !            25: *       ..
        !            26: *       .. Array Arguments ..
        !            27: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), T( LDT, * )
        !            28: *       ..
        !            29: *  
        !            30: *
        !            31: *> \par Purpose:
        !            32: *  =============
        !            33: *>
        !            34: *> \verbatim
        !            35: *>
        !            36: *> DTPQRT2 computes a QR factorization of a real "triangular-pentagonal"
        !            37: *> matrix C, which is composed of a triangular block A and pentagonal block B, 
        !            38: *> using the compact WY representation for Q.
        !            39: *> \endverbatim
        !            40: *
        !            41: *  Arguments:
        !            42: *  ==========
        !            43: *
        !            44: *> \param[in] M
        !            45: *> \verbatim
        !            46: *>          M is INTEGER
        !            47: *>          The total number of rows of the matrix B.  
        !            48: *>          M >= 0.
        !            49: *> \endverbatim
        !            50: *>
        !            51: *> \param[in] N
        !            52: *> \verbatim
        !            53: *>          N is INTEGER
        !            54: *>          The number of columns of the matrix B, and the order of
        !            55: *>          the triangular matrix A.
        !            56: *>          N >= 0.
        !            57: *> \endverbatim
        !            58: *>
        !            59: *> \param[in] L
        !            60: *> \verbatim
        !            61: *>          L is INTEGER
        !            62: *>          The number of rows of the upper trapezoidal part of B.  
        !            63: *>          MIN(M,N) >= L >= 0.  See Further Details.
        !            64: *> \endverbatim
        !            65: *>
        !            66: *> \param[in,out] A
        !            67: *> \verbatim
        !            68: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !            69: *>          On entry, the upper triangular N-by-N matrix A.
        !            70: *>          On exit, the elements on and above the diagonal of the array
        !            71: *>          contain the upper triangular matrix R.
        !            72: *> \endverbatim
        !            73: *>
        !            74: *> \param[in] LDA
        !            75: *> \verbatim
        !            76: *>          LDA is INTEGER
        !            77: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[in,out] B
        !            81: *> \verbatim
        !            82: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
        !            83: *>          On entry, the pentagonal M-by-N matrix B.  The first M-L rows 
        !            84: *>          are rectangular, and the last L rows are upper trapezoidal.
        !            85: *>          On exit, B contains the pentagonal matrix V.  See Further Details.
        !            86: *> \endverbatim
        !            87: *>
        !            88: *> \param[in] LDB
        !            89: *> \verbatim
        !            90: *>          LDB is INTEGER
        !            91: *>          The leading dimension of the array B.  LDB >= max(1,M).
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[out] T
        !            95: *> \verbatim
        !            96: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
        !            97: *>          The N-by-N upper triangular factor T of the block reflector.
        !            98: *>          See Further Details.
        !            99: *> \endverbatim
        !           100: *>
        !           101: *> \param[in] LDT
        !           102: *> \verbatim
        !           103: *>          LDT is INTEGER
        !           104: *>          The leading dimension of the array T.  LDT >= max(1,N)
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[out] INFO
        !           108: *> \verbatim
        !           109: *>          INFO is INTEGER
        !           110: *>          = 0: successful exit
        !           111: *>          < 0: if INFO = -i, the i-th argument had an illegal value
        !           112: *> \endverbatim
        !           113: *
        !           114: *  Authors:
        !           115: *  ========
        !           116: *
        !           117: *> \author Univ. of Tennessee 
        !           118: *> \author Univ. of California Berkeley 
        !           119: *> \author Univ. of Colorado Denver 
        !           120: *> \author NAG Ltd. 
        !           121: *
        !           122: *> \date April 2012
        !           123: *
        !           124: *> \ingroup doubleOTHERcomputational
        !           125: *
        !           126: *> \par Further Details:
        !           127: *  =====================
        !           128: *>
        !           129: *> \verbatim
        !           130: *>
        !           131: *>  The input matrix C is a (N+M)-by-N matrix  
        !           132: *>
        !           133: *>               C = [ A ]
        !           134: *>                   [ B ]        
        !           135: *>
        !           136: *>  where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal
        !           137: *>  matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N
        !           138: *>  upper trapezoidal matrix B2:
        !           139: *>
        !           140: *>               B = [ B1 ]  <- (M-L)-by-N rectangular
        !           141: *>                   [ B2 ]  <-     L-by-N upper trapezoidal.
        !           142: *>
        !           143: *>  The upper trapezoidal matrix B2 consists of the first L rows of a
        !           144: *>  N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N).  If L=0, 
        !           145: *>  B is rectangular M-by-N; if M=L=N, B is upper triangular.  
        !           146: *>
        !           147: *>  The matrix W stores the elementary reflectors H(i) in the i-th column
        !           148: *>  below the diagonal (of A) in the (N+M)-by-N input matrix C
        !           149: *>
        !           150: *>               C = [ A ]  <- upper triangular N-by-N
        !           151: *>                   [ B ]  <- M-by-N pentagonal
        !           152: *>
        !           153: *>  so that W can be represented as
        !           154: *>
        !           155: *>               W = [ I ]  <- identity, N-by-N
        !           156: *>                   [ V ]  <- M-by-N, same form as B.
        !           157: *>
        !           158: *>  Thus, all of information needed for W is contained on exit in B, which
        !           159: *>  we call V above.  Note that V has the same form as B; that is, 
        !           160: *>
        !           161: *>               V = [ V1 ] <- (M-L)-by-N rectangular
        !           162: *>                   [ V2 ] <-     L-by-N upper trapezoidal.
        !           163: *>
        !           164: *>  The columns of V represent the vectors which define the H(i)'s.  
        !           165: *>  The (M+N)-by-(M+N) block reflector H is then given by
        !           166: *>
        !           167: *>               H = I - W * T * W**T
        !           168: *>
        !           169: *>  where W^H is the conjugate transpose of W and T is the upper triangular
        !           170: *>  factor of the block reflector.
        !           171: *> \endverbatim
        !           172: *>
        !           173: *  =====================================================================
        !           174:       SUBROUTINE DTPQRT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
        !           175: *
        !           176: *  -- LAPACK computational routine (version 3.4.1) --
        !           177: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           178: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           179: *     April 2012
        !           180: *
        !           181: *     .. Scalar Arguments ..
        !           182:       INTEGER   INFO, LDA, LDB, LDT, N, M, L
        !           183: *     ..
        !           184: *     .. Array Arguments ..
        !           185:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), T( LDT, * )
        !           186: *     ..
        !           187: *
        !           188: *  =====================================================================
        !           189: *
        !           190: *     .. Parameters ..
        !           191:       DOUBLE PRECISION  ONE, ZERO
        !           192:       PARAMETER( ONE = 1.0, ZERO = 0.0 )
        !           193: *     ..
        !           194: *     .. Local Scalars ..
        !           195:       INTEGER   I, J, P, MP, NP
        !           196:       DOUBLE PRECISION   ALPHA
        !           197: *     ..
        !           198: *     .. External Subroutines ..
        !           199:       EXTERNAL  DLARFG, DGEMV, DGER, DTRMV, XERBLA
        !           200: *     ..
        !           201: *     .. Intrinsic Functions ..
        !           202:       INTRINSIC MAX, MIN
        !           203: *     ..
        !           204: *     .. Executable Statements ..
        !           205: *
        !           206: *     Test the input arguments
        !           207: *
        !           208:       INFO = 0
        !           209:       IF( M.LT.0 ) THEN
        !           210:          INFO = -1
        !           211:       ELSE IF( N.LT.0 ) THEN
        !           212:          INFO = -2
        !           213:       ELSE IF( L.LT.0 .OR. L.GT.MIN(M,N) ) THEN
        !           214:          INFO = -3
        !           215:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           216:          INFO = -5
        !           217:       ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
        !           218:          INFO = -7
        !           219:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
        !           220:          INFO = -9
        !           221:       END IF
        !           222:       IF( INFO.NE.0 ) THEN
        !           223:          CALL XERBLA( 'DTPQRT2', -INFO )
        !           224:          RETURN
        !           225:       END IF
        !           226: *
        !           227: *     Quick return if possible
        !           228: *
        !           229:       IF( N.EQ.0 .OR. M.EQ.0 ) RETURN
        !           230: *      
        !           231:       DO I = 1, N
        !           232: *
        !           233: *        Generate elementary reflector H(I) to annihilate B(:,I)
        !           234: *
        !           235:          P = M-L+MIN( L, I )
        !           236:          CALL DLARFG( P+1, A( I, I ), B( 1, I ), 1, T( I, 1 ) )
        !           237:          IF( I.LT.N ) THEN
        !           238: *
        !           239: *           W(1:N-I) := C(I:M,I+1:N)^H * C(I:M,I) [use W = T(:,N)]
        !           240: *
        !           241:             DO J = 1, N-I
        !           242:                T( J, N ) = (A( I, I+J ))
        !           243:             END DO
        !           244:             CALL DGEMV( 'T', P, N-I, ONE, B( 1, I+1 ), LDB, 
        !           245:      $                  B( 1, I ), 1, ONE, T( 1, N ), 1 )
        !           246: *
        !           247: *           C(I:M,I+1:N) = C(I:m,I+1:N) + alpha*C(I:M,I)*W(1:N-1)^H
        !           248: *
        !           249:             ALPHA = -(T( I, 1 ))            
        !           250:             DO J = 1, N-I
        !           251:                A( I, I+J ) = A( I, I+J ) + ALPHA*(T( J, N ))
        !           252:             END DO
        !           253:             CALL DGER( P, N-I, ALPHA, B( 1, I ), 1, 
        !           254:      $           T( 1, N ), 1, B( 1, I+1 ), LDB )
        !           255:          END IF
        !           256:       END DO
        !           257: *
        !           258:       DO I = 2, N
        !           259: *
        !           260: *        T(1:I-1,I) := C(I:M,1:I-1)^H * (alpha * C(I:M,I))
        !           261: *
        !           262:          ALPHA = -T( I, 1 )
        !           263: 
        !           264:          DO J = 1, I-1
        !           265:             T( J, I ) = ZERO
        !           266:          END DO
        !           267:          P = MIN( I-1, L )
        !           268:          MP = MIN( M-L+1, M )
        !           269:          NP = MIN( P+1, N )
        !           270: *
        !           271: *        Triangular part of B2
        !           272: *
        !           273:          DO J = 1, P
        !           274:             T( J, I ) = ALPHA*B( M-L+J, I )
        !           275:          END DO
        !           276:          CALL DTRMV( 'U', 'T', 'N', P, B( MP, 1 ), LDB,
        !           277:      $               T( 1, I ), 1 )
        !           278: *
        !           279: *        Rectangular part of B2
        !           280: *
        !           281:          CALL DGEMV( 'T', L, I-1-P, ALPHA, B( MP, NP ), LDB, 
        !           282:      $               B( MP, I ), 1, ZERO, T( NP, I ), 1 )
        !           283: *
        !           284: *        B1
        !           285: *
        !           286:          CALL DGEMV( 'T', M-L, I-1, ALPHA, B, LDB, B( 1, I ), 1, 
        !           287:      $               ONE, T( 1, I ), 1 )         
        !           288: *
        !           289: *        T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I)
        !           290: *
        !           291:          CALL DTRMV( 'U', 'N', 'N', I-1, T, LDT, T( 1, I ), 1 )
        !           292: *
        !           293: *        T(I,I) = tau(I)
        !           294: *
        !           295:          T( I, I ) = T( I, 1 )
        !           296:          T( I, 1 ) = ZERO
        !           297:       END DO
        !           298:    
        !           299: *
        !           300: *     End of DTPQRT2
        !           301: *
        !           302:       END

CVSweb interface <joel.bertrand@systella.fr>