Annotation of rpl/lapack/lapack/dsytrs_rook.f, revision 1.7

1.1       bertrand    1: *> \brief \b DSYTRS_ROOK
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.4       bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
                      8: *> \htmlonly
1.4       bertrand    9: *> Download DSYTRS_ROOK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrs_rook.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrs_rook.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrs_rook.f">
1.1       bertrand   15: *> [TXT]</a>
1.4       bertrand   16: *> \endhtmlonly
1.1       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSYTRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
1.4       bertrand   22: *
1.1       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, LDB, N, NRHS
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
                     30: *       ..
1.4       bertrand   31: *
1.1       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DSYTRS_ROOK solves a system of linear equations A*X = B with
                     39: *> a real symmetric matrix A using the factorization A = U*D*U**T or
                     40: *> A = L*D*L**T computed by DSYTRF_ROOK.
                     41: *> \endverbatim
                     42: *
                     43: *  Arguments:
                     44: *  ==========
                     45: *
                     46: *> \param[in] UPLO
                     47: *> \verbatim
                     48: *>          UPLO is CHARACTER*1
                     49: *>          Specifies whether the details of the factorization are stored
                     50: *>          as an upper or lower triangular matrix.
                     51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
                     52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] N
                     56: *> \verbatim
                     57: *>          N is INTEGER
                     58: *>          The order of the matrix A.  N >= 0.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] NRHS
                     62: *> \verbatim
                     63: *>          NRHS is INTEGER
                     64: *>          The number of right hand sides, i.e., the number of columns
                     65: *>          of the matrix B.  NRHS >= 0.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] A
                     69: *> \verbatim
                     70: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     71: *>          The block diagonal matrix D and the multipliers used to
                     72: *>          obtain the factor U or L as computed by DSYTRF_ROOK.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] LDA
                     76: *> \verbatim
                     77: *>          LDA is INTEGER
                     78: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] IPIV
                     82: *> \verbatim
                     83: *>          IPIV is INTEGER array, dimension (N)
                     84: *>          Details of the interchanges and the block structure of D
                     85: *>          as determined by DSYTRF_ROOK.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] B
                     89: *> \verbatim
                     90: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                     91: *>          On entry, the right hand side matrix B.
                     92: *>          On exit, the solution matrix X.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] LDB
                     96: *> \verbatim
                     97: *>          LDB is INTEGER
                     98: *>          The leading dimension of the array B.  LDB >= max(1,N).
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[out] INFO
                    102: *> \verbatim
                    103: *>          INFO is INTEGER
                    104: *>          = 0:  successful exit
                    105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    106: *> \endverbatim
                    107: *
                    108: *  Authors:
                    109: *  ========
                    110: *
1.4       bertrand  111: *> \author Univ. of Tennessee
                    112: *> \author Univ. of California Berkeley
                    113: *> \author Univ. of Colorado Denver
                    114: *> \author NAG Ltd.
1.1       bertrand  115: *
                    116: *> \ingroup doubleSYcomputational
                    117: *
                    118: *> \par Contributors:
                    119: *  ==================
                    120: *>
                    121: *> \verbatim
                    122: *>
                    123: *>   April 2012, Igor Kozachenko,
                    124: *>                  Computer Science Division,
                    125: *>                  University of California, Berkeley
                    126: *>
                    127: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                    128: *>                  School of Mathematics,
                    129: *>                  University of Manchester
                    130: *>
                    131: *> \endverbatim
                    132: *
                    133: *  =====================================================================
                    134:       SUBROUTINE DSYTRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
                    135:      $                        INFO )
                    136: *
1.7     ! bertrand  137: *  -- LAPACK computational routine --
1.1       bertrand  138: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    139: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    140: *
                    141: *     .. Scalar Arguments ..
                    142:       CHARACTER          UPLO
                    143:       INTEGER            INFO, LDA, LDB, N, NRHS
                    144: *     ..
                    145: *     .. Array Arguments ..
                    146:       INTEGER            IPIV( * )
                    147:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
                    148: *     ..
                    149: *
                    150: *  =====================================================================
                    151: *
                    152: *     .. Parameters ..
                    153:       DOUBLE PRECISION   ONE
                    154:       PARAMETER          ( ONE = 1.0D+0 )
                    155: *     ..
                    156: *     .. Local Scalars ..
                    157:       LOGICAL            UPPER
                    158:       INTEGER            J, K, KP
                    159:       DOUBLE PRECISION   AK, AKM1, AKM1K, BK, BKM1, DENOM
                    160: *     ..
                    161: *     .. External Functions ..
                    162:       LOGICAL            LSAME
                    163:       EXTERNAL           LSAME
                    164: *     ..
                    165: *     .. External Subroutines ..
                    166:       EXTERNAL           DGEMV, DGER, DSCAL, DSWAP, XERBLA
                    167: *     ..
                    168: *     .. Intrinsic Functions ..
                    169:       INTRINSIC          MAX
                    170: *     ..
                    171: *     .. Executable Statements ..
                    172: *
                    173:       INFO = 0
                    174:       UPPER = LSAME( UPLO, 'U' )
                    175:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    176:          INFO = -1
                    177:       ELSE IF( N.LT.0 ) THEN
                    178:          INFO = -2
                    179:       ELSE IF( NRHS.LT.0 ) THEN
                    180:          INFO = -3
                    181:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    182:          INFO = -5
                    183:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    184:          INFO = -8
                    185:       END IF
                    186:       IF( INFO.NE.0 ) THEN
                    187:          CALL XERBLA( 'DSYTRS_ROOK', -INFO )
                    188:          RETURN
                    189:       END IF
                    190: *
                    191: *     Quick return if possible
                    192: *
                    193:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
                    194:      $   RETURN
                    195: *
                    196:       IF( UPPER ) THEN
                    197: *
                    198: *        Solve A*X = B, where A = U*D*U**T.
                    199: *
                    200: *        First solve U*D*X = B, overwriting B with X.
                    201: *
                    202: *        K is the main loop index, decreasing from N to 1 in steps of
                    203: *        1 or 2, depending on the size of the diagonal blocks.
                    204: *
                    205:          K = N
                    206:    10    CONTINUE
                    207: *
                    208: *        If K < 1, exit from loop.
                    209: *
                    210:          IF( K.LT.1 )
                    211:      $      GO TO 30
                    212: *
                    213:          IF( IPIV( K ).GT.0 ) THEN
                    214: *
                    215: *           1 x 1 diagonal block
                    216: *
                    217: *           Interchange rows K and IPIV(K).
                    218: *
                    219:             KP = IPIV( K )
                    220:             IF( KP.NE.K )
                    221:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    222: *
                    223: *           Multiply by inv(U(K)), where U(K) is the transformation
                    224: *           stored in column K of A.
                    225: *
                    226:             CALL DGER( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
                    227:      $                 B( 1, 1 ), LDB )
                    228: *
                    229: *           Multiply by the inverse of the diagonal block.
                    230: *
                    231:             CALL DSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
                    232:             K = K - 1
                    233:          ELSE
                    234: *
                    235: *           2 x 2 diagonal block
                    236: *
                    237: *           Interchange rows K and -IPIV(K) THEN K-1 and -IPIV(K-1)
                    238: *
                    239:             KP = -IPIV( K )
                    240:             IF( KP.NE.K )
                    241:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    242: *
                    243:             KP = -IPIV( K-1 )
                    244:             IF( KP.NE.K-1 )
                    245:      $         CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
                    246: *
                    247: *           Multiply by inv(U(K)), where U(K) is the transformation
                    248: *           stored in columns K-1 and K of A.
                    249: *
                    250:             IF( K.GT.2 ) THEN
                    251:                CALL DGER( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ),
                    252:      $                    LDB, B( 1, 1 ), LDB )
                    253:                CALL DGER( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
                    254:      $                    LDB, B( 1, 1 ), LDB )
                    255:             END IF
                    256: *
                    257: *           Multiply by the inverse of the diagonal block.
                    258: *
                    259:             AKM1K = A( K-1, K )
                    260:             AKM1 = A( K-1, K-1 ) / AKM1K
                    261:             AK = A( K, K ) / AKM1K
                    262:             DENOM = AKM1*AK - ONE
                    263:             DO 20 J = 1, NRHS
                    264:                BKM1 = B( K-1, J ) / AKM1K
                    265:                BK = B( K, J ) / AKM1K
                    266:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
                    267:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
                    268:    20       CONTINUE
                    269:             K = K - 2
                    270:          END IF
                    271: *
                    272:          GO TO 10
                    273:    30    CONTINUE
                    274: *
                    275: *        Next solve U**T *X = B, overwriting B with X.
                    276: *
                    277: *        K is the main loop index, increasing from 1 to N in steps of
                    278: *        1 or 2, depending on the size of the diagonal blocks.
                    279: *
                    280:          K = 1
                    281:    40    CONTINUE
                    282: *
                    283: *        If K > N, exit from loop.
                    284: *
                    285:          IF( K.GT.N )
                    286:      $      GO TO 50
                    287: *
                    288:          IF( IPIV( K ).GT.0 ) THEN
                    289: *
                    290: *           1 x 1 diagonal block
                    291: *
                    292: *           Multiply by inv(U**T(K)), where U(K) is the transformation
                    293: *           stored in column K of A.
                    294: *
                    295:             IF( K.GT.1 )
                    296:      $         CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B,
                    297:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
                    298: *
                    299: *           Interchange rows K and IPIV(K).
                    300: *
                    301:             KP = IPIV( K )
                    302:             IF( KP.NE.K )
                    303:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    304:             K = K + 1
                    305:          ELSE
                    306: *
                    307: *           2 x 2 diagonal block
                    308: *
                    309: *           Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
                    310: *           stored in columns K and K+1 of A.
                    311: *
                    312:             IF( K.GT.1 ) THEN
                    313:                CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B,
                    314:      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
                    315:                CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B,
                    316:      $                     LDB, A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
                    317:             END IF
                    318: *
                    319: *           Interchange rows K and -IPIV(K) THEN K+1 and -IPIV(K+1).
                    320: *
                    321:             KP = -IPIV( K )
                    322:             IF( KP.NE.K )
                    323:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    324: *
                    325:             KP = -IPIV( K+1 )
                    326:             IF( KP.NE.K+1 )
                    327:      $         CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
                    328: *
                    329:             K = K + 2
                    330:          END IF
                    331: *
                    332:          GO TO 40
                    333:    50    CONTINUE
                    334: *
                    335:       ELSE
                    336: *
                    337: *        Solve A*X = B, where A = L*D*L**T.
                    338: *
                    339: *        First solve L*D*X = B, overwriting B with X.
                    340: *
                    341: *        K is the main loop index, increasing from 1 to N in steps of
                    342: *        1 or 2, depending on the size of the diagonal blocks.
                    343: *
                    344:          K = 1
                    345:    60    CONTINUE
                    346: *
                    347: *        If K > N, exit from loop.
                    348: *
                    349:          IF( K.GT.N )
                    350:      $      GO TO 80
                    351: *
                    352:          IF( IPIV( K ).GT.0 ) THEN
                    353: *
                    354: *           1 x 1 diagonal block
                    355: *
                    356: *           Interchange rows K and IPIV(K).
                    357: *
                    358:             KP = IPIV( K )
                    359:             IF( KP.NE.K )
                    360:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    361: *
                    362: *           Multiply by inv(L(K)), where L(K) is the transformation
                    363: *           stored in column K of A.
                    364: *
                    365:             IF( K.LT.N )
                    366:      $         CALL DGER( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
                    367:      $                    LDB, B( K+1, 1 ), LDB )
                    368: *
                    369: *           Multiply by the inverse of the diagonal block.
                    370: *
                    371:             CALL DSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
                    372:             K = K + 1
                    373:          ELSE
                    374: *
                    375: *           2 x 2 diagonal block
                    376: *
                    377: *           Interchange rows K and -IPIV(K) THEN K+1 and -IPIV(K+1)
                    378: *
                    379:             KP = -IPIV( K )
                    380:             IF( KP.NE.K )
                    381:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    382: *
                    383:             KP = -IPIV( K+1 )
                    384:             IF( KP.NE.K+1 )
                    385:      $         CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
                    386: *
                    387: *           Multiply by inv(L(K)), where L(K) is the transformation
                    388: *           stored in columns K and K+1 of A.
                    389: *
                    390:             IF( K.LT.N-1 ) THEN
                    391:                CALL DGER( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
                    392:      $                    LDB, B( K+2, 1 ), LDB )
                    393:                CALL DGER( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
                    394:      $                    B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
                    395:             END IF
                    396: *
                    397: *           Multiply by the inverse of the diagonal block.
                    398: *
                    399:             AKM1K = A( K+1, K )
                    400:             AKM1 = A( K, K ) / AKM1K
                    401:             AK = A( K+1, K+1 ) / AKM1K
                    402:             DENOM = AKM1*AK - ONE
                    403:             DO 70 J = 1, NRHS
                    404:                BKM1 = B( K, J ) / AKM1K
                    405:                BK = B( K+1, J ) / AKM1K
                    406:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
                    407:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
                    408:    70       CONTINUE
                    409:             K = K + 2
                    410:          END IF
                    411: *
                    412:          GO TO 60
                    413:    80    CONTINUE
                    414: *
                    415: *        Next solve L**T *X = B, overwriting B with X.
                    416: *
                    417: *        K is the main loop index, decreasing from N to 1 in steps of
                    418: *        1 or 2, depending on the size of the diagonal blocks.
                    419: *
                    420:          K = N
                    421:    90    CONTINUE
                    422: *
                    423: *        If K < 1, exit from loop.
                    424: *
                    425:          IF( K.LT.1 )
                    426:      $      GO TO 100
                    427: *
                    428:          IF( IPIV( K ).GT.0 ) THEN
                    429: *
                    430: *           1 x 1 diagonal block
                    431: *
                    432: *           Multiply by inv(L**T(K)), where L(K) is the transformation
                    433: *           stored in column K of A.
                    434: *
                    435:             IF( K.LT.N )
                    436:      $         CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
                    437:      $                     LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
                    438: *
                    439: *           Interchange rows K and IPIV(K).
                    440: *
                    441:             KP = IPIV( K )
                    442:             IF( KP.NE.K )
                    443:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    444:             K = K - 1
                    445:          ELSE
                    446: *
                    447: *           2 x 2 diagonal block
                    448: *
                    449: *           Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
                    450: *           stored in columns K-1 and K of A.
                    451: *
                    452:             IF( K.LT.N ) THEN
                    453:                CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
                    454:      $                     LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
                    455:                CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
                    456:      $                     LDB, A( K+1, K-1 ), 1, ONE, B( K-1, 1 ),
                    457:      $                     LDB )
                    458:             END IF
                    459: *
                    460: *           Interchange rows K and -IPIV(K) THEN K-1 and -IPIV(K-1)
                    461: *
                    462:             KP = -IPIV( K )
                    463:             IF( KP.NE.K )
                    464:      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    465: *
                    466:             KP = -IPIV( K-1 )
                    467:             IF( KP.NE.K-1 )
                    468:      $         CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
                    469: *
                    470:             K = K - 2
                    471:          END IF
                    472: *
                    473:          GO TO 90
                    474:   100    CONTINUE
                    475:       END IF
                    476: *
                    477:       RETURN
                    478: *
                    479: *     End of DSYTRS_ROOK
                    480: *
                    481:       END

CVSweb interface <joel.bertrand@systella.fr>