Annotation of rpl/lapack/lapack/dtgex2.f, revision 1.21

1.13      bertrand    1: *> \brief \b DTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal equivalence transformation.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.18      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.18      bertrand    9: *> Download DTGEX2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgex2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgex2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgex2.f">
1.10      bertrand   15: *> [TXT]</a>
1.18      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
                     22: *                          LDZ, J1, N1, N2, WORK, LWORK, INFO )
1.18      bertrand   23: *
1.10      bertrand   24: *       .. Scalar Arguments ..
                     25: *       LOGICAL            WANTQ, WANTZ
                     26: *       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                     30: *      $                   WORK( * ), Z( LDZ, * )
                     31: *       ..
1.18      bertrand   32: *
1.10      bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
                     40: *> of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
                     41: *> (A, B) by an orthogonal equivalence transformation.
                     42: *>
                     43: *> (A, B) must be in generalized real Schur canonical form (as returned
                     44: *> by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
                     45: *> diagonal blocks. B is upper triangular.
                     46: *>
                     47: *> Optionally, the matrices Q and Z of generalized Schur vectors are
                     48: *> updated.
                     49: *>
                     50: *>        Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T
                     51: *>        Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T
                     52: *>
                     53: *> \endverbatim
                     54: *
                     55: *  Arguments:
                     56: *  ==========
                     57: *
                     58: *> \param[in] WANTQ
                     59: *> \verbatim
                     60: *>          WANTQ is LOGICAL
                     61: *>          .TRUE. : update the left transformation matrix Q;
                     62: *>          .FALSE.: do not update Q.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] WANTZ
                     66: *> \verbatim
                     67: *>          WANTZ is LOGICAL
                     68: *>          .TRUE. : update the right transformation matrix Z;
                     69: *>          .FALSE.: do not update Z.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] N
                     73: *> \verbatim
                     74: *>          N is INTEGER
                     75: *>          The order of the matrices A and B. N >= 0.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in,out] A
                     79: *> \verbatim
                     80: *>          A is DOUBLE PRECISION array, dimensions (LDA,N)
                     81: *>          On entry, the matrix A in the pair (A, B).
                     82: *>          On exit, the updated matrix A.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] LDA
                     86: *> \verbatim
                     87: *>          LDA is INTEGER
                     88: *>          The leading dimension of the array A. LDA >= max(1,N).
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in,out] B
                     92: *> \verbatim
                     93: *>          B is DOUBLE PRECISION array, dimensions (LDB,N)
                     94: *>          On entry, the matrix B in the pair (A, B).
                     95: *>          On exit, the updated matrix B.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] LDB
                     99: *> \verbatim
                    100: *>          LDB is INTEGER
                    101: *>          The leading dimension of the array B. LDB >= max(1,N).
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in,out] Q
                    105: *> \verbatim
                    106: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
                    107: *>          On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
                    108: *>          On exit, the updated matrix Q.
                    109: *>          Not referenced if WANTQ = .FALSE..
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] LDQ
                    113: *> \verbatim
                    114: *>          LDQ is INTEGER
                    115: *>          The leading dimension of the array Q. LDQ >= 1.
                    116: *>          If WANTQ = .TRUE., LDQ >= N.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in,out] Z
                    120: *> \verbatim
                    121: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
                    122: *>          On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
                    123: *>          On exit, the updated matrix Z.
                    124: *>          Not referenced if WANTZ = .FALSE..
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in] LDZ
                    128: *> \verbatim
                    129: *>          LDZ is INTEGER
                    130: *>          The leading dimension of the array Z. LDZ >= 1.
                    131: *>          If WANTZ = .TRUE., LDZ >= N.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] J1
                    135: *> \verbatim
                    136: *>          J1 is INTEGER
                    137: *>          The index to the first block (A11, B11). 1 <= J1 <= N.
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] N1
                    141: *> \verbatim
                    142: *>          N1 is INTEGER
                    143: *>          The order of the first block (A11, B11). N1 = 0, 1 or 2.
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[in] N2
                    147: *> \verbatim
                    148: *>          N2 is INTEGER
                    149: *>          The order of the second block (A22, B22). N2 = 0, 1 or 2.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] WORK
                    153: *> \verbatim
                    154: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[in] LWORK
                    158: *> \verbatim
                    159: *>          LWORK is INTEGER
                    160: *>          The dimension of the array WORK.
                    161: *>          LWORK >=  MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] INFO
                    165: *> \verbatim
                    166: *>          INFO is INTEGER
                    167: *>            =0: Successful exit
                    168: *>            >0: If INFO = 1, the transformed matrix (A, B) would be
                    169: *>                too far from generalized Schur form; the blocks are
                    170: *>                not swapped and (A, B) and (Q, Z) are unchanged.
                    171: *>                The problem of swapping is too ill-conditioned.
                    172: *>            <0: If INFO = -16: LWORK is too small. Appropriate value
                    173: *>                for LWORK is returned in WORK(1).
                    174: *> \endverbatim
                    175: *
                    176: *  Authors:
                    177: *  ========
                    178: *
1.18      bertrand  179: *> \author Univ. of Tennessee
                    180: *> \author Univ. of California Berkeley
                    181: *> \author Univ. of Colorado Denver
                    182: *> \author NAG Ltd.
1.10      bertrand  183: *
                    184: *> \ingroup doubleGEauxiliary
                    185: *
                    186: *> \par Further Details:
                    187: *  =====================
                    188: *>
                    189: *>  In the current code both weak and strong stability tests are
                    190: *>  performed. The user can omit the strong stability test by changing
                    191: *>  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
                    192: *>  details.
                    193: *
                    194: *> \par Contributors:
                    195: *  ==================
                    196: *>
                    197: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                    198: *>     Umea University, S-901 87 Umea, Sweden.
                    199: *
                    200: *> \par References:
                    201: *  ================
                    202: *>
                    203: *> \verbatim
                    204: *>
                    205: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
                    206: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
                    207: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
                    208: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
                    209: *>
                    210: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
                    211: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
                    212: *>      Estimation: Theory, Algorithms and Software,
                    213: *>      Report UMINF - 94.04, Department of Computing Science, Umea
                    214: *>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
                    215: *>      Note 87. To appear in Numerical Algorithms, 1996.
                    216: *> \endverbatim
                    217: *>
                    218: *  =====================================================================
1.1       bertrand  219:       SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
                    220:      $                   LDZ, J1, N1, N2, WORK, LWORK, INFO )
                    221: *
1.21    ! bertrand  222: *  -- LAPACK auxiliary routine --
1.1       bertrand  223: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    224: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    225: *
                    226: *     .. Scalar Arguments ..
                    227:       LOGICAL            WANTQ, WANTZ
                    228:       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
                    229: *     ..
                    230: *     .. Array Arguments ..
                    231:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                    232:      $                   WORK( * ), Z( LDZ, * )
                    233: *     ..
                    234: *
                    235: *  =====================================================================
                    236: *  Replaced various illegal calls to DCOPY by calls to DLASET, or by DO
                    237: *  loops. Sven Hammarling, 1/5/02.
                    238: *
                    239: *     .. Parameters ..
                    240:       DOUBLE PRECISION   ZERO, ONE
                    241:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
1.5       bertrand  242:       DOUBLE PRECISION   TWENTY
                    243:       PARAMETER          ( TWENTY = 2.0D+01 )
1.1       bertrand  244:       INTEGER            LDST
                    245:       PARAMETER          ( LDST = 4 )
                    246:       LOGICAL            WANDS
                    247:       PARAMETER          ( WANDS = .TRUE. )
                    248: *     ..
                    249: *     .. Local Scalars ..
1.21    ! bertrand  250:       LOGICAL            STRONG, WEAK
1.1       bertrand  251:       INTEGER            I, IDUM, LINFO, M
1.21    ! bertrand  252:       DOUBLE PRECISION   BQRA21, BRQA21, DDUM, DNORMA, DNORMB, DSCALE,
        !           253:      $                   DSUM, EPS, F, G, SA, SB, SCALE, SMLNUM,
        !           254:      $                   THRESHA, THRESHB
1.1       bertrand  255: *     ..
                    256: *     .. Local Arrays ..
                    257:       INTEGER            IWORK( LDST )
                    258:       DOUBLE PRECISION   AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ),
                    259:      $                   IRCOP( LDST, LDST ), LI( LDST, LDST ),
                    260:      $                   LICOP( LDST, LDST ), S( LDST, LDST ),
                    261:      $                   SCPY( LDST, LDST ), T( LDST, LDST ),
                    262:      $                   TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST )
                    263: *     ..
                    264: *     .. External Functions ..
                    265:       DOUBLE PRECISION   DLAMCH
                    266:       EXTERNAL           DLAMCH
                    267: *     ..
                    268: *     .. External Subroutines ..
                    269:       EXTERNAL           DGEMM, DGEQR2, DGERQ2, DLACPY, DLAGV2, DLARTG,
                    270:      $                   DLASET, DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2,
                    271:      $                   DROT, DSCAL, DTGSY2
                    272: *     ..
                    273: *     .. Intrinsic Functions ..
                    274:       INTRINSIC          ABS, MAX, SQRT
                    275: *     ..
                    276: *     .. Executable Statements ..
                    277: *
                    278:       INFO = 0
                    279: *
                    280: *     Quick return if possible
                    281: *
                    282:       IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 )
                    283:      $   RETURN
                    284:       IF( N1.GT.N .OR. ( J1+N1 ).GT.N )
                    285:      $   RETURN
                    286:       M = N1 + N2
                    287:       IF( LWORK.LT.MAX( 1, N*M, M*M*2 ) ) THEN
                    288:          INFO = -16
                    289:          WORK( 1 ) = MAX( 1, N*M, M*M*2 )
                    290:          RETURN
                    291:       END IF
                    292: *
                    293:       WEAK = .FALSE.
1.21    ! bertrand  294:       STRONG = .FALSE.
1.1       bertrand  295: *
                    296: *     Make a local copy of selected block
                    297: *
                    298:       CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, LI, LDST )
                    299:       CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, IR, LDST )
                    300:       CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
                    301:       CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
                    302: *
                    303: *     Compute threshold for testing acceptance of swapping.
                    304: *
                    305:       EPS = DLAMCH( 'P' )
                    306:       SMLNUM = DLAMCH( 'S' ) / EPS
                    307:       DSCALE = ZERO
                    308:       DSUM = ONE
                    309:       CALL DLACPY( 'Full', M, M, S, LDST, WORK, M )
                    310:       CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
1.21    ! bertrand  311:       DNORMA = DSCALE*SQRT( DSUM )
        !           312:       DSCALE = ZERO
        !           313:       DSUM = ONE
1.1       bertrand  314:       CALL DLACPY( 'Full', M, M, T, LDST, WORK, M )
                    315:       CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
1.21    ! bertrand  316:       DNORMB = DSCALE*SQRT( DSUM )
1.5       bertrand  317: *
1.18      bertrand  318: *     THRES has been changed from
1.5       bertrand  319: *        THRESH = MAX( TEN*EPS*SA, SMLNUM )
                    320: *     to
                    321: *        THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
                    322: *     on 04/01/10.
                    323: *     "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
                    324: *     Jim Demmel and Guillaume Revy. See forum post 1783.
                    325: *
1.21    ! bertrand  326:       THRESHA = MAX( TWENTY*EPS*DNORMA, SMLNUM )
        !           327:       THRESHB = MAX( TWENTY*EPS*DNORMB, SMLNUM )
1.1       bertrand  328: *
                    329:       IF( M.EQ.2 ) THEN
                    330: *
                    331: *        CASE 1: Swap 1-by-1 and 1-by-1 blocks.
                    332: *
                    333: *        Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks
                    334: *        using Givens rotations and perform the swap tentatively.
                    335: *
                    336:          F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
                    337:          G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
1.21    ! bertrand  338:          SA = ABS( S( 2, 2 ) ) * ABS( T( 1, 1 ) )
        !           339:          SB = ABS( S( 1, 1 ) ) * ABS( T( 2, 2 ) )
1.1       bertrand  340:          CALL DLARTG( F, G, IR( 1, 2 ), IR( 1, 1 ), DDUM )
                    341:          IR( 2, 1 ) = -IR( 1, 2 )
                    342:          IR( 2, 2 ) = IR( 1, 1 )
                    343:          CALL DROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, IR( 1, 1 ),
                    344:      $              IR( 2, 1 ) )
                    345:          CALL DROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, IR( 1, 1 ),
                    346:      $              IR( 2, 1 ) )
                    347:          IF( SA.GE.SB ) THEN
                    348:             CALL DLARTG( S( 1, 1 ), S( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
                    349:      $                   DDUM )
                    350:          ELSE
                    351:             CALL DLARTG( T( 1, 1 ), T( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
                    352:      $                   DDUM )
                    353:          END IF
                    354:          CALL DROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, LI( 1, 1 ),
                    355:      $              LI( 2, 1 ) )
                    356:          CALL DROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, LI( 1, 1 ),
                    357:      $              LI( 2, 1 ) )
                    358:          LI( 2, 2 ) = LI( 1, 1 )
                    359:          LI( 1, 2 ) = -LI( 2, 1 )
                    360: *
1.21    ! bertrand  361: *        Weak stability test: |S21| <= O(EPS F-norm((A)))
        !           362: *                           and  |T21| <= O(EPS F-norm((B)))
1.1       bertrand  363: *
1.21    ! bertrand  364:          WEAK = ABS( S( 2, 1 ) ) .LE. THRESHA .AND.
        !           365:      $      ABS( T( 2, 1 ) ) .LE. THRESHB
1.1       bertrand  366:          IF( .NOT.WEAK )
                    367:      $      GO TO 70
                    368: *
                    369:          IF( WANDS ) THEN
                    370: *
                    371: *           Strong stability test:
1.21    ! bertrand  372: *               F-norm((A-QL**H*S*QR)) <= O(EPS*F-norm((A)))
        !           373: *               and
        !           374: *               F-norm((B-QL**H*T*QR)) <= O(EPS*F-norm((B)))
1.1       bertrand  375: *
                    376:             CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
                    377:      $                   M )
                    378:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
                    379:      $                  WORK, M )
                    380:             CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
                    381:      $                  WORK( M*M+1 ), M )
                    382:             DSCALE = ZERO
                    383:             DSUM = ONE
                    384:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
1.21    ! bertrand  385:             SA = DSCALE*SQRT( DSUM )
1.1       bertrand  386: *
                    387:             CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
                    388:      $                   M )
                    389:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
                    390:      $                  WORK, M )
                    391:             CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
                    392:      $                  WORK( M*M+1 ), M )
1.21    ! bertrand  393:             DSCALE = ZERO
        !           394:             DSUM = ONE
1.1       bertrand  395:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
1.21    ! bertrand  396:             SB = DSCALE*SQRT( DSUM )
        !           397:             STRONG = SA.LE.THRESHA .AND. SB.LE.THRESHB
        !           398:             IF( .NOT.STRONG )
1.1       bertrand  399:      $         GO TO 70
                    400:          END IF
                    401: *
                    402: *        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
                    403: *               (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
                    404: *
                    405:          CALL DROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 1, 1 ),
                    406:      $              IR( 2, 1 ) )
                    407:          CALL DROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 1, 1 ),
                    408:      $              IR( 2, 1 ) )
                    409:          CALL DROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA,
                    410:      $              LI( 1, 1 ), LI( 2, 1 ) )
                    411:          CALL DROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB,
                    412:      $              LI( 1, 1 ), LI( 2, 1 ) )
                    413: *
                    414: *        Set  N1-by-N2 (2,1) - blocks to ZERO.
                    415: *
                    416:          A( J1+1, J1 ) = ZERO
                    417:          B( J1+1, J1 ) = ZERO
                    418: *
                    419: *        Accumulate transformations into Q and Z if requested.
                    420: *
                    421:          IF( WANTZ )
                    422:      $      CALL DROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, IR( 1, 1 ),
                    423:      $                 IR( 2, 1 ) )
                    424:          IF( WANTQ )
                    425:      $      CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, LI( 1, 1 ),
                    426:      $                 LI( 2, 1 ) )
                    427: *
                    428: *        Exit with INFO = 0 if swap was successfully performed.
                    429: *
                    430:          RETURN
                    431: *
                    432:       ELSE
                    433: *
                    434: *        CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2
                    435: *                and 2-by-2 blocks.
                    436: *
                    437: *        Solve the generalized Sylvester equation
                    438: *                 S11 * R - L * S22 = SCALE * S12
                    439: *                 T11 * R - L * T22 = SCALE * T12
                    440: *        for R and L. Solutions in LI and IR.
                    441: *
                    442:          CALL DLACPY( 'Full', N1, N2, T( 1, N1+1 ), LDST, LI, LDST )
                    443:          CALL DLACPY( 'Full', N1, N2, S( 1, N1+1 ), LDST,
                    444:      $                IR( N2+1, N1+1 ), LDST )
                    445:          CALL DTGSY2( 'N', 0, N1, N2, S, LDST, S( N1+1, N1+1 ), LDST,
                    446:      $                IR( N2+1, N1+1 ), LDST, T, LDST, T( N1+1, N1+1 ),
                    447:      $                LDST, LI, LDST, SCALE, DSUM, DSCALE, IWORK, IDUM,
                    448:      $                LINFO )
1.21    ! bertrand  449:          IF( LINFO.NE.0 )
        !           450:      $      GO TO 70
1.1       bertrand  451: *
                    452: *        Compute orthogonal matrix QL:
                    453: *
1.9       bertrand  454: *                    QL**T * LI = [ TL ]
                    455: *                                 [ 0  ]
1.1       bertrand  456: *        where
                    457: *                    LI =  [      -L              ]
                    458: *                          [ SCALE * identity(N2) ]
                    459: *
                    460:          DO 10 I = 1, N2
                    461:             CALL DSCAL( N1, -ONE, LI( 1, I ), 1 )
                    462:             LI( N1+I, I ) = SCALE
                    463:    10    CONTINUE
                    464:          CALL DGEQR2( M, N2, LI, LDST, TAUL, WORK, LINFO )
                    465:          IF( LINFO.NE.0 )
                    466:      $      GO TO 70
                    467:          CALL DORG2R( M, M, N2, LI, LDST, TAUL, WORK, LINFO )
                    468:          IF( LINFO.NE.0 )
                    469:      $      GO TO 70
                    470: *
                    471: *        Compute orthogonal matrix RQ:
                    472: *
1.9       bertrand  473: *                    IR * RQ**T =   [ 0  TR],
1.1       bertrand  474: *
                    475: *         where IR = [ SCALE * identity(N1), R ]
                    476: *
                    477:          DO 20 I = 1, N1
                    478:             IR( N2+I, I ) = SCALE
                    479:    20    CONTINUE
                    480:          CALL DGERQ2( N1, M, IR( N2+1, 1 ), LDST, TAUR, WORK, LINFO )
                    481:          IF( LINFO.NE.0 )
                    482:      $      GO TO 70
                    483:          CALL DORGR2( M, M, N1, IR, LDST, TAUR, WORK, LINFO )
                    484:          IF( LINFO.NE.0 )
                    485:      $      GO TO 70
                    486: *
                    487: *        Perform the swapping tentatively:
                    488: *
                    489:          CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
                    490:      $               WORK, M )
                    491:          CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, S,
                    492:      $               LDST )
                    493:          CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
                    494:      $               WORK, M )
                    495:          CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, T,
                    496:      $               LDST )
                    497:          CALL DLACPY( 'F', M, M, S, LDST, SCPY, LDST )
                    498:          CALL DLACPY( 'F', M, M, T, LDST, TCPY, LDST )
                    499:          CALL DLACPY( 'F', M, M, IR, LDST, IRCOP, LDST )
                    500:          CALL DLACPY( 'F', M, M, LI, LDST, LICOP, LDST )
                    501: *
                    502: *        Triangularize the B-part by an RQ factorization.
                    503: *        Apply transformation (from left) to A-part, giving S.
                    504: *
                    505:          CALL DGERQ2( M, M, T, LDST, TAUR, WORK, LINFO )
                    506:          IF( LINFO.NE.0 )
                    507:      $      GO TO 70
                    508:          CALL DORMR2( 'R', 'T', M, M, M, T, LDST, TAUR, S, LDST, WORK,
                    509:      $                LINFO )
                    510:          IF( LINFO.NE.0 )
                    511:      $      GO TO 70
                    512:          CALL DORMR2( 'L', 'N', M, M, M, T, LDST, TAUR, IR, LDST, WORK,
                    513:      $                LINFO )
                    514:          IF( LINFO.NE.0 )
                    515:      $      GO TO 70
                    516: *
                    517: *        Compute F-norm(S21) in BRQA21. (T21 is 0.)
                    518: *
                    519:          DSCALE = ZERO
                    520:          DSUM = ONE
                    521:          DO 30 I = 1, N2
                    522:             CALL DLASSQ( N1, S( N2+1, I ), 1, DSCALE, DSUM )
                    523:    30    CONTINUE
                    524:          BRQA21 = DSCALE*SQRT( DSUM )
                    525: *
                    526: *        Triangularize the B-part by a QR factorization.
                    527: *        Apply transformation (from right) to A-part, giving S.
                    528: *
                    529:          CALL DGEQR2( M, M, TCPY, LDST, TAUL, WORK, LINFO )
                    530:          IF( LINFO.NE.0 )
                    531:      $      GO TO 70
                    532:          CALL DORM2R( 'L', 'T', M, M, M, TCPY, LDST, TAUL, SCPY, LDST,
                    533:      $                WORK, INFO )
                    534:          CALL DORM2R( 'R', 'N', M, M, M, TCPY, LDST, TAUL, LICOP, LDST,
                    535:      $                WORK, INFO )
                    536:          IF( LINFO.NE.0 )
                    537:      $      GO TO 70
                    538: *
                    539: *        Compute F-norm(S21) in BQRA21. (T21 is 0.)
                    540: *
                    541:          DSCALE = ZERO
                    542:          DSUM = ONE
                    543:          DO 40 I = 1, N2
                    544:             CALL DLASSQ( N1, SCPY( N2+1, I ), 1, DSCALE, DSUM )
                    545:    40    CONTINUE
                    546:          BQRA21 = DSCALE*SQRT( DSUM )
                    547: *
                    548: *        Decide which method to use.
                    549: *          Weak stability test:
1.21    ! bertrand  550: *             F-norm(S21) <= O(EPS * F-norm((S)))
1.1       bertrand  551: *
1.21    ! bertrand  552:          IF( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESHA ) THEN
1.1       bertrand  553:             CALL DLACPY( 'F', M, M, SCPY, LDST, S, LDST )
                    554:             CALL DLACPY( 'F', M, M, TCPY, LDST, T, LDST )
                    555:             CALL DLACPY( 'F', M, M, IRCOP, LDST, IR, LDST )
                    556:             CALL DLACPY( 'F', M, M, LICOP, LDST, LI, LDST )
1.21    ! bertrand  557:          ELSE IF( BRQA21.GE.THRESHA ) THEN
1.1       bertrand  558:             GO TO 70
                    559:          END IF
                    560: *
                    561: *        Set lower triangle of B-part to zero
                    562: *
                    563:          CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST )
                    564: *
                    565:          IF( WANDS ) THEN
                    566: *
                    567: *           Strong stability test:
1.21    ! bertrand  568: *               F-norm((A-QL**H*S*QR)) <= O(EPS*F-norm((A)))
        !           569: *               and
        !           570: *               F-norm((B-QL**H*T*QR)) <= O(EPS*F-norm((B)))
1.1       bertrand  571: *
                    572:             CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
                    573:      $                   M )
                    574:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
                    575:      $                  WORK, M )
                    576:             CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
                    577:      $                  WORK( M*M+1 ), M )
                    578:             DSCALE = ZERO
                    579:             DSUM = ONE
                    580:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
1.21    ! bertrand  581:             SA = DSCALE*SQRT( DSUM )
1.1       bertrand  582: *
                    583:             CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
                    584:      $                   M )
                    585:             CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
                    586:      $                  WORK, M )
                    587:             CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
                    588:      $                  WORK( M*M+1 ), M )
1.21    ! bertrand  589:             DSCALE = ZERO
        !           590:             DSUM = ONE
1.1       bertrand  591:             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
1.21    ! bertrand  592:             SB = DSCALE*SQRT( DSUM )
        !           593:             STRONG = SA.LE.THRESHA .AND. SB.LE.THRESHB
        !           594:             IF( .NOT.STRONG )
1.1       bertrand  595:      $         GO TO 70
                    596: *
                    597:          END IF
                    598: *
                    599: *        If the swap is accepted ("weakly" and "strongly"), apply the
                    600: *        transformations and set N1-by-N2 (2,1)-block to zero.
                    601: *
                    602:          CALL DLASET( 'Full', N1, N2, ZERO, ZERO, S(N2+1,1), LDST )
                    603: *
                    604: *        copy back M-by-M diagonal block starting at index J1 of (A, B)
                    605: *
                    606:          CALL DLACPY( 'F', M, M, S, LDST, A( J1, J1 ), LDA )
                    607:          CALL DLACPY( 'F', M, M, T, LDST, B( J1, J1 ), LDB )
                    608:          CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, T, LDST )
                    609: *
                    610: *        Standardize existing 2-by-2 blocks.
                    611: *
1.16      bertrand  612:          CALL DLASET( 'Full', M, M, ZERO, ZERO, WORK, M )
1.1       bertrand  613:          WORK( 1 ) = ONE
                    614:          T( 1, 1 ) = ONE
                    615:          IDUM = LWORK - M*M - 2
                    616:          IF( N2.GT.1 ) THEN
                    617:             CALL DLAGV2( A( J1, J1 ), LDA, B( J1, J1 ), LDB, AR, AI, BE,
                    618:      $                   WORK( 1 ), WORK( 2 ), T( 1, 1 ), T( 2, 1 ) )
                    619:             WORK( M+1 ) = -WORK( 2 )
                    620:             WORK( M+2 ) = WORK( 1 )
                    621:             T( N2, N2 ) = T( 1, 1 )
                    622:             T( 1, 2 ) = -T( 2, 1 )
                    623:          END IF
                    624:          WORK( M*M ) = ONE
                    625:          T( M, M ) = ONE
                    626: *
                    627:          IF( N1.GT.1 ) THEN
                    628:             CALL DLAGV2( A( J1+N2, J1+N2 ), LDA, B( J1+N2, J1+N2 ), LDB,
                    629:      $                   TAUR, TAUL, WORK( M*M+1 ), WORK( N2*M+N2+1 ),
                    630:      $                   WORK( N2*M+N2+2 ), T( N2+1, N2+1 ),
                    631:      $                   T( M, M-1 ) )
                    632:             WORK( M*M ) = WORK( N2*M+N2+1 )
                    633:             WORK( M*M-1 ) = -WORK( N2*M+N2+2 )
                    634:             T( M, M ) = T( N2+1, N2+1 )
                    635:             T( M-1, M ) = -T( M, M-1 )
                    636:          END IF
                    637:          CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, A( J1, J1+N2 ),
                    638:      $               LDA, ZERO, WORK( M*M+1 ), N2 )
                    639:          CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, A( J1, J1+N2 ),
                    640:      $                LDA )
                    641:          CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, B( J1, J1+N2 ),
                    642:      $               LDB, ZERO, WORK( M*M+1 ), N2 )
                    643:          CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, B( J1, J1+N2 ),
                    644:      $                LDB )
                    645:          CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, WORK, M, ZERO,
                    646:      $               WORK( M*M+1 ), M )
                    647:          CALL DLACPY( 'Full', M, M, WORK( M*M+1 ), M, LI, LDST )
                    648:          CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, A( J1, J1+N2 ), LDA,
                    649:      $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
                    650:          CALL DLACPY( 'Full', N2, N1, WORK, N2, A( J1, J1+N2 ), LDA )
                    651:          CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, B( J1, J1+N2 ), LDB,
                    652:      $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
                    653:          CALL DLACPY( 'Full', N2, N1, WORK, N2, B( J1, J1+N2 ), LDB )
                    654:          CALL DGEMM( 'T', 'N', M, M, M, ONE, IR, LDST, T, LDST, ZERO,
                    655:      $               WORK, M )
                    656:          CALL DLACPY( 'Full', M, M, WORK, M, IR, LDST )
                    657: *
                    658: *        Accumulate transformations into Q and Z if requested.
                    659: *
                    660:          IF( WANTQ ) THEN
                    661:             CALL DGEMM( 'N', 'N', N, M, M, ONE, Q( 1, J1 ), LDQ, LI,
                    662:      $                  LDST, ZERO, WORK, N )
                    663:             CALL DLACPY( 'Full', N, M, WORK, N, Q( 1, J1 ), LDQ )
                    664: *
                    665:          END IF
                    666: *
                    667:          IF( WANTZ ) THEN
                    668:             CALL DGEMM( 'N', 'N', N, M, M, ONE, Z( 1, J1 ), LDZ, IR,
                    669:      $                  LDST, ZERO, WORK, N )
                    670:             CALL DLACPY( 'Full', N, M, WORK, N, Z( 1, J1 ), LDZ )
                    671: *
                    672:          END IF
                    673: *
                    674: *        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
                    675: *                (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
                    676: *
                    677:          I = J1 + M
                    678:          IF( I.LE.N ) THEN
                    679:             CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
                    680:      $                  A( J1, I ), LDA, ZERO, WORK, M )
                    681:             CALL DLACPY( 'Full', M, N-I+1, WORK, M, A( J1, I ), LDA )
                    682:             CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
1.16      bertrand  683:      $                  B( J1, I ), LDB, ZERO, WORK, M )
1.1       bertrand  684:             CALL DLACPY( 'Full', M, N-I+1, WORK, M, B( J1, I ), LDB )
                    685:          END IF
                    686:          I = J1 - 1
                    687:          IF( I.GT.0 ) THEN
                    688:             CALL DGEMM( 'N', 'N', I, M, M, ONE, A( 1, J1 ), LDA, IR,
                    689:      $                  LDST, ZERO, WORK, I )
                    690:             CALL DLACPY( 'Full', I, M, WORK, I, A( 1, J1 ), LDA )
                    691:             CALL DGEMM( 'N', 'N', I, M, M, ONE, B( 1, J1 ), LDB, IR,
                    692:      $                  LDST, ZERO, WORK, I )
                    693:             CALL DLACPY( 'Full', I, M, WORK, I, B( 1, J1 ), LDB )
                    694:          END IF
                    695: *
                    696: *        Exit with INFO = 0 if swap was successfully performed.
                    697: *
                    698:          RETURN
                    699: *
                    700:       END IF
                    701: *
                    702: *     Exit with INFO = 1 if swap was rejected.
                    703: *
                    704:    70 CONTINUE
                    705: *
                    706:       INFO = 1
                    707:       RETURN
                    708: *
                    709: *     End of DTGEX2
                    710: *
                    711:       END

CVSweb interface <joel.bertrand@systella.fr>