Annotation of rpl/lapack/lapack/dtgsen.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
        !             2:      $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
        !             3:      $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     January 2007
        !             9: *
        !            10: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
        !            11: *
        !            12: *     .. Scalar Arguments ..
        !            13:       LOGICAL            WANTQ, WANTZ
        !            14:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
        !            15:      $                   M, N
        !            16:       DOUBLE PRECISION   PL, PR
        !            17: *     ..
        !            18: *     .. Array Arguments ..
        !            19:       LOGICAL            SELECT( * )
        !            20:       INTEGER            IWORK( * )
        !            21:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
        !            22:      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
        !            23:      $                   WORK( * ), Z( LDZ, * )
        !            24: *     ..
        !            25: *
        !            26: *  Purpose
        !            27: *  =======
        !            28: *
        !            29: *  DTGSEN reorders the generalized real Schur decomposition of a real
        !            30: *  matrix pair (A, B) (in terms of an orthonormal equivalence trans-
        !            31: *  formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
        !            32: *  appears in the leading diagonal blocks of the upper quasi-triangular
        !            33: *  matrix A and the upper triangular B. The leading columns of Q and
        !            34: *  Z form orthonormal bases of the corresponding left and right eigen-
        !            35: *  spaces (deflating subspaces). (A, B) must be in generalized real
        !            36: *  Schur canonical form (as returned by DGGES), i.e. A is block upper
        !            37: *  triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
        !            38: *  triangular.
        !            39: *
        !            40: *  DTGSEN also computes the generalized eigenvalues
        !            41: *
        !            42: *              w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
        !            43: *
        !            44: *  of the reordered matrix pair (A, B).
        !            45: *
        !            46: *  Optionally, DTGSEN computes the estimates of reciprocal condition
        !            47: *  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
        !            48: *  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
        !            49: *  between the matrix pairs (A11, B11) and (A22,B22) that correspond to
        !            50: *  the selected cluster and the eigenvalues outside the cluster, resp.,
        !            51: *  and norms of "projections" onto left and right eigenspaces w.r.t.
        !            52: *  the selected cluster in the (1,1)-block.
        !            53: *
        !            54: *  Arguments
        !            55: *  =========
        !            56: *
        !            57: *  IJOB    (input) INTEGER
        !            58: *          Specifies whether condition numbers are required for the
        !            59: *          cluster of eigenvalues (PL and PR) or the deflating subspaces
        !            60: *          (Difu and Difl):
        !            61: *           =0: Only reorder w.r.t. SELECT. No extras.
        !            62: *           =1: Reciprocal of norms of "projections" onto left and right
        !            63: *               eigenspaces w.r.t. the selected cluster (PL and PR).
        !            64: *           =2: Upper bounds on Difu and Difl. F-norm-based estimate
        !            65: *               (DIF(1:2)).
        !            66: *           =3: Estimate of Difu and Difl. 1-norm-based estimate
        !            67: *               (DIF(1:2)).
        !            68: *               About 5 times as expensive as IJOB = 2.
        !            69: *           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
        !            70: *               version to get it all.
        !            71: *           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
        !            72: *
        !            73: *  WANTQ   (input) LOGICAL
        !            74: *          .TRUE. : update the left transformation matrix Q;
        !            75: *          .FALSE.: do not update Q.
        !            76: *
        !            77: *  WANTZ   (input) LOGICAL
        !            78: *          .TRUE. : update the right transformation matrix Z;
        !            79: *          .FALSE.: do not update Z.
        !            80: *
        !            81: *  SELECT  (input) LOGICAL array, dimension (N)
        !            82: *          SELECT specifies the eigenvalues in the selected cluster.
        !            83: *          To select a real eigenvalue w(j), SELECT(j) must be set to
        !            84: *          .TRUE.. To select a complex conjugate pair of eigenvalues
        !            85: *          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
        !            86: *          either SELECT(j) or SELECT(j+1) or both must be set to
        !            87: *          .TRUE.; a complex conjugate pair of eigenvalues must be
        !            88: *          either both included in the cluster or both excluded.
        !            89: *
        !            90: *  N       (input) INTEGER
        !            91: *          The order of the matrices A and B. N >= 0.
        !            92: *
        !            93: *  A       (input/output) DOUBLE PRECISION array, dimension(LDA,N)
        !            94: *          On entry, the upper quasi-triangular matrix A, with (A, B) in
        !            95: *          generalized real Schur canonical form.
        !            96: *          On exit, A is overwritten by the reordered matrix A.
        !            97: *
        !            98: *  LDA     (input) INTEGER
        !            99: *          The leading dimension of the array A. LDA >= max(1,N).
        !           100: *
        !           101: *  B       (input/output) DOUBLE PRECISION array, dimension(LDB,N)
        !           102: *          On entry, the upper triangular matrix B, with (A, B) in
        !           103: *          generalized real Schur canonical form.
        !           104: *          On exit, B is overwritten by the reordered matrix B.
        !           105: *
        !           106: *  LDB     (input) INTEGER
        !           107: *          The leading dimension of the array B. LDB >= max(1,N).
        !           108: *
        !           109: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
        !           110: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
        !           111: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
        !           112: *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
        !           113: *          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
        !           114: *          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
        !           115: *          form (S,T) that would result if the 2-by-2 diagonal blocks of
        !           116: *          the real generalized Schur form of (A,B) were further reduced
        !           117: *          to triangular form using complex unitary transformations.
        !           118: *          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
        !           119: *          positive, then the j-th and (j+1)-st eigenvalues are a
        !           120: *          complex conjugate pair, with ALPHAI(j+1) negative.
        !           121: *
        !           122: *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
        !           123: *          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
        !           124: *          On exit, Q has been postmultiplied by the left orthogonal
        !           125: *          transformation matrix which reorder (A, B); The leading M
        !           126: *          columns of Q form orthonormal bases for the specified pair of
        !           127: *          left eigenspaces (deflating subspaces).
        !           128: *          If WANTQ = .FALSE., Q is not referenced.
        !           129: *
        !           130: *  LDQ     (input) INTEGER
        !           131: *          The leading dimension of the array Q.  LDQ >= 1;
        !           132: *          and if WANTQ = .TRUE., LDQ >= N.
        !           133: *
        !           134: *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
        !           135: *          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
        !           136: *          On exit, Z has been postmultiplied by the left orthogonal
        !           137: *          transformation matrix which reorder (A, B); The leading M
        !           138: *          columns of Z form orthonormal bases for the specified pair of
        !           139: *          left eigenspaces (deflating subspaces).
        !           140: *          If WANTZ = .FALSE., Z is not referenced.
        !           141: *
        !           142: *  LDZ     (input) INTEGER
        !           143: *          The leading dimension of the array Z. LDZ >= 1;
        !           144: *          If WANTZ = .TRUE., LDZ >= N.
        !           145: *
        !           146: *  M       (output) INTEGER
        !           147: *          The dimension of the specified pair of left and right eigen-
        !           148: *          spaces (deflating subspaces). 0 <= M <= N.
        !           149: *
        !           150: *  PL      (output) DOUBLE PRECISION
        !           151: *  PR      (output) DOUBLE PRECISION
        !           152: *          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
        !           153: *          reciprocal of the norm of "projections" onto left and right
        !           154: *          eigenspaces with respect to the selected cluster.
        !           155: *          0 < PL, PR <= 1.
        !           156: *          If M = 0 or M = N, PL = PR  = 1.
        !           157: *          If IJOB = 0, 2 or 3, PL and PR are not referenced.
        !           158: *
        !           159: *  DIF     (output) DOUBLE PRECISION array, dimension (2).
        !           160: *          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
        !           161: *          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
        !           162: *          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
        !           163: *          estimates of Difu and Difl.
        !           164: *          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
        !           165: *          If IJOB = 0 or 1, DIF is not referenced.
        !           166: *
        !           167: *  WORK    (workspace/output) DOUBLE PRECISION array,
        !           168: *          dimension (MAX(1,LWORK)) 
        !           169: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           170: *
        !           171: *  LWORK   (input) INTEGER
        !           172: *          The dimension of the array WORK. LWORK >=  4*N+16.
        !           173: *          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
        !           174: *          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
        !           175: *
        !           176: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           177: *          only calculates the optimal size of the WORK array, returns
        !           178: *          this value as the first entry of the WORK array, and no error
        !           179: *          message related to LWORK is issued by XERBLA.
        !           180: *
        !           181: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !           182: *          IF IJOB = 0, IWORK is not referenced.  Otherwise,
        !           183: *          on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           184: *
        !           185: *  LIWORK  (input) INTEGER
        !           186: *          The dimension of the array IWORK. LIWORK >= 1.
        !           187: *          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
        !           188: *          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
        !           189: *
        !           190: *          If LIWORK = -1, then a workspace query is assumed; the
        !           191: *          routine only calculates the optimal size of the IWORK array,
        !           192: *          returns this value as the first entry of the IWORK array, and
        !           193: *          no error message related to LIWORK is issued by XERBLA.
        !           194: *
        !           195: *  INFO    (output) INTEGER
        !           196: *            =0: Successful exit.
        !           197: *            <0: If INFO = -i, the i-th argument had an illegal value.
        !           198: *            =1: Reordering of (A, B) failed because the transformed
        !           199: *                matrix pair (A, B) would be too far from generalized
        !           200: *                Schur form; the problem is very ill-conditioned.
        !           201: *                (A, B) may have been partially reordered.
        !           202: *                If requested, 0 is returned in DIF(*), PL and PR.
        !           203: *
        !           204: *  Further Details
        !           205: *  ===============
        !           206: *
        !           207: *  DTGSEN first collects the selected eigenvalues by computing
        !           208: *  orthogonal U and W that move them to the top left corner of (A, B).
        !           209: *  In other words, the selected eigenvalues are the eigenvalues of
        !           210: *  (A11, B11) in:
        !           211: *
        !           212: *                U'*(A, B)*W = (A11 A12) (B11 B12) n1
        !           213: *                              ( 0  A22),( 0  B22) n2
        !           214: *                                n1  n2    n1  n2
        !           215: *
        !           216: *  where N = n1+n2 and U' means the transpose of U. The first n1 columns
        !           217: *  of U and W span the specified pair of left and right eigenspaces
        !           218: *  (deflating subspaces) of (A, B).
        !           219: *
        !           220: *  If (A, B) has been obtained from the generalized real Schur
        !           221: *  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
        !           222: *  reordered generalized real Schur form of (C, D) is given by
        !           223: *
        !           224: *           (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
        !           225: *
        !           226: *  and the first n1 columns of Q*U and Z*W span the corresponding
        !           227: *  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
        !           228: *
        !           229: *  Note that if the selected eigenvalue is sufficiently ill-conditioned,
        !           230: *  then its value may differ significantly from its value before
        !           231: *  reordering.
        !           232: *
        !           233: *  The reciprocal condition numbers of the left and right eigenspaces
        !           234: *  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
        !           235: *  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
        !           236: *
        !           237: *  The Difu and Difl are defined as:
        !           238: *
        !           239: *       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
        !           240: *  and
        !           241: *       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
        !           242: *
        !           243: *  where sigma-min(Zu) is the smallest singular value of the
        !           244: *  (2*n1*n2)-by-(2*n1*n2) matrix
        !           245: *
        !           246: *       Zu = [ kron(In2, A11)  -kron(A22', In1) ]
        !           247: *            [ kron(In2, B11)  -kron(B22', In1) ].
        !           248: *
        !           249: *  Here, Inx is the identity matrix of size nx and A22' is the
        !           250: *  transpose of A22. kron(X, Y) is the Kronecker product between
        !           251: *  the matrices X and Y.
        !           252: *
        !           253: *  When DIF(2) is small, small changes in (A, B) can cause large changes
        !           254: *  in the deflating subspace. An approximate (asymptotic) bound on the
        !           255: *  maximum angular error in the computed deflating subspaces is
        !           256: *
        !           257: *       EPS * norm((A, B)) / DIF(2),
        !           258: *
        !           259: *  where EPS is the machine precision.
        !           260: *
        !           261: *  The reciprocal norm of the projectors on the left and right
        !           262: *  eigenspaces associated with (A11, B11) may be returned in PL and PR.
        !           263: *  They are computed as follows. First we compute L and R so that
        !           264: *  P*(A, B)*Q is block diagonal, where
        !           265: *
        !           266: *       P = ( I -L ) n1           Q = ( I R ) n1
        !           267: *           ( 0  I ) n2    and        ( 0 I ) n2
        !           268: *             n1 n2                    n1 n2
        !           269: *
        !           270: *  and (L, R) is the solution to the generalized Sylvester equation
        !           271: *
        !           272: *       A11*R - L*A22 = -A12
        !           273: *       B11*R - L*B22 = -B12
        !           274: *
        !           275: *  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
        !           276: *  An approximate (asymptotic) bound on the average absolute error of
        !           277: *  the selected eigenvalues is
        !           278: *
        !           279: *       EPS * norm((A, B)) / PL.
        !           280: *
        !           281: *  There are also global error bounds which valid for perturbations up
        !           282: *  to a certain restriction:  A lower bound (x) on the smallest
        !           283: *  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
        !           284: *  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
        !           285: *  (i.e. (A + E, B + F), is
        !           286: *
        !           287: *   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
        !           288: *
        !           289: *  An approximate bound on x can be computed from DIF(1:2), PL and PR.
        !           290: *
        !           291: *  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
        !           292: *  (L', R') and unperturbed (L, R) left and right deflating subspaces
        !           293: *  associated with the selected cluster in the (1,1)-blocks can be
        !           294: *  bounded as
        !           295: *
        !           296: *   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
        !           297: *   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
        !           298: *
        !           299: *  See LAPACK User's Guide section 4.11 or the following references
        !           300: *  for more information.
        !           301: *
        !           302: *  Note that if the default method for computing the Frobenius-norm-
        !           303: *  based estimate DIF is not wanted (see DLATDF), then the parameter
        !           304: *  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
        !           305: *  (IJOB = 2 will be used)). See DTGSYL for more details.
        !           306: *
        !           307: *  Based on contributions by
        !           308: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
        !           309: *     Umea University, S-901 87 Umea, Sweden.
        !           310: *
        !           311: *  References
        !           312: *  ==========
        !           313: *
        !           314: *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
        !           315: *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
        !           316: *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
        !           317: *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
        !           318: *
        !           319: *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
        !           320: *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
        !           321: *      Estimation: Theory, Algorithms and Software,
        !           322: *      Report UMINF - 94.04, Department of Computing Science, Umea
        !           323: *      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
        !           324: *      Note 87. To appear in Numerical Algorithms, 1996.
        !           325: *
        !           326: *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
        !           327: *      for Solving the Generalized Sylvester Equation and Estimating the
        !           328: *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
        !           329: *      Department of Computing Science, Umea University, S-901 87 Umea,
        !           330: *      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
        !           331: *      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
        !           332: *      1996.
        !           333: *
        !           334: *  =====================================================================
        !           335: *
        !           336: *     .. Parameters ..
        !           337:       INTEGER            IDIFJB
        !           338:       PARAMETER          ( IDIFJB = 3 )
        !           339:       DOUBLE PRECISION   ZERO, ONE
        !           340:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           341: *     ..
        !           342: *     .. Local Scalars ..
        !           343:       LOGICAL            LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
        !           344:      $                   WANTP
        !           345:       INTEGER            I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
        !           346:      $                   MN2, N1, N2
        !           347:       DOUBLE PRECISION   DSCALE, DSUM, EPS, RDSCAL, SMLNUM
        !           348: *     ..
        !           349: *     .. Local Arrays ..
        !           350:       INTEGER            ISAVE( 3 )
        !           351: *     ..
        !           352: *     .. External Subroutines ..
        !           353:       EXTERNAL           DLACN2, DLACPY, DLAG2, DLASSQ, DTGEXC, DTGSYL,
        !           354:      $                   XERBLA
        !           355: *     ..
        !           356: *     .. External Functions ..
        !           357:       DOUBLE PRECISION   DLAMCH
        !           358:       EXTERNAL           DLAMCH
        !           359: *     ..
        !           360: *     .. Intrinsic Functions ..
        !           361:       INTRINSIC          MAX, SIGN, SQRT
        !           362: *     ..
        !           363: *     .. Executable Statements ..
        !           364: *
        !           365: *     Decode and test the input parameters
        !           366: *
        !           367:       INFO = 0
        !           368:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           369: *
        !           370:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
        !           371:          INFO = -1
        !           372:       ELSE IF( N.LT.0 ) THEN
        !           373:          INFO = -5
        !           374:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           375:          INFO = -7
        !           376:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           377:          INFO = -9
        !           378:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
        !           379:          INFO = -14
        !           380:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           381:          INFO = -16
        !           382:       END IF
        !           383: *
        !           384:       IF( INFO.NE.0 ) THEN
        !           385:          CALL XERBLA( 'DTGSEN', -INFO )
        !           386:          RETURN
        !           387:       END IF
        !           388: *
        !           389: *     Get machine constants
        !           390: *
        !           391:       EPS = DLAMCH( 'P' )
        !           392:       SMLNUM = DLAMCH( 'S' ) / EPS
        !           393:       IERR = 0
        !           394: *
        !           395:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
        !           396:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
        !           397:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
        !           398:       WANTD = WANTD1 .OR. WANTD2
        !           399: *
        !           400: *     Set M to the dimension of the specified pair of deflating
        !           401: *     subspaces.
        !           402: *
        !           403:       M = 0
        !           404:       PAIR = .FALSE.
        !           405:       DO 10 K = 1, N
        !           406:          IF( PAIR ) THEN
        !           407:             PAIR = .FALSE.
        !           408:          ELSE
        !           409:             IF( K.LT.N ) THEN
        !           410:                IF( A( K+1, K ).EQ.ZERO ) THEN
        !           411:                   IF( SELECT( K ) )
        !           412:      $               M = M + 1
        !           413:                ELSE
        !           414:                   PAIR = .TRUE.
        !           415:                   IF( SELECT( K ) .OR. SELECT( K+1 ) )
        !           416:      $               M = M + 2
        !           417:                END IF
        !           418:             ELSE
        !           419:                IF( SELECT( N ) )
        !           420:      $            M = M + 1
        !           421:             END IF
        !           422:          END IF
        !           423:    10 CONTINUE
        !           424: *
        !           425:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
        !           426:          LWMIN = MAX( 1, 4*N+16, 2*M*( N-M ) )
        !           427:          LIWMIN = MAX( 1, N+6 )
        !           428:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
        !           429:          LWMIN = MAX( 1, 4*N+16, 4*M*( N-M ) )
        !           430:          LIWMIN = MAX( 1, 2*M*( N-M ), N+6 )
        !           431:       ELSE
        !           432:          LWMIN = MAX( 1, 4*N+16 )
        !           433:          LIWMIN = 1
        !           434:       END IF
        !           435: *
        !           436:       WORK( 1 ) = LWMIN
        !           437:       IWORK( 1 ) = LIWMIN
        !           438: *
        !           439:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           440:          INFO = -22
        !           441:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           442:          INFO = -24
        !           443:       END IF
        !           444: *
        !           445:       IF( INFO.NE.0 ) THEN
        !           446:          CALL XERBLA( 'DTGSEN', -INFO )
        !           447:          RETURN
        !           448:       ELSE IF( LQUERY ) THEN
        !           449:          RETURN
        !           450:       END IF
        !           451: *
        !           452: *     Quick return if possible.
        !           453: *
        !           454:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
        !           455:          IF( WANTP ) THEN
        !           456:             PL = ONE
        !           457:             PR = ONE
        !           458:          END IF
        !           459:          IF( WANTD ) THEN
        !           460:             DSCALE = ZERO
        !           461:             DSUM = ONE
        !           462:             DO 20 I = 1, N
        !           463:                CALL DLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
        !           464:                CALL DLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
        !           465:    20       CONTINUE
        !           466:             DIF( 1 ) = DSCALE*SQRT( DSUM )
        !           467:             DIF( 2 ) = DIF( 1 )
        !           468:          END IF
        !           469:          GO TO 60
        !           470:       END IF
        !           471: *
        !           472: *     Collect the selected blocks at the top-left corner of (A, B).
        !           473: *
        !           474:       KS = 0
        !           475:       PAIR = .FALSE.
        !           476:       DO 30 K = 1, N
        !           477:          IF( PAIR ) THEN
        !           478:             PAIR = .FALSE.
        !           479:          ELSE
        !           480: *
        !           481:             SWAP = SELECT( K )
        !           482:             IF( K.LT.N ) THEN
        !           483:                IF( A( K+1, K ).NE.ZERO ) THEN
        !           484:                   PAIR = .TRUE.
        !           485:                   SWAP = SWAP .OR. SELECT( K+1 )
        !           486:                END IF
        !           487:             END IF
        !           488: *
        !           489:             IF( SWAP ) THEN
        !           490:                KS = KS + 1
        !           491: *
        !           492: *              Swap the K-th block to position KS.
        !           493: *              Perform the reordering of diagonal blocks in (A, B)
        !           494: *              by orthogonal transformation matrices and update
        !           495: *              Q and Z accordingly (if requested):
        !           496: *
        !           497:                KK = K
        !           498:                IF( K.NE.KS )
        !           499:      $            CALL DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
        !           500:      $                         Z, LDZ, KK, KS, WORK, LWORK, IERR )
        !           501: *
        !           502:                IF( IERR.GT.0 ) THEN
        !           503: *
        !           504: *                 Swap is rejected: exit.
        !           505: *
        !           506:                   INFO = 1
        !           507:                   IF( WANTP ) THEN
        !           508:                      PL = ZERO
        !           509:                      PR = ZERO
        !           510:                   END IF
        !           511:                   IF( WANTD ) THEN
        !           512:                      DIF( 1 ) = ZERO
        !           513:                      DIF( 2 ) = ZERO
        !           514:                   END IF
        !           515:                   GO TO 60
        !           516:                END IF
        !           517: *
        !           518:                IF( PAIR )
        !           519:      $            KS = KS + 1
        !           520:             END IF
        !           521:          END IF
        !           522:    30 CONTINUE
        !           523:       IF( WANTP ) THEN
        !           524: *
        !           525: *        Solve generalized Sylvester equation for R and L
        !           526: *        and compute PL and PR.
        !           527: *
        !           528:          N1 = M
        !           529:          N2 = N - M
        !           530:          I = N1 + 1
        !           531:          IJB = 0
        !           532:          CALL DLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
        !           533:          CALL DLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
        !           534:      $                N1 )
        !           535:          CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
        !           536:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
        !           537:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
        !           538:      $                LWORK-2*N1*N2, IWORK, IERR )
        !           539: *
        !           540: *        Estimate the reciprocal of norms of "projections" onto left
        !           541: *        and right eigenspaces.
        !           542: *
        !           543:          RDSCAL = ZERO
        !           544:          DSUM = ONE
        !           545:          CALL DLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
        !           546:          PL = RDSCAL*SQRT( DSUM )
        !           547:          IF( PL.EQ.ZERO ) THEN
        !           548:             PL = ONE
        !           549:          ELSE
        !           550:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
        !           551:          END IF
        !           552:          RDSCAL = ZERO
        !           553:          DSUM = ONE
        !           554:          CALL DLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
        !           555:          PR = RDSCAL*SQRT( DSUM )
        !           556:          IF( PR.EQ.ZERO ) THEN
        !           557:             PR = ONE
        !           558:          ELSE
        !           559:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
        !           560:          END IF
        !           561:       END IF
        !           562: *
        !           563:       IF( WANTD ) THEN
        !           564: *
        !           565: *        Compute estimates of Difu and Difl.
        !           566: *
        !           567:          IF( WANTD1 ) THEN
        !           568:             N1 = M
        !           569:             N2 = N - M
        !           570:             I = N1 + 1
        !           571:             IJB = IDIFJB
        !           572: *
        !           573: *           Frobenius norm-based Difu-estimate.
        !           574: *
        !           575:             CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
        !           576:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
        !           577:      $                   N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
        !           578:      $                   LWORK-2*N1*N2, IWORK, IERR )
        !           579: *
        !           580: *           Frobenius norm-based Difl-estimate.
        !           581: *
        !           582:             CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
        !           583:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
        !           584:      $                   N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
        !           585:      $                   LWORK-2*N1*N2, IWORK, IERR )
        !           586:          ELSE
        !           587: *
        !           588: *
        !           589: *           Compute 1-norm-based estimates of Difu and Difl using
        !           590: *           reversed communication with DLACN2. In each step a
        !           591: *           generalized Sylvester equation or a transposed variant
        !           592: *           is solved.
        !           593: *
        !           594:             KASE = 0
        !           595:             N1 = M
        !           596:             N2 = N - M
        !           597:             I = N1 + 1
        !           598:             IJB = 0
        !           599:             MN2 = 2*N1*N2
        !           600: *
        !           601: *           1-norm-based estimate of Difu.
        !           602: *
        !           603:    40       CONTINUE
        !           604:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
        !           605:      $                   KASE, ISAVE )
        !           606:             IF( KASE.NE.0 ) THEN
        !           607:                IF( KASE.EQ.1 ) THEN
        !           608: *
        !           609: *                 Solve generalized Sylvester equation.
        !           610: *
        !           611:                   CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
        !           612:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
        !           613:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
        !           614:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
        !           615:      $                         IERR )
        !           616:                ELSE
        !           617: *
        !           618: *                 Solve the transposed variant.
        !           619: *
        !           620:                   CALL DTGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
        !           621:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
        !           622:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
        !           623:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
        !           624:      $                         IERR )
        !           625:                END IF
        !           626:                GO TO 40
        !           627:             END IF
        !           628:             DIF( 1 ) = DSCALE / DIF( 1 )
        !           629: *
        !           630: *           1-norm-based estimate of Difl.
        !           631: *
        !           632:    50       CONTINUE
        !           633:             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
        !           634:      $                   KASE, ISAVE )
        !           635:             IF( KASE.NE.0 ) THEN
        !           636:                IF( KASE.EQ.1 ) THEN
        !           637: *
        !           638: *                 Solve generalized Sylvester equation.
        !           639: *
        !           640:                   CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
        !           641:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
        !           642:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
        !           643:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
        !           644:      $                         IERR )
        !           645:                ELSE
        !           646: *
        !           647: *                 Solve the transposed variant.
        !           648: *
        !           649:                   CALL DTGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
        !           650:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
        !           651:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
        !           652:      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
        !           653:      $                         IERR )
        !           654:                END IF
        !           655:                GO TO 50
        !           656:             END IF
        !           657:             DIF( 2 ) = DSCALE / DIF( 2 )
        !           658: *
        !           659:          END IF
        !           660:       END IF
        !           661: *
        !           662:    60 CONTINUE
        !           663: *
        !           664: *     Compute generalized eigenvalues of reordered pair (A, B) and
        !           665: *     normalize the generalized Schur form.
        !           666: *
        !           667:       PAIR = .FALSE.
        !           668:       DO 80 K = 1, N
        !           669:          IF( PAIR ) THEN
        !           670:             PAIR = .FALSE.
        !           671:          ELSE
        !           672: *
        !           673:             IF( K.LT.N ) THEN
        !           674:                IF( A( K+1, K ).NE.ZERO ) THEN
        !           675:                   PAIR = .TRUE.
        !           676:                END IF
        !           677:             END IF
        !           678: *
        !           679:             IF( PAIR ) THEN
        !           680: *
        !           681: *             Compute the eigenvalue(s) at position K.
        !           682: *
        !           683:                WORK( 1 ) = A( K, K )
        !           684:                WORK( 2 ) = A( K+1, K )
        !           685:                WORK( 3 ) = A( K, K+1 )
        !           686:                WORK( 4 ) = A( K+1, K+1 )
        !           687:                WORK( 5 ) = B( K, K )
        !           688:                WORK( 6 ) = B( K+1, K )
        !           689:                WORK( 7 ) = B( K, K+1 )
        !           690:                WORK( 8 ) = B( K+1, K+1 )
        !           691:                CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
        !           692:      $                     BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
        !           693:      $                     ALPHAI( K ) )
        !           694:                ALPHAI( K+1 ) = -ALPHAI( K )
        !           695: *
        !           696:             ELSE
        !           697: *
        !           698:                IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
        !           699: *
        !           700: *                 If B(K,K) is negative, make it positive
        !           701: *
        !           702:                   DO 70 I = 1, N
        !           703:                      A( K, I ) = -A( K, I )
        !           704:                      B( K, I ) = -B( K, I )
        !           705:                      IF( WANTQ ) Q( I, K ) = -Q( I, K )
        !           706:    70             CONTINUE
        !           707:                END IF
        !           708: *
        !           709:                ALPHAR( K ) = A( K, K )
        !           710:                ALPHAI( K ) = ZERO
        !           711:                BETA( K ) = B( K, K )
        !           712: *
        !           713:             END IF
        !           714:          END IF
        !           715:    80 CONTINUE
        !           716: *
        !           717:       WORK( 1 ) = LWMIN
        !           718:       IWORK( 1 ) = LIWMIN
        !           719: *
        !           720:       RETURN
        !           721: *
        !           722: *     End of DTGSEN
        !           723: *
        !           724:       END

CVSweb interface <joel.bertrand@systella.fr>