Annotation of rpl/lapack/lapack/dsysvx.f, revision 1.19

1.9       bertrand    1: *> \brief <b> DSYSVX computes the solution to system of linear equations A * X = B for SY matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DSYSVX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsysvx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsysvx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsysvx.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
                     22: *                          LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK,
                     23: *                          IWORK, INFO )
1.16      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          FACT, UPLO
                     27: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
                     28: *       DOUBLE PRECISION   RCOND
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IPIV( * ), IWORK( * )
                     32: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     33: *      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                     34: *       ..
1.16      bertrand   35: *
1.9       bertrand   36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> DSYSVX uses the diagonal pivoting factorization to compute the
                     43: *> solution to a real system of linear equations A * X = B,
                     44: *> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
                     45: *> matrices.
                     46: *>
                     47: *> Error bounds on the solution and a condition estimate are also
                     48: *> provided.
                     49: *> \endverbatim
                     50: *
                     51: *> \par Description:
                     52: *  =================
                     53: *>
                     54: *> \verbatim
                     55: *>
                     56: *> The following steps are performed:
                     57: *>
                     58: *> 1. If FACT = 'N', the diagonal pivoting method is used to factor A.
                     59: *>    The form of the factorization is
                     60: *>       A = U * D * U**T,  if UPLO = 'U', or
                     61: *>       A = L * D * L**T,  if UPLO = 'L',
                     62: *>    where U (or L) is a product of permutation and unit upper (lower)
                     63: *>    triangular matrices, and D is symmetric and block diagonal with
                     64: *>    1-by-1 and 2-by-2 diagonal blocks.
                     65: *>
                     66: *> 2. If some D(i,i)=0, so that D is exactly singular, then the routine
                     67: *>    returns with INFO = i. Otherwise, the factored form of A is used
                     68: *>    to estimate the condition number of the matrix A.  If the
                     69: *>    reciprocal of the condition number is less than machine precision,
                     70: *>    INFO = N+1 is returned as a warning, but the routine still goes on
                     71: *>    to solve for X and compute error bounds as described below.
                     72: *>
                     73: *> 3. The system of equations is solved for X using the factored form
                     74: *>    of A.
                     75: *>
                     76: *> 4. Iterative refinement is applied to improve the computed solution
                     77: *>    matrix and calculate error bounds and backward error estimates
                     78: *>    for it.
                     79: *> \endverbatim
                     80: *
                     81: *  Arguments:
                     82: *  ==========
                     83: *
                     84: *> \param[in] FACT
                     85: *> \verbatim
                     86: *>          FACT is CHARACTER*1
                     87: *>          Specifies whether or not the factored form of A has been
                     88: *>          supplied on entry.
                     89: *>          = 'F':  On entry, AF and IPIV contain the factored form of
                     90: *>                  A.  AF and IPIV will not be modified.
                     91: *>          = 'N':  The matrix A will be copied to AF and factored.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] UPLO
                     95: *> \verbatim
                     96: *>          UPLO is CHARACTER*1
                     97: *>          = 'U':  Upper triangle of A is stored;
                     98: *>          = 'L':  Lower triangle of A is stored.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] N
                    102: *> \verbatim
                    103: *>          N is INTEGER
                    104: *>          The number of linear equations, i.e., the order of the
                    105: *>          matrix A.  N >= 0.
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] NRHS
                    109: *> \verbatim
                    110: *>          NRHS is INTEGER
                    111: *>          The number of right hand sides, i.e., the number of columns
                    112: *>          of the matrices B and X.  NRHS >= 0.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] A
                    116: *> \verbatim
                    117: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                    118: *>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
                    119: *>          upper triangular part of A contains the upper triangular part
                    120: *>          of the matrix A, and the strictly lower triangular part of A
                    121: *>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
                    122: *>          triangular part of A contains the lower triangular part of
                    123: *>          the matrix A, and the strictly upper triangular part of A is
                    124: *>          not referenced.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in] LDA
                    128: *> \verbatim
                    129: *>          LDA is INTEGER
                    130: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in,out] AF
                    134: *> \verbatim
1.11      bertrand  135: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
1.9       bertrand  136: *>          If FACT = 'F', then AF is an input argument and on entry
                    137: *>          contains the block diagonal matrix D and the multipliers used
                    138: *>          to obtain the factor U or L from the factorization
                    139: *>          A = U*D*U**T or A = L*D*L**T as computed by DSYTRF.
                    140: *>
                    141: *>          If FACT = 'N', then AF is an output argument and on exit
                    142: *>          returns the block diagonal matrix D and the multipliers used
                    143: *>          to obtain the factor U or L from the factorization
                    144: *>          A = U*D*U**T or A = L*D*L**T.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[in] LDAF
                    148: *> \verbatim
                    149: *>          LDAF is INTEGER
                    150: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[in,out] IPIV
                    154: *> \verbatim
1.11      bertrand  155: *>          IPIV is INTEGER array, dimension (N)
1.9       bertrand  156: *>          If FACT = 'F', then IPIV is an input argument and on entry
                    157: *>          contains details of the interchanges and the block structure
                    158: *>          of D, as determined by DSYTRF.
                    159: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                    160: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
                    161: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                    162: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                    163: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                    164: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                    165: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    166: *>
                    167: *>          If FACT = 'N', then IPIV is an output argument and on exit
                    168: *>          contains details of the interchanges and the block structure
                    169: *>          of D, as determined by DSYTRF.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[in] B
                    173: *> \verbatim
                    174: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    175: *>          The N-by-NRHS right hand side matrix B.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in] LDB
                    179: *> \verbatim
                    180: *>          LDB is INTEGER
                    181: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    182: *> \endverbatim
                    183: *>
                    184: *> \param[out] X
                    185: *> \verbatim
                    186: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    187: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[in] LDX
                    191: *> \verbatim
                    192: *>          LDX is INTEGER
                    193: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    194: *> \endverbatim
                    195: *>
                    196: *> \param[out] RCOND
                    197: *> \verbatim
                    198: *>          RCOND is DOUBLE PRECISION
                    199: *>          The estimate of the reciprocal condition number of the matrix
                    200: *>          A.  If RCOND is less than the machine precision (in
                    201: *>          particular, if RCOND = 0), the matrix is singular to working
                    202: *>          precision.  This condition is indicated by a return code of
                    203: *>          INFO > 0.
                    204: *> \endverbatim
                    205: *>
                    206: *> \param[out] FERR
                    207: *> \verbatim
                    208: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    209: *>          The estimated forward error bound for each solution vector
                    210: *>          X(j) (the j-th column of the solution matrix X).
                    211: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    212: *>          is an estimated upper bound for the magnitude of the largest
                    213: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    214: *>          largest element in X(j).  The estimate is as reliable as
                    215: *>          the estimate for RCOND, and is almost always a slight
                    216: *>          overestimate of the true error.
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[out] BERR
                    220: *> \verbatim
                    221: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    222: *>          The componentwise relative backward error of each solution
                    223: *>          vector X(j) (i.e., the smallest relative change in
                    224: *>          any element of A or B that makes X(j) an exact solution).
                    225: *> \endverbatim
                    226: *>
                    227: *> \param[out] WORK
                    228: *> \verbatim
                    229: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    230: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    231: *> \endverbatim
                    232: *>
                    233: *> \param[in] LWORK
                    234: *> \verbatim
                    235: *>          LWORK is INTEGER
                    236: *>          The length of WORK.  LWORK >= max(1,3*N), and for best
                    237: *>          performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
                    238: *>          NB is the optimal blocksize for DSYTRF.
                    239: *>
                    240: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    241: *>          only calculates the optimal size of the WORK array, returns
                    242: *>          this value as the first entry of the WORK array, and no error
                    243: *>          message related to LWORK is issued by XERBLA.
                    244: *> \endverbatim
                    245: *>
                    246: *> \param[out] IWORK
                    247: *> \verbatim
                    248: *>          IWORK is INTEGER array, dimension (N)
                    249: *> \endverbatim
                    250: *>
                    251: *> \param[out] INFO
                    252: *> \verbatim
                    253: *>          INFO is INTEGER
                    254: *>          = 0: successful exit
                    255: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    256: *>          > 0: if INFO = i, and i is
                    257: *>                <= N:  D(i,i) is exactly zero.  The factorization
                    258: *>                       has been completed but the factor D is exactly
                    259: *>                       singular, so the solution and error bounds could
                    260: *>                       not be computed. RCOND = 0 is returned.
                    261: *>                = N+1: D is nonsingular, but RCOND is less than machine
                    262: *>                       precision, meaning that the matrix is singular
                    263: *>                       to working precision.  Nevertheless, the
                    264: *>                       solution and error bounds are computed because
                    265: *>                       there are a number of situations where the
                    266: *>                       computed solution can be more accurate than the
                    267: *>                       value of RCOND would suggest.
                    268: *> \endverbatim
                    269: *
                    270: *  Authors:
                    271: *  ========
                    272: *
1.16      bertrand  273: *> \author Univ. of Tennessee
                    274: *> \author Univ. of California Berkeley
                    275: *> \author Univ. of Colorado Denver
                    276: *> \author NAG Ltd.
1.9       bertrand  277: *
                    278: *> \ingroup doubleSYsolve
                    279: *
                    280: *  =====================================================================
1.1       bertrand  281:       SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
                    282:      $                   LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK,
                    283:      $                   IWORK, INFO )
                    284: *
1.19    ! bertrand  285: *  -- LAPACK driver routine --
1.1       bertrand  286: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    287: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    288: *
                    289: *     .. Scalar Arguments ..
                    290:       CHARACTER          FACT, UPLO
                    291:       INTEGER            INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
                    292:       DOUBLE PRECISION   RCOND
                    293: *     ..
                    294: *     .. Array Arguments ..
                    295:       INTEGER            IPIV( * ), IWORK( * )
                    296:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    297:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                    298: *     ..
                    299: *
                    300: *  =====================================================================
                    301: *
                    302: *     .. Parameters ..
                    303:       DOUBLE PRECISION   ZERO
                    304:       PARAMETER          ( ZERO = 0.0D+0 )
                    305: *     ..
                    306: *     .. Local Scalars ..
                    307:       LOGICAL            LQUERY, NOFACT
                    308:       INTEGER            LWKOPT, NB
                    309:       DOUBLE PRECISION   ANORM
                    310: *     ..
                    311: *     .. External Functions ..
                    312:       LOGICAL            LSAME
                    313:       INTEGER            ILAENV
                    314:       DOUBLE PRECISION   DLAMCH, DLANSY
                    315:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
                    316: *     ..
                    317: *     .. External Subroutines ..
                    318:       EXTERNAL           DLACPY, DSYCON, DSYRFS, DSYTRF, DSYTRS, XERBLA
                    319: *     ..
                    320: *     .. Intrinsic Functions ..
                    321:       INTRINSIC          MAX
                    322: *     ..
                    323: *     .. Executable Statements ..
                    324: *
                    325: *     Test the input parameters.
                    326: *
                    327:       INFO = 0
                    328:       NOFACT = LSAME( FACT, 'N' )
                    329:       LQUERY = ( LWORK.EQ.-1 )
                    330:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
                    331:          INFO = -1
                    332:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
                    333:      $          THEN
                    334:          INFO = -2
                    335:       ELSE IF( N.LT.0 ) THEN
                    336:          INFO = -3
                    337:       ELSE IF( NRHS.LT.0 ) THEN
                    338:          INFO = -4
                    339:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    340:          INFO = -6
                    341:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    342:          INFO = -8
                    343:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    344:          INFO = -11
                    345:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    346:          INFO = -13
                    347:       ELSE IF( LWORK.LT.MAX( 1, 3*N ) .AND. .NOT.LQUERY ) THEN
                    348:          INFO = -18
                    349:       END IF
                    350: *
                    351:       IF( INFO.EQ.0 ) THEN
                    352:          LWKOPT = MAX( 1, 3*N )
                    353:          IF( NOFACT ) THEN
                    354:             NB = ILAENV( 1, 'DSYTRF', UPLO, N, -1, -1, -1 )
                    355:             LWKOPT = MAX( LWKOPT, N*NB )
                    356:          END IF
                    357:          WORK( 1 ) = LWKOPT
                    358:       END IF
                    359: *
                    360:       IF( INFO.NE.0 ) THEN
                    361:          CALL XERBLA( 'DSYSVX', -INFO )
                    362:          RETURN
                    363:       ELSE IF( LQUERY ) THEN
                    364:          RETURN
                    365:       END IF
                    366: *
                    367:       IF( NOFACT ) THEN
                    368: *
1.8       bertrand  369: *        Compute the factorization A = U*D*U**T or A = L*D*L**T.
1.1       bertrand  370: *
                    371:          CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
                    372:          CALL DSYTRF( UPLO, N, AF, LDAF, IPIV, WORK, LWORK, INFO )
                    373: *
                    374: *        Return if INFO is non-zero.
                    375: *
                    376:          IF( INFO.GT.0 )THEN
                    377:             RCOND = ZERO
                    378:             RETURN
                    379:          END IF
                    380:       END IF
                    381: *
                    382: *     Compute the norm of the matrix A.
                    383: *
                    384:       ANORM = DLANSY( 'I', UPLO, N, A, LDA, WORK )
                    385: *
                    386: *     Compute the reciprocal of the condition number of A.
                    387: *
                    388:       CALL DSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK, IWORK,
                    389:      $             INFO )
                    390: *
                    391: *     Compute the solution vectors X.
                    392: *
                    393:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    394:       CALL DSYTRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
                    395: *
                    396: *     Use iterative refinement to improve the computed solutions and
                    397: *     compute error bounds and backward error estimates for them.
                    398: *
                    399:       CALL DSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
                    400:      $             LDX, FERR, BERR, WORK, IWORK, INFO )
                    401: *
                    402: *     Set INFO = N+1 if the matrix is singular to working precision.
                    403: *
                    404:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    405:      $   INFO = N + 1
                    406: *
                    407:       WORK( 1 ) = LWKOPT
                    408: *
                    409:       RETURN
                    410: *
                    411: *     End of DSYSVX
                    412: *
                    413:       END

CVSweb interface <joel.bertrand@systella.fr>