File:  [local] / rpl / lapack / lapack / dsytrs_rook.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:11 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYTRS_ROOK
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYTRS_ROOK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrs_rook.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrs_rook.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrs_rook.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYTRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, LDB, N, NRHS
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DSYTRS_ROOK solves a system of linear equations A*X = B with
   39: *> a real symmetric matrix A using the factorization A = U*D*U**T or
   40: *> A = L*D*L**T computed by DSYTRF_ROOK.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] NRHS
   62: *> \verbatim
   63: *>          NRHS is INTEGER
   64: *>          The number of right hand sides, i.e., the number of columns
   65: *>          of the matrix B.  NRHS >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] A
   69: *> \verbatim
   70: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   71: *>          The block diagonal matrix D and the multipliers used to
   72: *>          obtain the factor U or L as computed by DSYTRF_ROOK.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IPIV
   82: *> \verbatim
   83: *>          IPIV is INTEGER array, dimension (N)
   84: *>          Details of the interchanges and the block structure of D
   85: *>          as determined by DSYTRF_ROOK.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] B
   89: *> \verbatim
   90: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   91: *>          On entry, the right hand side matrix B.
   92: *>          On exit, the solution matrix X.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] LDB
   96: *> \verbatim
   97: *>          LDB is INTEGER
   98: *>          The leading dimension of the array B.  LDB >= max(1,N).
   99: *> \endverbatim
  100: *>
  101: *> \param[out] INFO
  102: *> \verbatim
  103: *>          INFO is INTEGER
  104: *>          = 0:  successful exit
  105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  106: *> \endverbatim
  107: *
  108: *  Authors:
  109: *  ========
  110: *
  111: *> \author Univ. of Tennessee
  112: *> \author Univ. of California Berkeley
  113: *> \author Univ. of Colorado Denver
  114: *> \author NAG Ltd.
  115: *
  116: *> \ingroup doubleSYcomputational
  117: *
  118: *> \par Contributors:
  119: *  ==================
  120: *>
  121: *> \verbatim
  122: *>
  123: *>   April 2012, Igor Kozachenko,
  124: *>                  Computer Science Division,
  125: *>                  University of California, Berkeley
  126: *>
  127: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  128: *>                  School of Mathematics,
  129: *>                  University of Manchester
  130: *>
  131: *> \endverbatim
  132: *
  133: *  =====================================================================
  134:       SUBROUTINE DSYTRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  135:      $                        INFO )
  136: *
  137: *  -- LAPACK computational routine --
  138: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  139: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  140: *
  141: *     .. Scalar Arguments ..
  142:       CHARACTER          UPLO
  143:       INTEGER            INFO, LDA, LDB, N, NRHS
  144: *     ..
  145: *     .. Array Arguments ..
  146:       INTEGER            IPIV( * )
  147:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
  148: *     ..
  149: *
  150: *  =====================================================================
  151: *
  152: *     .. Parameters ..
  153:       DOUBLE PRECISION   ONE
  154:       PARAMETER          ( ONE = 1.0D+0 )
  155: *     ..
  156: *     .. Local Scalars ..
  157:       LOGICAL            UPPER
  158:       INTEGER            J, K, KP
  159:       DOUBLE PRECISION   AK, AKM1, AKM1K, BK, BKM1, DENOM
  160: *     ..
  161: *     .. External Functions ..
  162:       LOGICAL            LSAME
  163:       EXTERNAL           LSAME
  164: *     ..
  165: *     .. External Subroutines ..
  166:       EXTERNAL           DGEMV, DGER, DSCAL, DSWAP, XERBLA
  167: *     ..
  168: *     .. Intrinsic Functions ..
  169:       INTRINSIC          MAX
  170: *     ..
  171: *     .. Executable Statements ..
  172: *
  173:       INFO = 0
  174:       UPPER = LSAME( UPLO, 'U' )
  175:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  176:          INFO = -1
  177:       ELSE IF( N.LT.0 ) THEN
  178:          INFO = -2
  179:       ELSE IF( NRHS.LT.0 ) THEN
  180:          INFO = -3
  181:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  182:          INFO = -5
  183:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  184:          INFO = -8
  185:       END IF
  186:       IF( INFO.NE.0 ) THEN
  187:          CALL XERBLA( 'DSYTRS_ROOK', -INFO )
  188:          RETURN
  189:       END IF
  190: *
  191: *     Quick return if possible
  192: *
  193:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  194:      $   RETURN
  195: *
  196:       IF( UPPER ) THEN
  197: *
  198: *        Solve A*X = B, where A = U*D*U**T.
  199: *
  200: *        First solve U*D*X = B, overwriting B with X.
  201: *
  202: *        K is the main loop index, decreasing from N to 1 in steps of
  203: *        1 or 2, depending on the size of the diagonal blocks.
  204: *
  205:          K = N
  206:    10    CONTINUE
  207: *
  208: *        If K < 1, exit from loop.
  209: *
  210:          IF( K.LT.1 )
  211:      $      GO TO 30
  212: *
  213:          IF( IPIV( K ).GT.0 ) THEN
  214: *
  215: *           1 x 1 diagonal block
  216: *
  217: *           Interchange rows K and IPIV(K).
  218: *
  219:             KP = IPIV( K )
  220:             IF( KP.NE.K )
  221:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  222: *
  223: *           Multiply by inv(U(K)), where U(K) is the transformation
  224: *           stored in column K of A.
  225: *
  226:             CALL DGER( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  227:      $                 B( 1, 1 ), LDB )
  228: *
  229: *           Multiply by the inverse of the diagonal block.
  230: *
  231:             CALL DSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
  232:             K = K - 1
  233:          ELSE
  234: *
  235: *           2 x 2 diagonal block
  236: *
  237: *           Interchange rows K and -IPIV(K) THEN K-1 and -IPIV(K-1)
  238: *
  239:             KP = -IPIV( K )
  240:             IF( KP.NE.K )
  241:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  242: *
  243:             KP = -IPIV( K-1 )
  244:             IF( KP.NE.K-1 )
  245:      $         CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  246: *
  247: *           Multiply by inv(U(K)), where U(K) is the transformation
  248: *           stored in columns K-1 and K of A.
  249: *
  250:             IF( K.GT.2 ) THEN
  251:                CALL DGER( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ),
  252:      $                    LDB, B( 1, 1 ), LDB )
  253:                CALL DGER( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
  254:      $                    LDB, B( 1, 1 ), LDB )
  255:             END IF
  256: *
  257: *           Multiply by the inverse of the diagonal block.
  258: *
  259:             AKM1K = A( K-1, K )
  260:             AKM1 = A( K-1, K-1 ) / AKM1K
  261:             AK = A( K, K ) / AKM1K
  262:             DENOM = AKM1*AK - ONE
  263:             DO 20 J = 1, NRHS
  264:                BKM1 = B( K-1, J ) / AKM1K
  265:                BK = B( K, J ) / AKM1K
  266:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  267:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  268:    20       CONTINUE
  269:             K = K - 2
  270:          END IF
  271: *
  272:          GO TO 10
  273:    30    CONTINUE
  274: *
  275: *        Next solve U**T *X = B, overwriting B with X.
  276: *
  277: *        K is the main loop index, increasing from 1 to N in steps of
  278: *        1 or 2, depending on the size of the diagonal blocks.
  279: *
  280:          K = 1
  281:    40    CONTINUE
  282: *
  283: *        If K > N, exit from loop.
  284: *
  285:          IF( K.GT.N )
  286:      $      GO TO 50
  287: *
  288:          IF( IPIV( K ).GT.0 ) THEN
  289: *
  290: *           1 x 1 diagonal block
  291: *
  292: *           Multiply by inv(U**T(K)), where U(K) is the transformation
  293: *           stored in column K of A.
  294: *
  295:             IF( K.GT.1 )
  296:      $         CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B,
  297:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  298: *
  299: *           Interchange rows K and IPIV(K).
  300: *
  301:             KP = IPIV( K )
  302:             IF( KP.NE.K )
  303:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  304:             K = K + 1
  305:          ELSE
  306: *
  307: *           2 x 2 diagonal block
  308: *
  309: *           Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
  310: *           stored in columns K and K+1 of A.
  311: *
  312:             IF( K.GT.1 ) THEN
  313:                CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B,
  314:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  315:                CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B,
  316:      $                     LDB, A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
  317:             END IF
  318: *
  319: *           Interchange rows K and -IPIV(K) THEN K+1 and -IPIV(K+1).
  320: *
  321:             KP = -IPIV( K )
  322:             IF( KP.NE.K )
  323:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  324: *
  325:             KP = -IPIV( K+1 )
  326:             IF( KP.NE.K+1 )
  327:      $         CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  328: *
  329:             K = K + 2
  330:          END IF
  331: *
  332:          GO TO 40
  333:    50    CONTINUE
  334: *
  335:       ELSE
  336: *
  337: *        Solve A*X = B, where A = L*D*L**T.
  338: *
  339: *        First solve L*D*X = B, overwriting B with X.
  340: *
  341: *        K is the main loop index, increasing from 1 to N in steps of
  342: *        1 or 2, depending on the size of the diagonal blocks.
  343: *
  344:          K = 1
  345:    60    CONTINUE
  346: *
  347: *        If K > N, exit from loop.
  348: *
  349:          IF( K.GT.N )
  350:      $      GO TO 80
  351: *
  352:          IF( IPIV( K ).GT.0 ) THEN
  353: *
  354: *           1 x 1 diagonal block
  355: *
  356: *           Interchange rows K and IPIV(K).
  357: *
  358:             KP = IPIV( K )
  359:             IF( KP.NE.K )
  360:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  361: *
  362: *           Multiply by inv(L(K)), where L(K) is the transformation
  363: *           stored in column K of A.
  364: *
  365:             IF( K.LT.N )
  366:      $         CALL DGER( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
  367:      $                    LDB, B( K+1, 1 ), LDB )
  368: *
  369: *           Multiply by the inverse of the diagonal block.
  370: *
  371:             CALL DSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
  372:             K = K + 1
  373:          ELSE
  374: *
  375: *           2 x 2 diagonal block
  376: *
  377: *           Interchange rows K and -IPIV(K) THEN K+1 and -IPIV(K+1)
  378: *
  379:             KP = -IPIV( K )
  380:             IF( KP.NE.K )
  381:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  382: *
  383:             KP = -IPIV( K+1 )
  384:             IF( KP.NE.K+1 )
  385:      $         CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  386: *
  387: *           Multiply by inv(L(K)), where L(K) is the transformation
  388: *           stored in columns K and K+1 of A.
  389: *
  390:             IF( K.LT.N-1 ) THEN
  391:                CALL DGER( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
  392:      $                    LDB, B( K+2, 1 ), LDB )
  393:                CALL DGER( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
  394:      $                    B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  395:             END IF
  396: *
  397: *           Multiply by the inverse of the diagonal block.
  398: *
  399:             AKM1K = A( K+1, K )
  400:             AKM1 = A( K, K ) / AKM1K
  401:             AK = A( K+1, K+1 ) / AKM1K
  402:             DENOM = AKM1*AK - ONE
  403:             DO 70 J = 1, NRHS
  404:                BKM1 = B( K, J ) / AKM1K
  405:                BK = B( K+1, J ) / AKM1K
  406:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
  407:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  408:    70       CONTINUE
  409:             K = K + 2
  410:          END IF
  411: *
  412:          GO TO 60
  413:    80    CONTINUE
  414: *
  415: *        Next solve L**T *X = B, overwriting B with X.
  416: *
  417: *        K is the main loop index, decreasing from N to 1 in steps of
  418: *        1 or 2, depending on the size of the diagonal blocks.
  419: *
  420:          K = N
  421:    90    CONTINUE
  422: *
  423: *        If K < 1, exit from loop.
  424: *
  425:          IF( K.LT.1 )
  426:      $      GO TO 100
  427: *
  428:          IF( IPIV( K ).GT.0 ) THEN
  429: *
  430: *           1 x 1 diagonal block
  431: *
  432: *           Multiply by inv(L**T(K)), where L(K) is the transformation
  433: *           stored in column K of A.
  434: *
  435:             IF( K.LT.N )
  436:      $         CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  437:      $                     LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
  438: *
  439: *           Interchange rows K and IPIV(K).
  440: *
  441:             KP = IPIV( K )
  442:             IF( KP.NE.K )
  443:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  444:             K = K - 1
  445:          ELSE
  446: *
  447: *           2 x 2 diagonal block
  448: *
  449: *           Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
  450: *           stored in columns K-1 and K of A.
  451: *
  452:             IF( K.LT.N ) THEN
  453:                CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  454:      $                     LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
  455:                CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  456:      $                     LDB, A( K+1, K-1 ), 1, ONE, B( K-1, 1 ),
  457:      $                     LDB )
  458:             END IF
  459: *
  460: *           Interchange rows K and -IPIV(K) THEN K-1 and -IPIV(K-1)
  461: *
  462:             KP = -IPIV( K )
  463:             IF( KP.NE.K )
  464:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  465: *
  466:             KP = -IPIV( K-1 )
  467:             IF( KP.NE.K-1 )
  468:      $         CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  469: *
  470:             K = K - 2
  471:          END IF
  472: *
  473:          GO TO 90
  474:   100    CONTINUE
  475:       END IF
  476: *
  477:       RETURN
  478: *
  479: *     End of DSYTRS_ROOK
  480: *
  481:       END

CVSweb interface <joel.bertrand@systella.fr>