File:  [local] / rpl / lapack / lapack / dtgsen.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
    2:      $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
    3:      $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     January 2007
    9: *
   10: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
   11: *
   12: *     .. Scalar Arguments ..
   13:       LOGICAL            WANTQ, WANTZ
   14:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
   15:      $                   M, N
   16:       DOUBLE PRECISION   PL, PR
   17: *     ..
   18: *     .. Array Arguments ..
   19:       LOGICAL            SELECT( * )
   20:       INTEGER            IWORK( * )
   21:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
   22:      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
   23:      $                   WORK( * ), Z( LDZ, * )
   24: *     ..
   25: *
   26: *  Purpose
   27: *  =======
   28: *
   29: *  DTGSEN reorders the generalized real Schur decomposition of a real
   30: *  matrix pair (A, B) (in terms of an orthonormal equivalence trans-
   31: *  formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
   32: *  appears in the leading diagonal blocks of the upper quasi-triangular
   33: *  matrix A and the upper triangular B. The leading columns of Q and
   34: *  Z form orthonormal bases of the corresponding left and right eigen-
   35: *  spaces (deflating subspaces). (A, B) must be in generalized real
   36: *  Schur canonical form (as returned by DGGES), i.e. A is block upper
   37: *  triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
   38: *  triangular.
   39: *
   40: *  DTGSEN also computes the generalized eigenvalues
   41: *
   42: *              w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
   43: *
   44: *  of the reordered matrix pair (A, B).
   45: *
   46: *  Optionally, DTGSEN computes the estimates of reciprocal condition
   47: *  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
   48: *  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
   49: *  between the matrix pairs (A11, B11) and (A22,B22) that correspond to
   50: *  the selected cluster and the eigenvalues outside the cluster, resp.,
   51: *  and norms of "projections" onto left and right eigenspaces w.r.t.
   52: *  the selected cluster in the (1,1)-block.
   53: *
   54: *  Arguments
   55: *  =========
   56: *
   57: *  IJOB    (input) INTEGER
   58: *          Specifies whether condition numbers are required for the
   59: *          cluster of eigenvalues (PL and PR) or the deflating subspaces
   60: *          (Difu and Difl):
   61: *           =0: Only reorder w.r.t. SELECT. No extras.
   62: *           =1: Reciprocal of norms of "projections" onto left and right
   63: *               eigenspaces w.r.t. the selected cluster (PL and PR).
   64: *           =2: Upper bounds on Difu and Difl. F-norm-based estimate
   65: *               (DIF(1:2)).
   66: *           =3: Estimate of Difu and Difl. 1-norm-based estimate
   67: *               (DIF(1:2)).
   68: *               About 5 times as expensive as IJOB = 2.
   69: *           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
   70: *               version to get it all.
   71: *           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
   72: *
   73: *  WANTQ   (input) LOGICAL
   74: *          .TRUE. : update the left transformation matrix Q;
   75: *          .FALSE.: do not update Q.
   76: *
   77: *  WANTZ   (input) LOGICAL
   78: *          .TRUE. : update the right transformation matrix Z;
   79: *          .FALSE.: do not update Z.
   80: *
   81: *  SELECT  (input) LOGICAL array, dimension (N)
   82: *          SELECT specifies the eigenvalues in the selected cluster.
   83: *          To select a real eigenvalue w(j), SELECT(j) must be set to
   84: *          .TRUE.. To select a complex conjugate pair of eigenvalues
   85: *          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
   86: *          either SELECT(j) or SELECT(j+1) or both must be set to
   87: *          .TRUE.; a complex conjugate pair of eigenvalues must be
   88: *          either both included in the cluster or both excluded.
   89: *
   90: *  N       (input) INTEGER
   91: *          The order of the matrices A and B. N >= 0.
   92: *
   93: *  A       (input/output) DOUBLE PRECISION array, dimension(LDA,N)
   94: *          On entry, the upper quasi-triangular matrix A, with (A, B) in
   95: *          generalized real Schur canonical form.
   96: *          On exit, A is overwritten by the reordered matrix A.
   97: *
   98: *  LDA     (input) INTEGER
   99: *          The leading dimension of the array A. LDA >= max(1,N).
  100: *
  101: *  B       (input/output) DOUBLE PRECISION array, dimension(LDB,N)
  102: *          On entry, the upper triangular matrix B, with (A, B) in
  103: *          generalized real Schur canonical form.
  104: *          On exit, B is overwritten by the reordered matrix B.
  105: *
  106: *  LDB     (input) INTEGER
  107: *          The leading dimension of the array B. LDB >= max(1,N).
  108: *
  109: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
  110: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
  111: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
  112: *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
  113: *          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
  114: *          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
  115: *          form (S,T) that would result if the 2-by-2 diagonal blocks of
  116: *          the real generalized Schur form of (A,B) were further reduced
  117: *          to triangular form using complex unitary transformations.
  118: *          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
  119: *          positive, then the j-th and (j+1)-st eigenvalues are a
  120: *          complex conjugate pair, with ALPHAI(j+1) negative.
  121: *
  122: *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
  123: *          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
  124: *          On exit, Q has been postmultiplied by the left orthogonal
  125: *          transformation matrix which reorder (A, B); The leading M
  126: *          columns of Q form orthonormal bases for the specified pair of
  127: *          left eigenspaces (deflating subspaces).
  128: *          If WANTQ = .FALSE., Q is not referenced.
  129: *
  130: *  LDQ     (input) INTEGER
  131: *          The leading dimension of the array Q.  LDQ >= 1;
  132: *          and if WANTQ = .TRUE., LDQ >= N.
  133: *
  134: *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
  135: *          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
  136: *          On exit, Z has been postmultiplied by the left orthogonal
  137: *          transformation matrix which reorder (A, B); The leading M
  138: *          columns of Z form orthonormal bases for the specified pair of
  139: *          left eigenspaces (deflating subspaces).
  140: *          If WANTZ = .FALSE., Z is not referenced.
  141: *
  142: *  LDZ     (input) INTEGER
  143: *          The leading dimension of the array Z. LDZ >= 1;
  144: *          If WANTZ = .TRUE., LDZ >= N.
  145: *
  146: *  M       (output) INTEGER
  147: *          The dimension of the specified pair of left and right eigen-
  148: *          spaces (deflating subspaces). 0 <= M <= N.
  149: *
  150: *  PL      (output) DOUBLE PRECISION
  151: *  PR      (output) DOUBLE PRECISION
  152: *          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
  153: *          reciprocal of the norm of "projections" onto left and right
  154: *          eigenspaces with respect to the selected cluster.
  155: *          0 < PL, PR <= 1.
  156: *          If M = 0 or M = N, PL = PR  = 1.
  157: *          If IJOB = 0, 2 or 3, PL and PR are not referenced.
  158: *
  159: *  DIF     (output) DOUBLE PRECISION array, dimension (2).
  160: *          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
  161: *          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
  162: *          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
  163: *          estimates of Difu and Difl.
  164: *          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
  165: *          If IJOB = 0 or 1, DIF is not referenced.
  166: *
  167: *  WORK    (workspace/output) DOUBLE PRECISION array,
  168: *          dimension (MAX(1,LWORK)) 
  169: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  170: *
  171: *  LWORK   (input) INTEGER
  172: *          The dimension of the array WORK. LWORK >=  4*N+16.
  173: *          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
  174: *          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
  175: *
  176: *          If LWORK = -1, then a workspace query is assumed; the routine
  177: *          only calculates the optimal size of the WORK array, returns
  178: *          this value as the first entry of the WORK array, and no error
  179: *          message related to LWORK is issued by XERBLA.
  180: *
  181: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
  182: *          IF IJOB = 0, IWORK is not referenced.  Otherwise,
  183: *          on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  184: *
  185: *  LIWORK  (input) INTEGER
  186: *          The dimension of the array IWORK. LIWORK >= 1.
  187: *          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
  188: *          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
  189: *
  190: *          If LIWORK = -1, then a workspace query is assumed; the
  191: *          routine only calculates the optimal size of the IWORK array,
  192: *          returns this value as the first entry of the IWORK array, and
  193: *          no error message related to LIWORK is issued by XERBLA.
  194: *
  195: *  INFO    (output) INTEGER
  196: *            =0: Successful exit.
  197: *            <0: If INFO = -i, the i-th argument had an illegal value.
  198: *            =1: Reordering of (A, B) failed because the transformed
  199: *                matrix pair (A, B) would be too far from generalized
  200: *                Schur form; the problem is very ill-conditioned.
  201: *                (A, B) may have been partially reordered.
  202: *                If requested, 0 is returned in DIF(*), PL and PR.
  203: *
  204: *  Further Details
  205: *  ===============
  206: *
  207: *  DTGSEN first collects the selected eigenvalues by computing
  208: *  orthogonal U and W that move them to the top left corner of (A, B).
  209: *  In other words, the selected eigenvalues are the eigenvalues of
  210: *  (A11, B11) in:
  211: *
  212: *                U'*(A, B)*W = (A11 A12) (B11 B12) n1
  213: *                              ( 0  A22),( 0  B22) n2
  214: *                                n1  n2    n1  n2
  215: *
  216: *  where N = n1+n2 and U' means the transpose of U. The first n1 columns
  217: *  of U and W span the specified pair of left and right eigenspaces
  218: *  (deflating subspaces) of (A, B).
  219: *
  220: *  If (A, B) has been obtained from the generalized real Schur
  221: *  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
  222: *  reordered generalized real Schur form of (C, D) is given by
  223: *
  224: *           (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
  225: *
  226: *  and the first n1 columns of Q*U and Z*W span the corresponding
  227: *  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
  228: *
  229: *  Note that if the selected eigenvalue is sufficiently ill-conditioned,
  230: *  then its value may differ significantly from its value before
  231: *  reordering.
  232: *
  233: *  The reciprocal condition numbers of the left and right eigenspaces
  234: *  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
  235: *  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
  236: *
  237: *  The Difu and Difl are defined as:
  238: *
  239: *       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
  240: *  and
  241: *       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
  242: *
  243: *  where sigma-min(Zu) is the smallest singular value of the
  244: *  (2*n1*n2)-by-(2*n1*n2) matrix
  245: *
  246: *       Zu = [ kron(In2, A11)  -kron(A22', In1) ]
  247: *            [ kron(In2, B11)  -kron(B22', In1) ].
  248: *
  249: *  Here, Inx is the identity matrix of size nx and A22' is the
  250: *  transpose of A22. kron(X, Y) is the Kronecker product between
  251: *  the matrices X and Y.
  252: *
  253: *  When DIF(2) is small, small changes in (A, B) can cause large changes
  254: *  in the deflating subspace. An approximate (asymptotic) bound on the
  255: *  maximum angular error in the computed deflating subspaces is
  256: *
  257: *       EPS * norm((A, B)) / DIF(2),
  258: *
  259: *  where EPS is the machine precision.
  260: *
  261: *  The reciprocal norm of the projectors on the left and right
  262: *  eigenspaces associated with (A11, B11) may be returned in PL and PR.
  263: *  They are computed as follows. First we compute L and R so that
  264: *  P*(A, B)*Q is block diagonal, where
  265: *
  266: *       P = ( I -L ) n1           Q = ( I R ) n1
  267: *           ( 0  I ) n2    and        ( 0 I ) n2
  268: *             n1 n2                    n1 n2
  269: *
  270: *  and (L, R) is the solution to the generalized Sylvester equation
  271: *
  272: *       A11*R - L*A22 = -A12
  273: *       B11*R - L*B22 = -B12
  274: *
  275: *  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
  276: *  An approximate (asymptotic) bound on the average absolute error of
  277: *  the selected eigenvalues is
  278: *
  279: *       EPS * norm((A, B)) / PL.
  280: *
  281: *  There are also global error bounds which valid for perturbations up
  282: *  to a certain restriction:  A lower bound (x) on the smallest
  283: *  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
  284: *  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
  285: *  (i.e. (A + E, B + F), is
  286: *
  287: *   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
  288: *
  289: *  An approximate bound on x can be computed from DIF(1:2), PL and PR.
  290: *
  291: *  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
  292: *  (L', R') and unperturbed (L, R) left and right deflating subspaces
  293: *  associated with the selected cluster in the (1,1)-blocks can be
  294: *  bounded as
  295: *
  296: *   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
  297: *   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
  298: *
  299: *  See LAPACK User's Guide section 4.11 or the following references
  300: *  for more information.
  301: *
  302: *  Note that if the default method for computing the Frobenius-norm-
  303: *  based estimate DIF is not wanted (see DLATDF), then the parameter
  304: *  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
  305: *  (IJOB = 2 will be used)). See DTGSYL for more details.
  306: *
  307: *  Based on contributions by
  308: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  309: *     Umea University, S-901 87 Umea, Sweden.
  310: *
  311: *  References
  312: *  ==========
  313: *
  314: *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
  315: *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
  316: *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
  317: *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
  318: *
  319: *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
  320: *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
  321: *      Estimation: Theory, Algorithms and Software,
  322: *      Report UMINF - 94.04, Department of Computing Science, Umea
  323: *      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
  324: *      Note 87. To appear in Numerical Algorithms, 1996.
  325: *
  326: *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
  327: *      for Solving the Generalized Sylvester Equation and Estimating the
  328: *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
  329: *      Department of Computing Science, Umea University, S-901 87 Umea,
  330: *      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
  331: *      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
  332: *      1996.
  333: *
  334: *  =====================================================================
  335: *
  336: *     .. Parameters ..
  337:       INTEGER            IDIFJB
  338:       PARAMETER          ( IDIFJB = 3 )
  339:       DOUBLE PRECISION   ZERO, ONE
  340:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  341: *     ..
  342: *     .. Local Scalars ..
  343:       LOGICAL            LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
  344:      $                   WANTP
  345:       INTEGER            I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
  346:      $                   MN2, N1, N2
  347:       DOUBLE PRECISION   DSCALE, DSUM, EPS, RDSCAL, SMLNUM
  348: *     ..
  349: *     .. Local Arrays ..
  350:       INTEGER            ISAVE( 3 )
  351: *     ..
  352: *     .. External Subroutines ..
  353:       EXTERNAL           DLACN2, DLACPY, DLAG2, DLASSQ, DTGEXC, DTGSYL,
  354:      $                   XERBLA
  355: *     ..
  356: *     .. External Functions ..
  357:       DOUBLE PRECISION   DLAMCH
  358:       EXTERNAL           DLAMCH
  359: *     ..
  360: *     .. Intrinsic Functions ..
  361:       INTRINSIC          MAX, SIGN, SQRT
  362: *     ..
  363: *     .. Executable Statements ..
  364: *
  365: *     Decode and test the input parameters
  366: *
  367:       INFO = 0
  368:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  369: *
  370:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
  371:          INFO = -1
  372:       ELSE IF( N.LT.0 ) THEN
  373:          INFO = -5
  374:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  375:          INFO = -7
  376:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  377:          INFO = -9
  378:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  379:          INFO = -14
  380:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  381:          INFO = -16
  382:       END IF
  383: *
  384:       IF( INFO.NE.0 ) THEN
  385:          CALL XERBLA( 'DTGSEN', -INFO )
  386:          RETURN
  387:       END IF
  388: *
  389: *     Get machine constants
  390: *
  391:       EPS = DLAMCH( 'P' )
  392:       SMLNUM = DLAMCH( 'S' ) / EPS
  393:       IERR = 0
  394: *
  395:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
  396:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
  397:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
  398:       WANTD = WANTD1 .OR. WANTD2
  399: *
  400: *     Set M to the dimension of the specified pair of deflating
  401: *     subspaces.
  402: *
  403:       M = 0
  404:       PAIR = .FALSE.
  405:       DO 10 K = 1, N
  406:          IF( PAIR ) THEN
  407:             PAIR = .FALSE.
  408:          ELSE
  409:             IF( K.LT.N ) THEN
  410:                IF( A( K+1, K ).EQ.ZERO ) THEN
  411:                   IF( SELECT( K ) )
  412:      $               M = M + 1
  413:                ELSE
  414:                   PAIR = .TRUE.
  415:                   IF( SELECT( K ) .OR. SELECT( K+1 ) )
  416:      $               M = M + 2
  417:                END IF
  418:             ELSE
  419:                IF( SELECT( N ) )
  420:      $            M = M + 1
  421:             END IF
  422:          END IF
  423:    10 CONTINUE
  424: *
  425:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
  426:          LWMIN = MAX( 1, 4*N+16, 2*M*( N-M ) )
  427:          LIWMIN = MAX( 1, N+6 )
  428:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
  429:          LWMIN = MAX( 1, 4*N+16, 4*M*( N-M ) )
  430:          LIWMIN = MAX( 1, 2*M*( N-M ), N+6 )
  431:       ELSE
  432:          LWMIN = MAX( 1, 4*N+16 )
  433:          LIWMIN = 1
  434:       END IF
  435: *
  436:       WORK( 1 ) = LWMIN
  437:       IWORK( 1 ) = LIWMIN
  438: *
  439:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  440:          INFO = -22
  441:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  442:          INFO = -24
  443:       END IF
  444: *
  445:       IF( INFO.NE.0 ) THEN
  446:          CALL XERBLA( 'DTGSEN', -INFO )
  447:          RETURN
  448:       ELSE IF( LQUERY ) THEN
  449:          RETURN
  450:       END IF
  451: *
  452: *     Quick return if possible.
  453: *
  454:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
  455:          IF( WANTP ) THEN
  456:             PL = ONE
  457:             PR = ONE
  458:          END IF
  459:          IF( WANTD ) THEN
  460:             DSCALE = ZERO
  461:             DSUM = ONE
  462:             DO 20 I = 1, N
  463:                CALL DLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
  464:                CALL DLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
  465:    20       CONTINUE
  466:             DIF( 1 ) = DSCALE*SQRT( DSUM )
  467:             DIF( 2 ) = DIF( 1 )
  468:          END IF
  469:          GO TO 60
  470:       END IF
  471: *
  472: *     Collect the selected blocks at the top-left corner of (A, B).
  473: *
  474:       KS = 0
  475:       PAIR = .FALSE.
  476:       DO 30 K = 1, N
  477:          IF( PAIR ) THEN
  478:             PAIR = .FALSE.
  479:          ELSE
  480: *
  481:             SWAP = SELECT( K )
  482:             IF( K.LT.N ) THEN
  483:                IF( A( K+1, K ).NE.ZERO ) THEN
  484:                   PAIR = .TRUE.
  485:                   SWAP = SWAP .OR. SELECT( K+1 )
  486:                END IF
  487:             END IF
  488: *
  489:             IF( SWAP ) THEN
  490:                KS = KS + 1
  491: *
  492: *              Swap the K-th block to position KS.
  493: *              Perform the reordering of diagonal blocks in (A, B)
  494: *              by orthogonal transformation matrices and update
  495: *              Q and Z accordingly (if requested):
  496: *
  497:                KK = K
  498:                IF( K.NE.KS )
  499:      $            CALL DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
  500:      $                         Z, LDZ, KK, KS, WORK, LWORK, IERR )
  501: *
  502:                IF( IERR.GT.0 ) THEN
  503: *
  504: *                 Swap is rejected: exit.
  505: *
  506:                   INFO = 1
  507:                   IF( WANTP ) THEN
  508:                      PL = ZERO
  509:                      PR = ZERO
  510:                   END IF
  511:                   IF( WANTD ) THEN
  512:                      DIF( 1 ) = ZERO
  513:                      DIF( 2 ) = ZERO
  514:                   END IF
  515:                   GO TO 60
  516:                END IF
  517: *
  518:                IF( PAIR )
  519:      $            KS = KS + 1
  520:             END IF
  521:          END IF
  522:    30 CONTINUE
  523:       IF( WANTP ) THEN
  524: *
  525: *        Solve generalized Sylvester equation for R and L
  526: *        and compute PL and PR.
  527: *
  528:          N1 = M
  529:          N2 = N - M
  530:          I = N1 + 1
  531:          IJB = 0
  532:          CALL DLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
  533:          CALL DLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
  534:      $                N1 )
  535:          CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
  536:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
  537:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
  538:      $                LWORK-2*N1*N2, IWORK, IERR )
  539: *
  540: *        Estimate the reciprocal of norms of "projections" onto left
  541: *        and right eigenspaces.
  542: *
  543:          RDSCAL = ZERO
  544:          DSUM = ONE
  545:          CALL DLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
  546:          PL = RDSCAL*SQRT( DSUM )
  547:          IF( PL.EQ.ZERO ) THEN
  548:             PL = ONE
  549:          ELSE
  550:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
  551:          END IF
  552:          RDSCAL = ZERO
  553:          DSUM = ONE
  554:          CALL DLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
  555:          PR = RDSCAL*SQRT( DSUM )
  556:          IF( PR.EQ.ZERO ) THEN
  557:             PR = ONE
  558:          ELSE
  559:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
  560:          END IF
  561:       END IF
  562: *
  563:       IF( WANTD ) THEN
  564: *
  565: *        Compute estimates of Difu and Difl.
  566: *
  567:          IF( WANTD1 ) THEN
  568:             N1 = M
  569:             N2 = N - M
  570:             I = N1 + 1
  571:             IJB = IDIFJB
  572: *
  573: *           Frobenius norm-based Difu-estimate.
  574: *
  575:             CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
  576:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
  577:      $                   N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
  578:      $                   LWORK-2*N1*N2, IWORK, IERR )
  579: *
  580: *           Frobenius norm-based Difl-estimate.
  581: *
  582:             CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
  583:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
  584:      $                   N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
  585:      $                   LWORK-2*N1*N2, IWORK, IERR )
  586:          ELSE
  587: *
  588: *
  589: *           Compute 1-norm-based estimates of Difu and Difl using
  590: *           reversed communication with DLACN2. In each step a
  591: *           generalized Sylvester equation or a transposed variant
  592: *           is solved.
  593: *
  594:             KASE = 0
  595:             N1 = M
  596:             N2 = N - M
  597:             I = N1 + 1
  598:             IJB = 0
  599:             MN2 = 2*N1*N2
  600: *
  601: *           1-norm-based estimate of Difu.
  602: *
  603:    40       CONTINUE
  604:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
  605:      $                   KASE, ISAVE )
  606:             IF( KASE.NE.0 ) THEN
  607:                IF( KASE.EQ.1 ) THEN
  608: *
  609: *                 Solve generalized Sylvester equation.
  610: *
  611:                   CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
  612:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
  613:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
  614:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
  615:      $                         IERR )
  616:                ELSE
  617: *
  618: *                 Solve the transposed variant.
  619: *
  620:                   CALL DTGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
  621:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
  622:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
  623:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
  624:      $                         IERR )
  625:                END IF
  626:                GO TO 40
  627:             END IF
  628:             DIF( 1 ) = DSCALE / DIF( 1 )
  629: *
  630: *           1-norm-based estimate of Difl.
  631: *
  632:    50       CONTINUE
  633:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
  634:      $                   KASE, ISAVE )
  635:             IF( KASE.NE.0 ) THEN
  636:                IF( KASE.EQ.1 ) THEN
  637: *
  638: *                 Solve generalized Sylvester equation.
  639: *
  640:                   CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
  641:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
  642:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
  643:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
  644:      $                         IERR )
  645:                ELSE
  646: *
  647: *                 Solve the transposed variant.
  648: *
  649:                   CALL DTGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
  650:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
  651:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
  652:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
  653:      $                         IERR )
  654:                END IF
  655:                GO TO 50
  656:             END IF
  657:             DIF( 2 ) = DSCALE / DIF( 2 )
  658: *
  659:          END IF
  660:       END IF
  661: *
  662:    60 CONTINUE
  663: *
  664: *     Compute generalized eigenvalues of reordered pair (A, B) and
  665: *     normalize the generalized Schur form.
  666: *
  667:       PAIR = .FALSE.
  668:       DO 80 K = 1, N
  669:          IF( PAIR ) THEN
  670:             PAIR = .FALSE.
  671:          ELSE
  672: *
  673:             IF( K.LT.N ) THEN
  674:                IF( A( K+1, K ).NE.ZERO ) THEN
  675:                   PAIR = .TRUE.
  676:                END IF
  677:             END IF
  678: *
  679:             IF( PAIR ) THEN
  680: *
  681: *             Compute the eigenvalue(s) at position K.
  682: *
  683:                WORK( 1 ) = A( K, K )
  684:                WORK( 2 ) = A( K+1, K )
  685:                WORK( 3 ) = A( K, K+1 )
  686:                WORK( 4 ) = A( K+1, K+1 )
  687:                WORK( 5 ) = B( K, K )
  688:                WORK( 6 ) = B( K+1, K )
  689:                WORK( 7 ) = B( K, K+1 )
  690:                WORK( 8 ) = B( K+1, K+1 )
  691:                CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
  692:      $                     BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
  693:      $                     ALPHAI( K ) )
  694:                ALPHAI( K+1 ) = -ALPHAI( K )
  695: *
  696:             ELSE
  697: *
  698:                IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
  699: *
  700: *                 If B(K,K) is negative, make it positive
  701: *
  702:                   DO 70 I = 1, N
  703:                      A( K, I ) = -A( K, I )
  704:                      B( K, I ) = -B( K, I )
  705:                      IF( WANTQ ) Q( I, K ) = -Q( I, K )
  706:    70             CONTINUE
  707:                END IF
  708: *
  709:                ALPHAR( K ) = A( K, K )
  710:                ALPHAI( K ) = ZERO
  711:                BETA( K ) = B( K, K )
  712: *
  713:             END IF
  714:          END IF
  715:    80 CONTINUE
  716: *
  717:       WORK( 1 ) = LWMIN
  718:       IWORK( 1 ) = LIWMIN
  719: *
  720:       RETURN
  721: *
  722: *     End of DTGSEN
  723: *
  724:       END

CVSweb interface <joel.bertrand@systella.fr>