File:  [local] / rpl / lapack / lapack / dsysvx.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:09 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DSYSVX computes the solution to system of linear equations A * X = B for SY matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSYSVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsysvx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsysvx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsysvx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
   22: *                          LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK,
   23: *                          IWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          FACT, UPLO
   27: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
   28: *       DOUBLE PRECISION   RCOND
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IPIV( * ), IWORK( * )
   32: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   33: *      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DSYSVX uses the diagonal pivoting factorization to compute the
   43: *> solution to a real system of linear equations A * X = B,
   44: *> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
   45: *> matrices.
   46: *>
   47: *> Error bounds on the solution and a condition estimate are also
   48: *> provided.
   49: *> \endverbatim
   50: *
   51: *> \par Description:
   52: *  =================
   53: *>
   54: *> \verbatim
   55: *>
   56: *> The following steps are performed:
   57: *>
   58: *> 1. If FACT = 'N', the diagonal pivoting method is used to factor A.
   59: *>    The form of the factorization is
   60: *>       A = U * D * U**T,  if UPLO = 'U', or
   61: *>       A = L * D * L**T,  if UPLO = 'L',
   62: *>    where U (or L) is a product of permutation and unit upper (lower)
   63: *>    triangular matrices, and D is symmetric and block diagonal with
   64: *>    1-by-1 and 2-by-2 diagonal blocks.
   65: *>
   66: *> 2. If some D(i,i)=0, so that D is exactly singular, then the routine
   67: *>    returns with INFO = i. Otherwise, the factored form of A is used
   68: *>    to estimate the condition number of the matrix A.  If the
   69: *>    reciprocal of the condition number is less than machine precision,
   70: *>    INFO = N+1 is returned as a warning, but the routine still goes on
   71: *>    to solve for X and compute error bounds as described below.
   72: *>
   73: *> 3. The system of equations is solved for X using the factored form
   74: *>    of A.
   75: *>
   76: *> 4. Iterative refinement is applied to improve the computed solution
   77: *>    matrix and calculate error bounds and backward error estimates
   78: *>    for it.
   79: *> \endverbatim
   80: *
   81: *  Arguments:
   82: *  ==========
   83: *
   84: *> \param[in] FACT
   85: *> \verbatim
   86: *>          FACT is CHARACTER*1
   87: *>          Specifies whether or not the factored form of A has been
   88: *>          supplied on entry.
   89: *>          = 'F':  On entry, AF and IPIV contain the factored form of
   90: *>                  A.  AF and IPIV will not be modified.
   91: *>          = 'N':  The matrix A will be copied to AF and factored.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] UPLO
   95: *> \verbatim
   96: *>          UPLO is CHARACTER*1
   97: *>          = 'U':  Upper triangle of A is stored;
   98: *>          = 'L':  Lower triangle of A is stored.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] N
  102: *> \verbatim
  103: *>          N is INTEGER
  104: *>          The number of linear equations, i.e., the order of the
  105: *>          matrix A.  N >= 0.
  106: *> \endverbatim
  107: *>
  108: *> \param[in] NRHS
  109: *> \verbatim
  110: *>          NRHS is INTEGER
  111: *>          The number of right hand sides, i.e., the number of columns
  112: *>          of the matrices B and X.  NRHS >= 0.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] A
  116: *> \verbatim
  117: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  118: *>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
  119: *>          upper triangular part of A contains the upper triangular part
  120: *>          of the matrix A, and the strictly lower triangular part of A
  121: *>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
  122: *>          triangular part of A contains the lower triangular part of
  123: *>          the matrix A, and the strictly upper triangular part of A is
  124: *>          not referenced.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] LDA
  128: *> \verbatim
  129: *>          LDA is INTEGER
  130: *>          The leading dimension of the array A.  LDA >= max(1,N).
  131: *> \endverbatim
  132: *>
  133: *> \param[in,out] AF
  134: *> \verbatim
  135: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
  136: *>          If FACT = 'F', then AF is an input argument and on entry
  137: *>          contains the block diagonal matrix D and the multipliers used
  138: *>          to obtain the factor U or L from the factorization
  139: *>          A = U*D*U**T or A = L*D*L**T as computed by DSYTRF.
  140: *>
  141: *>          If FACT = 'N', then AF is an output argument and on exit
  142: *>          returns the block diagonal matrix D and the multipliers used
  143: *>          to obtain the factor U or L from the factorization
  144: *>          A = U*D*U**T or A = L*D*L**T.
  145: *> \endverbatim
  146: *>
  147: *> \param[in] LDAF
  148: *> \verbatim
  149: *>          LDAF is INTEGER
  150: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
  151: *> \endverbatim
  152: *>
  153: *> \param[in,out] IPIV
  154: *> \verbatim
  155: *>          IPIV is INTEGER array, dimension (N)
  156: *>          If FACT = 'F', then IPIV is an input argument and on entry
  157: *>          contains details of the interchanges and the block structure
  158: *>          of D, as determined by DSYTRF.
  159: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  160: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
  161: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  162: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  163: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
  164: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  165: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  166: *>
  167: *>          If FACT = 'N', then IPIV is an output argument and on exit
  168: *>          contains details of the interchanges and the block structure
  169: *>          of D, as determined by DSYTRF.
  170: *> \endverbatim
  171: *>
  172: *> \param[in] B
  173: *> \verbatim
  174: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  175: *>          The N-by-NRHS right hand side matrix B.
  176: *> \endverbatim
  177: *>
  178: *> \param[in] LDB
  179: *> \verbatim
  180: *>          LDB is INTEGER
  181: *>          The leading dimension of the array B.  LDB >= max(1,N).
  182: *> \endverbatim
  183: *>
  184: *> \param[out] X
  185: *> \verbatim
  186: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  187: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
  188: *> \endverbatim
  189: *>
  190: *> \param[in] LDX
  191: *> \verbatim
  192: *>          LDX is INTEGER
  193: *>          The leading dimension of the array X.  LDX >= max(1,N).
  194: *> \endverbatim
  195: *>
  196: *> \param[out] RCOND
  197: *> \verbatim
  198: *>          RCOND is DOUBLE PRECISION
  199: *>          The estimate of the reciprocal condition number of the matrix
  200: *>          A.  If RCOND is less than the machine precision (in
  201: *>          particular, if RCOND = 0), the matrix is singular to working
  202: *>          precision.  This condition is indicated by a return code of
  203: *>          INFO > 0.
  204: *> \endverbatim
  205: *>
  206: *> \param[out] FERR
  207: *> \verbatim
  208: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  209: *>          The estimated forward error bound for each solution vector
  210: *>          X(j) (the j-th column of the solution matrix X).
  211: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  212: *>          is an estimated upper bound for the magnitude of the largest
  213: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  214: *>          largest element in X(j).  The estimate is as reliable as
  215: *>          the estimate for RCOND, and is almost always a slight
  216: *>          overestimate of the true error.
  217: *> \endverbatim
  218: *>
  219: *> \param[out] BERR
  220: *> \verbatim
  221: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  222: *>          The componentwise relative backward error of each solution
  223: *>          vector X(j) (i.e., the smallest relative change in
  224: *>          any element of A or B that makes X(j) an exact solution).
  225: *> \endverbatim
  226: *>
  227: *> \param[out] WORK
  228: *> \verbatim
  229: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  230: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  231: *> \endverbatim
  232: *>
  233: *> \param[in] LWORK
  234: *> \verbatim
  235: *>          LWORK is INTEGER
  236: *>          The length of WORK.  LWORK >= max(1,3*N), and for best
  237: *>          performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
  238: *>          NB is the optimal blocksize for DSYTRF.
  239: *>
  240: *>          If LWORK = -1, then a workspace query is assumed; the routine
  241: *>          only calculates the optimal size of the WORK array, returns
  242: *>          this value as the first entry of the WORK array, and no error
  243: *>          message related to LWORK is issued by XERBLA.
  244: *> \endverbatim
  245: *>
  246: *> \param[out] IWORK
  247: *> \verbatim
  248: *>          IWORK is INTEGER array, dimension (N)
  249: *> \endverbatim
  250: *>
  251: *> \param[out] INFO
  252: *> \verbatim
  253: *>          INFO is INTEGER
  254: *>          = 0: successful exit
  255: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  256: *>          > 0: if INFO = i, and i is
  257: *>                <= N:  D(i,i) is exactly zero.  The factorization
  258: *>                       has been completed but the factor D is exactly
  259: *>                       singular, so the solution and error bounds could
  260: *>                       not be computed. RCOND = 0 is returned.
  261: *>                = N+1: D is nonsingular, but RCOND is less than machine
  262: *>                       precision, meaning that the matrix is singular
  263: *>                       to working precision.  Nevertheless, the
  264: *>                       solution and error bounds are computed because
  265: *>                       there are a number of situations where the
  266: *>                       computed solution can be more accurate than the
  267: *>                       value of RCOND would suggest.
  268: *> \endverbatim
  269: *
  270: *  Authors:
  271: *  ========
  272: *
  273: *> \author Univ. of Tennessee
  274: *> \author Univ. of California Berkeley
  275: *> \author Univ. of Colorado Denver
  276: *> \author NAG Ltd.
  277: *
  278: *> \ingroup doubleSYsolve
  279: *
  280: *  =====================================================================
  281:       SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
  282:      $                   LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK,
  283:      $                   IWORK, INFO )
  284: *
  285: *  -- LAPACK driver routine --
  286: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  287: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  288: *
  289: *     .. Scalar Arguments ..
  290:       CHARACTER          FACT, UPLO
  291:       INTEGER            INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
  292:       DOUBLE PRECISION   RCOND
  293: *     ..
  294: *     .. Array Arguments ..
  295:       INTEGER            IPIV( * ), IWORK( * )
  296:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  297:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  298: *     ..
  299: *
  300: *  =====================================================================
  301: *
  302: *     .. Parameters ..
  303:       DOUBLE PRECISION   ZERO
  304:       PARAMETER          ( ZERO = 0.0D+0 )
  305: *     ..
  306: *     .. Local Scalars ..
  307:       LOGICAL            LQUERY, NOFACT
  308:       INTEGER            LWKOPT, NB
  309:       DOUBLE PRECISION   ANORM
  310: *     ..
  311: *     .. External Functions ..
  312:       LOGICAL            LSAME
  313:       INTEGER            ILAENV
  314:       DOUBLE PRECISION   DLAMCH, DLANSY
  315:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
  316: *     ..
  317: *     .. External Subroutines ..
  318:       EXTERNAL           DLACPY, DSYCON, DSYRFS, DSYTRF, DSYTRS, XERBLA
  319: *     ..
  320: *     .. Intrinsic Functions ..
  321:       INTRINSIC          MAX
  322: *     ..
  323: *     .. Executable Statements ..
  324: *
  325: *     Test the input parameters.
  326: *
  327:       INFO = 0
  328:       NOFACT = LSAME( FACT, 'N' )
  329:       LQUERY = ( LWORK.EQ.-1 )
  330:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
  331:          INFO = -1
  332:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  333:      $          THEN
  334:          INFO = -2
  335:       ELSE IF( N.LT.0 ) THEN
  336:          INFO = -3
  337:       ELSE IF( NRHS.LT.0 ) THEN
  338:          INFO = -4
  339:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  340:          INFO = -6
  341:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  342:          INFO = -8
  343:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  344:          INFO = -11
  345:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  346:          INFO = -13
  347:       ELSE IF( LWORK.LT.MAX( 1, 3*N ) .AND. .NOT.LQUERY ) THEN
  348:          INFO = -18
  349:       END IF
  350: *
  351:       IF( INFO.EQ.0 ) THEN
  352:          LWKOPT = MAX( 1, 3*N )
  353:          IF( NOFACT ) THEN
  354:             NB = ILAENV( 1, 'DSYTRF', UPLO, N, -1, -1, -1 )
  355:             LWKOPT = MAX( LWKOPT, N*NB )
  356:          END IF
  357:          WORK( 1 ) = LWKOPT
  358:       END IF
  359: *
  360:       IF( INFO.NE.0 ) THEN
  361:          CALL XERBLA( 'DSYSVX', -INFO )
  362:          RETURN
  363:       ELSE IF( LQUERY ) THEN
  364:          RETURN
  365:       END IF
  366: *
  367:       IF( NOFACT ) THEN
  368: *
  369: *        Compute the factorization A = U*D*U**T or A = L*D*L**T.
  370: *
  371:          CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  372:          CALL DSYTRF( UPLO, N, AF, LDAF, IPIV, WORK, LWORK, INFO )
  373: *
  374: *        Return if INFO is non-zero.
  375: *
  376:          IF( INFO.GT.0 )THEN
  377:             RCOND = ZERO
  378:             RETURN
  379:          END IF
  380:       END IF
  381: *
  382: *     Compute the norm of the matrix A.
  383: *
  384:       ANORM = DLANSY( 'I', UPLO, N, A, LDA, WORK )
  385: *
  386: *     Compute the reciprocal of the condition number of A.
  387: *
  388:       CALL DSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK, IWORK,
  389:      $             INFO )
  390: *
  391: *     Compute the solution vectors X.
  392: *
  393:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  394:       CALL DSYTRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
  395: *
  396: *     Use iterative refinement to improve the computed solutions and
  397: *     compute error bounds and backward error estimates for them.
  398: *
  399:       CALL DSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
  400:      $             LDX, FERR, BERR, WORK, IWORK, INFO )
  401: *
  402: *     Set INFO = N+1 if the matrix is singular to working precision.
  403: *
  404:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  405:      $   INFO = N + 1
  406: *
  407:       WORK( 1 ) = LWKOPT
  408: *
  409:       RETURN
  410: *
  411: *     End of DSYSVX
  412: *
  413:       END

CVSweb interface <joel.bertrand@systella.fr>