File:  [local] / rpl / lapack / lapack / dtgex2.f
Revision 1.21: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:12 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal equivalence transformation.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTGEX2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgex2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgex2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgex2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
   22: *                          LDZ, J1, N1, N2, WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       LOGICAL            WANTQ, WANTZ
   26: *       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
   30: *      $                   WORK( * ), Z( LDZ, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
   40: *> of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
   41: *> (A, B) by an orthogonal equivalence transformation.
   42: *>
   43: *> (A, B) must be in generalized real Schur canonical form (as returned
   44: *> by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
   45: *> diagonal blocks. B is upper triangular.
   46: *>
   47: *> Optionally, the matrices Q and Z of generalized Schur vectors are
   48: *> updated.
   49: *>
   50: *>        Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T
   51: *>        Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T
   52: *>
   53: *> \endverbatim
   54: *
   55: *  Arguments:
   56: *  ==========
   57: *
   58: *> \param[in] WANTQ
   59: *> \verbatim
   60: *>          WANTQ is LOGICAL
   61: *>          .TRUE. : update the left transformation matrix Q;
   62: *>          .FALSE.: do not update Q.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] WANTZ
   66: *> \verbatim
   67: *>          WANTZ is LOGICAL
   68: *>          .TRUE. : update the right transformation matrix Z;
   69: *>          .FALSE.: do not update Z.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] N
   73: *> \verbatim
   74: *>          N is INTEGER
   75: *>          The order of the matrices A and B. N >= 0.
   76: *> \endverbatim
   77: *>
   78: *> \param[in,out] A
   79: *> \verbatim
   80: *>          A is DOUBLE PRECISION array, dimensions (LDA,N)
   81: *>          On entry, the matrix A in the pair (A, B).
   82: *>          On exit, the updated matrix A.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] LDA
   86: *> \verbatim
   87: *>          LDA is INTEGER
   88: *>          The leading dimension of the array A. LDA >= max(1,N).
   89: *> \endverbatim
   90: *>
   91: *> \param[in,out] B
   92: *> \verbatim
   93: *>          B is DOUBLE PRECISION array, dimensions (LDB,N)
   94: *>          On entry, the matrix B in the pair (A, B).
   95: *>          On exit, the updated matrix B.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] LDB
   99: *> \verbatim
  100: *>          LDB is INTEGER
  101: *>          The leading dimension of the array B. LDB >= max(1,N).
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] Q
  105: *> \verbatim
  106: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
  107: *>          On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
  108: *>          On exit, the updated matrix Q.
  109: *>          Not referenced if WANTQ = .FALSE..
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDQ
  113: *> \verbatim
  114: *>          LDQ is INTEGER
  115: *>          The leading dimension of the array Q. LDQ >= 1.
  116: *>          If WANTQ = .TRUE., LDQ >= N.
  117: *> \endverbatim
  118: *>
  119: *> \param[in,out] Z
  120: *> \verbatim
  121: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
  122: *>          On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
  123: *>          On exit, the updated matrix Z.
  124: *>          Not referenced if WANTZ = .FALSE..
  125: *> \endverbatim
  126: *>
  127: *> \param[in] LDZ
  128: *> \verbatim
  129: *>          LDZ is INTEGER
  130: *>          The leading dimension of the array Z. LDZ >= 1.
  131: *>          If WANTZ = .TRUE., LDZ >= N.
  132: *> \endverbatim
  133: *>
  134: *> \param[in] J1
  135: *> \verbatim
  136: *>          J1 is INTEGER
  137: *>          The index to the first block (A11, B11). 1 <= J1 <= N.
  138: *> \endverbatim
  139: *>
  140: *> \param[in] N1
  141: *> \verbatim
  142: *>          N1 is INTEGER
  143: *>          The order of the first block (A11, B11). N1 = 0, 1 or 2.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] N2
  147: *> \verbatim
  148: *>          N2 is INTEGER
  149: *>          The order of the second block (A22, B22). N2 = 0, 1 or 2.
  150: *> \endverbatim
  151: *>
  152: *> \param[out] WORK
  153: *> \verbatim
  154: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
  155: *> \endverbatim
  156: *>
  157: *> \param[in] LWORK
  158: *> \verbatim
  159: *>          LWORK is INTEGER
  160: *>          The dimension of the array WORK.
  161: *>          LWORK >=  MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )
  162: *> \endverbatim
  163: *>
  164: *> \param[out] INFO
  165: *> \verbatim
  166: *>          INFO is INTEGER
  167: *>            =0: Successful exit
  168: *>            >0: If INFO = 1, the transformed matrix (A, B) would be
  169: *>                too far from generalized Schur form; the blocks are
  170: *>                not swapped and (A, B) and (Q, Z) are unchanged.
  171: *>                The problem of swapping is too ill-conditioned.
  172: *>            <0: If INFO = -16: LWORK is too small. Appropriate value
  173: *>                for LWORK is returned in WORK(1).
  174: *> \endverbatim
  175: *
  176: *  Authors:
  177: *  ========
  178: *
  179: *> \author Univ. of Tennessee
  180: *> \author Univ. of California Berkeley
  181: *> \author Univ. of Colorado Denver
  182: *> \author NAG Ltd.
  183: *
  184: *> \ingroup doubleGEauxiliary
  185: *
  186: *> \par Further Details:
  187: *  =====================
  188: *>
  189: *>  In the current code both weak and strong stability tests are
  190: *>  performed. The user can omit the strong stability test by changing
  191: *>  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
  192: *>  details.
  193: *
  194: *> \par Contributors:
  195: *  ==================
  196: *>
  197: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  198: *>     Umea University, S-901 87 Umea, Sweden.
  199: *
  200: *> \par References:
  201: *  ================
  202: *>
  203: *> \verbatim
  204: *>
  205: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
  206: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
  207: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
  208: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
  209: *>
  210: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
  211: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
  212: *>      Estimation: Theory, Algorithms and Software,
  213: *>      Report UMINF - 94.04, Department of Computing Science, Umea
  214: *>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
  215: *>      Note 87. To appear in Numerical Algorithms, 1996.
  216: *> \endverbatim
  217: *>
  218: *  =====================================================================
  219:       SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
  220:      $                   LDZ, J1, N1, N2, WORK, LWORK, INFO )
  221: *
  222: *  -- LAPACK auxiliary routine --
  223: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  224: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  225: *
  226: *     .. Scalar Arguments ..
  227:       LOGICAL            WANTQ, WANTZ
  228:       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
  229: *     ..
  230: *     .. Array Arguments ..
  231:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  232:      $                   WORK( * ), Z( LDZ, * )
  233: *     ..
  234: *
  235: *  =====================================================================
  236: *  Replaced various illegal calls to DCOPY by calls to DLASET, or by DO
  237: *  loops. Sven Hammarling, 1/5/02.
  238: *
  239: *     .. Parameters ..
  240:       DOUBLE PRECISION   ZERO, ONE
  241:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  242:       DOUBLE PRECISION   TWENTY
  243:       PARAMETER          ( TWENTY = 2.0D+01 )
  244:       INTEGER            LDST
  245:       PARAMETER          ( LDST = 4 )
  246:       LOGICAL            WANDS
  247:       PARAMETER          ( WANDS = .TRUE. )
  248: *     ..
  249: *     .. Local Scalars ..
  250:       LOGICAL            STRONG, WEAK
  251:       INTEGER            I, IDUM, LINFO, M
  252:       DOUBLE PRECISION   BQRA21, BRQA21, DDUM, DNORMA, DNORMB, DSCALE,
  253:      $                   DSUM, EPS, F, G, SA, SB, SCALE, SMLNUM,
  254:      $                   THRESHA, THRESHB
  255: *     ..
  256: *     .. Local Arrays ..
  257:       INTEGER            IWORK( LDST )
  258:       DOUBLE PRECISION   AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ),
  259:      $                   IRCOP( LDST, LDST ), LI( LDST, LDST ),
  260:      $                   LICOP( LDST, LDST ), S( LDST, LDST ),
  261:      $                   SCPY( LDST, LDST ), T( LDST, LDST ),
  262:      $                   TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST )
  263: *     ..
  264: *     .. External Functions ..
  265:       DOUBLE PRECISION   DLAMCH
  266:       EXTERNAL           DLAMCH
  267: *     ..
  268: *     .. External Subroutines ..
  269:       EXTERNAL           DGEMM, DGEQR2, DGERQ2, DLACPY, DLAGV2, DLARTG,
  270:      $                   DLASET, DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2,
  271:      $                   DROT, DSCAL, DTGSY2
  272: *     ..
  273: *     .. Intrinsic Functions ..
  274:       INTRINSIC          ABS, MAX, SQRT
  275: *     ..
  276: *     .. Executable Statements ..
  277: *
  278:       INFO = 0
  279: *
  280: *     Quick return if possible
  281: *
  282:       IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 )
  283:      $   RETURN
  284:       IF( N1.GT.N .OR. ( J1+N1 ).GT.N )
  285:      $   RETURN
  286:       M = N1 + N2
  287:       IF( LWORK.LT.MAX( 1, N*M, M*M*2 ) ) THEN
  288:          INFO = -16
  289:          WORK( 1 ) = MAX( 1, N*M, M*M*2 )
  290:          RETURN
  291:       END IF
  292: *
  293:       WEAK = .FALSE.
  294:       STRONG = .FALSE.
  295: *
  296: *     Make a local copy of selected block
  297: *
  298:       CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, LI, LDST )
  299:       CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, IR, LDST )
  300:       CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
  301:       CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
  302: *
  303: *     Compute threshold for testing acceptance of swapping.
  304: *
  305:       EPS = DLAMCH( 'P' )
  306:       SMLNUM = DLAMCH( 'S' ) / EPS
  307:       DSCALE = ZERO
  308:       DSUM = ONE
  309:       CALL DLACPY( 'Full', M, M, S, LDST, WORK, M )
  310:       CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
  311:       DNORMA = DSCALE*SQRT( DSUM )
  312:       DSCALE = ZERO
  313:       DSUM = ONE
  314:       CALL DLACPY( 'Full', M, M, T, LDST, WORK, M )
  315:       CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
  316:       DNORMB = DSCALE*SQRT( DSUM )
  317: *
  318: *     THRES has been changed from
  319: *        THRESH = MAX( TEN*EPS*SA, SMLNUM )
  320: *     to
  321: *        THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
  322: *     on 04/01/10.
  323: *     "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
  324: *     Jim Demmel and Guillaume Revy. See forum post 1783.
  325: *
  326:       THRESHA = MAX( TWENTY*EPS*DNORMA, SMLNUM )
  327:       THRESHB = MAX( TWENTY*EPS*DNORMB, SMLNUM )
  328: *
  329:       IF( M.EQ.2 ) THEN
  330: *
  331: *        CASE 1: Swap 1-by-1 and 1-by-1 blocks.
  332: *
  333: *        Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks
  334: *        using Givens rotations and perform the swap tentatively.
  335: *
  336:          F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
  337:          G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
  338:          SA = ABS( S( 2, 2 ) ) * ABS( T( 1, 1 ) )
  339:          SB = ABS( S( 1, 1 ) ) * ABS( T( 2, 2 ) )
  340:          CALL DLARTG( F, G, IR( 1, 2 ), IR( 1, 1 ), DDUM )
  341:          IR( 2, 1 ) = -IR( 1, 2 )
  342:          IR( 2, 2 ) = IR( 1, 1 )
  343:          CALL DROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, IR( 1, 1 ),
  344:      $              IR( 2, 1 ) )
  345:          CALL DROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, IR( 1, 1 ),
  346:      $              IR( 2, 1 ) )
  347:          IF( SA.GE.SB ) THEN
  348:             CALL DLARTG( S( 1, 1 ), S( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
  349:      $                   DDUM )
  350:          ELSE
  351:             CALL DLARTG( T( 1, 1 ), T( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
  352:      $                   DDUM )
  353:          END IF
  354:          CALL DROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, LI( 1, 1 ),
  355:      $              LI( 2, 1 ) )
  356:          CALL DROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, LI( 1, 1 ),
  357:      $              LI( 2, 1 ) )
  358:          LI( 2, 2 ) = LI( 1, 1 )
  359:          LI( 1, 2 ) = -LI( 2, 1 )
  360: *
  361: *        Weak stability test: |S21| <= O(EPS F-norm((A)))
  362: *                           and  |T21| <= O(EPS F-norm((B)))
  363: *
  364:          WEAK = ABS( S( 2, 1 ) ) .LE. THRESHA .AND.
  365:      $      ABS( T( 2, 1 ) ) .LE. THRESHB
  366:          IF( .NOT.WEAK )
  367:      $      GO TO 70
  368: *
  369:          IF( WANDS ) THEN
  370: *
  371: *           Strong stability test:
  372: *               F-norm((A-QL**H*S*QR)) <= O(EPS*F-norm((A)))
  373: *               and
  374: *               F-norm((B-QL**H*T*QR)) <= O(EPS*F-norm((B)))
  375: *
  376:             CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
  377:      $                   M )
  378:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
  379:      $                  WORK, M )
  380:             CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
  381:      $                  WORK( M*M+1 ), M )
  382:             DSCALE = ZERO
  383:             DSUM = ONE
  384:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
  385:             SA = DSCALE*SQRT( DSUM )
  386: *
  387:             CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
  388:      $                   M )
  389:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
  390:      $                  WORK, M )
  391:             CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
  392:      $                  WORK( M*M+1 ), M )
  393:             DSCALE = ZERO
  394:             DSUM = ONE
  395:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
  396:             SB = DSCALE*SQRT( DSUM )
  397:             STRONG = SA.LE.THRESHA .AND. SB.LE.THRESHB
  398:             IF( .NOT.STRONG )
  399:      $         GO TO 70
  400:          END IF
  401: *
  402: *        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
  403: *               (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
  404: *
  405:          CALL DROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 1, 1 ),
  406:      $              IR( 2, 1 ) )
  407:          CALL DROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 1, 1 ),
  408:      $              IR( 2, 1 ) )
  409:          CALL DROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA,
  410:      $              LI( 1, 1 ), LI( 2, 1 ) )
  411:          CALL DROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB,
  412:      $              LI( 1, 1 ), LI( 2, 1 ) )
  413: *
  414: *        Set  N1-by-N2 (2,1) - blocks to ZERO.
  415: *
  416:          A( J1+1, J1 ) = ZERO
  417:          B( J1+1, J1 ) = ZERO
  418: *
  419: *        Accumulate transformations into Q and Z if requested.
  420: *
  421:          IF( WANTZ )
  422:      $      CALL DROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, IR( 1, 1 ),
  423:      $                 IR( 2, 1 ) )
  424:          IF( WANTQ )
  425:      $      CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, LI( 1, 1 ),
  426:      $                 LI( 2, 1 ) )
  427: *
  428: *        Exit with INFO = 0 if swap was successfully performed.
  429: *
  430:          RETURN
  431: *
  432:       ELSE
  433: *
  434: *        CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2
  435: *                and 2-by-2 blocks.
  436: *
  437: *        Solve the generalized Sylvester equation
  438: *                 S11 * R - L * S22 = SCALE * S12
  439: *                 T11 * R - L * T22 = SCALE * T12
  440: *        for R and L. Solutions in LI and IR.
  441: *
  442:          CALL DLACPY( 'Full', N1, N2, T( 1, N1+1 ), LDST, LI, LDST )
  443:          CALL DLACPY( 'Full', N1, N2, S( 1, N1+1 ), LDST,
  444:      $                IR( N2+1, N1+1 ), LDST )
  445:          CALL DTGSY2( 'N', 0, N1, N2, S, LDST, S( N1+1, N1+1 ), LDST,
  446:      $                IR( N2+1, N1+1 ), LDST, T, LDST, T( N1+1, N1+1 ),
  447:      $                LDST, LI, LDST, SCALE, DSUM, DSCALE, IWORK, IDUM,
  448:      $                LINFO )
  449:          IF( LINFO.NE.0 )
  450:      $      GO TO 70
  451: *
  452: *        Compute orthogonal matrix QL:
  453: *
  454: *                    QL**T * LI = [ TL ]
  455: *                                 [ 0  ]
  456: *        where
  457: *                    LI =  [      -L              ]
  458: *                          [ SCALE * identity(N2) ]
  459: *
  460:          DO 10 I = 1, N2
  461:             CALL DSCAL( N1, -ONE, LI( 1, I ), 1 )
  462:             LI( N1+I, I ) = SCALE
  463:    10    CONTINUE
  464:          CALL DGEQR2( M, N2, LI, LDST, TAUL, WORK, LINFO )
  465:          IF( LINFO.NE.0 )
  466:      $      GO TO 70
  467:          CALL DORG2R( M, M, N2, LI, LDST, TAUL, WORK, LINFO )
  468:          IF( LINFO.NE.0 )
  469:      $      GO TO 70
  470: *
  471: *        Compute orthogonal matrix RQ:
  472: *
  473: *                    IR * RQ**T =   [ 0  TR],
  474: *
  475: *         where IR = [ SCALE * identity(N1), R ]
  476: *
  477:          DO 20 I = 1, N1
  478:             IR( N2+I, I ) = SCALE
  479:    20    CONTINUE
  480:          CALL DGERQ2( N1, M, IR( N2+1, 1 ), LDST, TAUR, WORK, LINFO )
  481:          IF( LINFO.NE.0 )
  482:      $      GO TO 70
  483:          CALL DORGR2( M, M, N1, IR, LDST, TAUR, WORK, LINFO )
  484:          IF( LINFO.NE.0 )
  485:      $      GO TO 70
  486: *
  487: *        Perform the swapping tentatively:
  488: *
  489:          CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
  490:      $               WORK, M )
  491:          CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, S,
  492:      $               LDST )
  493:          CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
  494:      $               WORK, M )
  495:          CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, T,
  496:      $               LDST )
  497:          CALL DLACPY( 'F', M, M, S, LDST, SCPY, LDST )
  498:          CALL DLACPY( 'F', M, M, T, LDST, TCPY, LDST )
  499:          CALL DLACPY( 'F', M, M, IR, LDST, IRCOP, LDST )
  500:          CALL DLACPY( 'F', M, M, LI, LDST, LICOP, LDST )
  501: *
  502: *        Triangularize the B-part by an RQ factorization.
  503: *        Apply transformation (from left) to A-part, giving S.
  504: *
  505:          CALL DGERQ2( M, M, T, LDST, TAUR, WORK, LINFO )
  506:          IF( LINFO.NE.0 )
  507:      $      GO TO 70
  508:          CALL DORMR2( 'R', 'T', M, M, M, T, LDST, TAUR, S, LDST, WORK,
  509:      $                LINFO )
  510:          IF( LINFO.NE.0 )
  511:      $      GO TO 70
  512:          CALL DORMR2( 'L', 'N', M, M, M, T, LDST, TAUR, IR, LDST, WORK,
  513:      $                LINFO )
  514:          IF( LINFO.NE.0 )
  515:      $      GO TO 70
  516: *
  517: *        Compute F-norm(S21) in BRQA21. (T21 is 0.)
  518: *
  519:          DSCALE = ZERO
  520:          DSUM = ONE
  521:          DO 30 I = 1, N2
  522:             CALL DLASSQ( N1, S( N2+1, I ), 1, DSCALE, DSUM )
  523:    30    CONTINUE
  524:          BRQA21 = DSCALE*SQRT( DSUM )
  525: *
  526: *        Triangularize the B-part by a QR factorization.
  527: *        Apply transformation (from right) to A-part, giving S.
  528: *
  529:          CALL DGEQR2( M, M, TCPY, LDST, TAUL, WORK, LINFO )
  530:          IF( LINFO.NE.0 )
  531:      $      GO TO 70
  532:          CALL DORM2R( 'L', 'T', M, M, M, TCPY, LDST, TAUL, SCPY, LDST,
  533:      $                WORK, INFO )
  534:          CALL DORM2R( 'R', 'N', M, M, M, TCPY, LDST, TAUL, LICOP, LDST,
  535:      $                WORK, INFO )
  536:          IF( LINFO.NE.0 )
  537:      $      GO TO 70
  538: *
  539: *        Compute F-norm(S21) in BQRA21. (T21 is 0.)
  540: *
  541:          DSCALE = ZERO
  542:          DSUM = ONE
  543:          DO 40 I = 1, N2
  544:             CALL DLASSQ( N1, SCPY( N2+1, I ), 1, DSCALE, DSUM )
  545:    40    CONTINUE
  546:          BQRA21 = DSCALE*SQRT( DSUM )
  547: *
  548: *        Decide which method to use.
  549: *          Weak stability test:
  550: *             F-norm(S21) <= O(EPS * F-norm((S)))
  551: *
  552:          IF( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESHA ) THEN
  553:             CALL DLACPY( 'F', M, M, SCPY, LDST, S, LDST )
  554:             CALL DLACPY( 'F', M, M, TCPY, LDST, T, LDST )
  555:             CALL DLACPY( 'F', M, M, IRCOP, LDST, IR, LDST )
  556:             CALL DLACPY( 'F', M, M, LICOP, LDST, LI, LDST )
  557:          ELSE IF( BRQA21.GE.THRESHA ) THEN
  558:             GO TO 70
  559:          END IF
  560: *
  561: *        Set lower triangle of B-part to zero
  562: *
  563:          CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST )
  564: *
  565:          IF( WANDS ) THEN
  566: *
  567: *           Strong stability test:
  568: *               F-norm((A-QL**H*S*QR)) <= O(EPS*F-norm((A)))
  569: *               and
  570: *               F-norm((B-QL**H*T*QR)) <= O(EPS*F-norm((B)))
  571: *
  572:             CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
  573:      $                   M )
  574:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
  575:      $                  WORK, M )
  576:             CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
  577:      $                  WORK( M*M+1 ), M )
  578:             DSCALE = ZERO
  579:             DSUM = ONE
  580:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
  581:             SA = DSCALE*SQRT( DSUM )
  582: *
  583:             CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
  584:      $                   M )
  585:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
  586:      $                  WORK, M )
  587:             CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
  588:      $                  WORK( M*M+1 ), M )
  589:             DSCALE = ZERO
  590:             DSUM = ONE
  591:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
  592:             SB = DSCALE*SQRT( DSUM )
  593:             STRONG = SA.LE.THRESHA .AND. SB.LE.THRESHB
  594:             IF( .NOT.STRONG )
  595:      $         GO TO 70
  596: *
  597:          END IF
  598: *
  599: *        If the swap is accepted ("weakly" and "strongly"), apply the
  600: *        transformations and set N1-by-N2 (2,1)-block to zero.
  601: *
  602:          CALL DLASET( 'Full', N1, N2, ZERO, ZERO, S(N2+1,1), LDST )
  603: *
  604: *        copy back M-by-M diagonal block starting at index J1 of (A, B)
  605: *
  606:          CALL DLACPY( 'F', M, M, S, LDST, A( J1, J1 ), LDA )
  607:          CALL DLACPY( 'F', M, M, T, LDST, B( J1, J1 ), LDB )
  608:          CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, T, LDST )
  609: *
  610: *        Standardize existing 2-by-2 blocks.
  611: *
  612:          CALL DLASET( 'Full', M, M, ZERO, ZERO, WORK, M )
  613:          WORK( 1 ) = ONE
  614:          T( 1, 1 ) = ONE
  615:          IDUM = LWORK - M*M - 2
  616:          IF( N2.GT.1 ) THEN
  617:             CALL DLAGV2( A( J1, J1 ), LDA, B( J1, J1 ), LDB, AR, AI, BE,
  618:      $                   WORK( 1 ), WORK( 2 ), T( 1, 1 ), T( 2, 1 ) )
  619:             WORK( M+1 ) = -WORK( 2 )
  620:             WORK( M+2 ) = WORK( 1 )
  621:             T( N2, N2 ) = T( 1, 1 )
  622:             T( 1, 2 ) = -T( 2, 1 )
  623:          END IF
  624:          WORK( M*M ) = ONE
  625:          T( M, M ) = ONE
  626: *
  627:          IF( N1.GT.1 ) THEN
  628:             CALL DLAGV2( A( J1+N2, J1+N2 ), LDA, B( J1+N2, J1+N2 ), LDB,
  629:      $                   TAUR, TAUL, WORK( M*M+1 ), WORK( N2*M+N2+1 ),
  630:      $                   WORK( N2*M+N2+2 ), T( N2+1, N2+1 ),
  631:      $                   T( M, M-1 ) )
  632:             WORK( M*M ) = WORK( N2*M+N2+1 )
  633:             WORK( M*M-1 ) = -WORK( N2*M+N2+2 )
  634:             T( M, M ) = T( N2+1, N2+1 )
  635:             T( M-1, M ) = -T( M, M-1 )
  636:          END IF
  637:          CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, A( J1, J1+N2 ),
  638:      $               LDA, ZERO, WORK( M*M+1 ), N2 )
  639:          CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, A( J1, J1+N2 ),
  640:      $                LDA )
  641:          CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, B( J1, J1+N2 ),
  642:      $               LDB, ZERO, WORK( M*M+1 ), N2 )
  643:          CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, B( J1, J1+N2 ),
  644:      $                LDB )
  645:          CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, WORK, M, ZERO,
  646:      $               WORK( M*M+1 ), M )
  647:          CALL DLACPY( 'Full', M, M, WORK( M*M+1 ), M, LI, LDST )
  648:          CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, A( J1, J1+N2 ), LDA,
  649:      $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
  650:          CALL DLACPY( 'Full', N2, N1, WORK, N2, A( J1, J1+N2 ), LDA )
  651:          CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, B( J1, J1+N2 ), LDB,
  652:      $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
  653:          CALL DLACPY( 'Full', N2, N1, WORK, N2, B( J1, J1+N2 ), LDB )
  654:          CALL DGEMM( 'T', 'N', M, M, M, ONE, IR, LDST, T, LDST, ZERO,
  655:      $               WORK, M )
  656:          CALL DLACPY( 'Full', M, M, WORK, M, IR, LDST )
  657: *
  658: *        Accumulate transformations into Q and Z if requested.
  659: *
  660:          IF( WANTQ ) THEN
  661:             CALL DGEMM( 'N', 'N', N, M, M, ONE, Q( 1, J1 ), LDQ, LI,
  662:      $                  LDST, ZERO, WORK, N )
  663:             CALL DLACPY( 'Full', N, M, WORK, N, Q( 1, J1 ), LDQ )
  664: *
  665:          END IF
  666: *
  667:          IF( WANTZ ) THEN
  668:             CALL DGEMM( 'N', 'N', N, M, M, ONE, Z( 1, J1 ), LDZ, IR,
  669:      $                  LDST, ZERO, WORK, N )
  670:             CALL DLACPY( 'Full', N, M, WORK, N, Z( 1, J1 ), LDZ )
  671: *
  672:          END IF
  673: *
  674: *        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
  675: *                (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
  676: *
  677:          I = J1 + M
  678:          IF( I.LE.N ) THEN
  679:             CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
  680:      $                  A( J1, I ), LDA, ZERO, WORK, M )
  681:             CALL DLACPY( 'Full', M, N-I+1, WORK, M, A( J1, I ), LDA )
  682:             CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
  683:      $                  B( J1, I ), LDB, ZERO, WORK, M )
  684:             CALL DLACPY( 'Full', M, N-I+1, WORK, M, B( J1, I ), LDB )
  685:          END IF
  686:          I = J1 - 1
  687:          IF( I.GT.0 ) THEN
  688:             CALL DGEMM( 'N', 'N', I, M, M, ONE, A( 1, J1 ), LDA, IR,
  689:      $                  LDST, ZERO, WORK, I )
  690:             CALL DLACPY( 'Full', I, M, WORK, I, A( 1, J1 ), LDA )
  691:             CALL DGEMM( 'N', 'N', I, M, M, ONE, B( 1, J1 ), LDB, IR,
  692:      $                  LDST, ZERO, WORK, I )
  693:             CALL DLACPY( 'Full', I, M, WORK, I, B( 1, J1 ), LDB )
  694:          END IF
  695: *
  696: *        Exit with INFO = 0 if swap was successfully performed.
  697: *
  698:          RETURN
  699: *
  700:       END IF
  701: *
  702: *     Exit with INFO = 1 if swap was rejected.
  703: *
  704:    70 CONTINUE
  705: *
  706:       INFO = 1
  707:       RETURN
  708: *
  709: *     End of DTGEX2
  710: *
  711:       END

CVSweb interface <joel.bertrand@systella.fr>