File:  [local] / rpl / lapack / lapack / dsyevr.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:48 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
    2:      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
    3:      $                   IWORK, LIWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
   13:       DOUBLE PRECISION   ABSTOL, VL, VU
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            ISUPPZ( * ), IWORK( * )
   17:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  DSYEVR computes selected eigenvalues and, optionally, eigenvectors
   24: *  of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
   25: *  selected by specifying either a range of values or a range of
   26: *  indices for the desired eigenvalues.
   27: *
   28: *  DSYEVR first reduces the matrix A to tridiagonal form T with a call
   29: *  to DSYTRD.  Then, whenever possible, DSYEVR calls DSTEMR to compute
   30: *  the eigenspectrum using Relatively Robust Representations.  DSTEMR
   31: *  computes eigenvalues by the dqds algorithm, while orthogonal
   32: *  eigenvectors are computed from various "good" L D L^T representations
   33: *  (also known as Relatively Robust Representations). Gram-Schmidt
   34: *  orthogonalization is avoided as far as possible. More specifically,
   35: *  the various steps of the algorithm are as follows.
   36: *
   37: *  For each unreduced block (submatrix) of T,
   38: *     (a) Compute T - sigma I  = L D L^T, so that L and D
   39: *         define all the wanted eigenvalues to high relative accuracy.
   40: *         This means that small relative changes in the entries of D and L
   41: *         cause only small relative changes in the eigenvalues and
   42: *         eigenvectors. The standard (unfactored) representation of the
   43: *         tridiagonal matrix T does not have this property in general.
   44: *     (b) Compute the eigenvalues to suitable accuracy.
   45: *         If the eigenvectors are desired, the algorithm attains full
   46: *         accuracy of the computed eigenvalues only right before
   47: *         the corresponding vectors have to be computed, see steps c) and d).
   48: *     (c) For each cluster of close eigenvalues, select a new
   49: *         shift close to the cluster, find a new factorization, and refine
   50: *         the shifted eigenvalues to suitable accuracy.
   51: *     (d) For each eigenvalue with a large enough relative separation compute
   52: *         the corresponding eigenvector by forming a rank revealing twisted
   53: *         factorization. Go back to (c) for any clusters that remain.
   54: *
   55: *  The desired accuracy of the output can be specified by the input
   56: *  parameter ABSTOL.
   57: *
   58: *  For more details, see DSTEMR's documentation and:
   59: *  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   60: *    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   61: *    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   62: *  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   63: *    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   64: *    2004.  Also LAPACK Working Note 154.
   65: *  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   66: *    tridiagonal eigenvalue/eigenvector problem",
   67: *    Computer Science Division Technical Report No. UCB/CSD-97-971,
   68: *    UC Berkeley, May 1997.
   69: *
   70: *
   71: *  Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested
   72: *  on machines which conform to the ieee-754 floating point standard.
   73: *  DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and
   74: *  when partial spectrum requests are made.
   75: *
   76: *  Normal execution of DSTEMR may create NaNs and infinities and
   77: *  hence may abort due to a floating point exception in environments
   78: *  which do not handle NaNs and infinities in the ieee standard default
   79: *  manner.
   80: *
   81: *  Arguments
   82: *  =========
   83: *
   84: *  JOBZ    (input) CHARACTER*1
   85: *          = 'N':  Compute eigenvalues only;
   86: *          = 'V':  Compute eigenvalues and eigenvectors.
   87: *
   88: *  RANGE   (input) CHARACTER*1
   89: *          = 'A': all eigenvalues will be found.
   90: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   91: *                 will be found.
   92: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   93: ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
   94: ********** DSTEIN are called
   95: *
   96: *  UPLO    (input) CHARACTER*1
   97: *          = 'U':  Upper triangle of A is stored;
   98: *          = 'L':  Lower triangle of A is stored.
   99: *
  100: *  N       (input) INTEGER
  101: *          The order of the matrix A.  N >= 0.
  102: *
  103: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
  104: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
  105: *          leading N-by-N upper triangular part of A contains the
  106: *          upper triangular part of the matrix A.  If UPLO = 'L',
  107: *          the leading N-by-N lower triangular part of A contains
  108: *          the lower triangular part of the matrix A.
  109: *          On exit, the lower triangle (if UPLO='L') or the upper
  110: *          triangle (if UPLO='U') of A, including the diagonal, is
  111: *          destroyed.
  112: *
  113: *  LDA     (input) INTEGER
  114: *          The leading dimension of the array A.  LDA >= max(1,N).
  115: *
  116: *  VL      (input) DOUBLE PRECISION
  117: *  VU      (input) DOUBLE PRECISION
  118: *          If RANGE='V', the lower and upper bounds of the interval to
  119: *          be searched for eigenvalues. VL < VU.
  120: *          Not referenced if RANGE = 'A' or 'I'.
  121: *
  122: *  IL      (input) INTEGER
  123: *  IU      (input) INTEGER
  124: *          If RANGE='I', the indices (in ascending order) of the
  125: *          smallest and largest eigenvalues to be returned.
  126: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  127: *          Not referenced if RANGE = 'A' or 'V'.
  128: *
  129: *  ABSTOL  (input) DOUBLE PRECISION
  130: *          The absolute error tolerance for the eigenvalues.
  131: *          An approximate eigenvalue is accepted as converged
  132: *          when it is determined to lie in an interval [a,b]
  133: *          of width less than or equal to
  134: *
  135: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
  136: *
  137: *          where EPS is the machine precision.  If ABSTOL is less than
  138: *          or equal to zero, then  EPS*|T|  will be used in its place,
  139: *          where |T| is the 1-norm of the tridiagonal matrix obtained
  140: *          by reducing A to tridiagonal form.
  141: *
  142: *          See "Computing Small Singular Values of Bidiagonal Matrices
  143: *          with Guaranteed High Relative Accuracy," by Demmel and
  144: *          Kahan, LAPACK Working Note #3.
  145: *
  146: *          If high relative accuracy is important, set ABSTOL to
  147: *          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
  148: *          eigenvalues are computed to high relative accuracy when
  149: *          possible in future releases.  The current code does not
  150: *          make any guarantees about high relative accuracy, but
  151: *          future releases will. See J. Barlow and J. Demmel,
  152: *          "Computing Accurate Eigensystems of Scaled Diagonally
  153: *          Dominant Matrices", LAPACK Working Note #7, for a discussion
  154: *          of which matrices define their eigenvalues to high relative
  155: *          accuracy.
  156: *
  157: *  M       (output) INTEGER
  158: *          The total number of eigenvalues found.  0 <= M <= N.
  159: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  160: *
  161: *  W       (output) DOUBLE PRECISION array, dimension (N)
  162: *          The first M elements contain the selected eigenvalues in
  163: *          ascending order.
  164: *
  165: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  166: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  167: *          contain the orthonormal eigenvectors of the matrix A
  168: *          corresponding to the selected eigenvalues, with the i-th
  169: *          column of Z holding the eigenvector associated with W(i).
  170: *          If JOBZ = 'N', then Z is not referenced.
  171: *          Note: the user must ensure that at least max(1,M) columns are
  172: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  173: *          is not known in advance and an upper bound must be used.
  174: *          Supplying N columns is always safe.
  175: *
  176: *  LDZ     (input) INTEGER
  177: *          The leading dimension of the array Z.  LDZ >= 1, and if
  178: *          JOBZ = 'V', LDZ >= max(1,N).
  179: *
  180: *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
  181: *          The support of the eigenvectors in Z, i.e., the indices
  182: *          indicating the nonzero elements in Z. The i-th eigenvector
  183: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  184: *          ISUPPZ( 2*i ).
  185: ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
  186: *
  187: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  188: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  189: *
  190: *  LWORK   (input) INTEGER
  191: *          The dimension of the array WORK.  LWORK >= max(1,26*N).
  192: *          For optimal efficiency, LWORK >= (NB+6)*N,
  193: *          where NB is the max of the blocksize for DSYTRD and DORMTR
  194: *          returned by ILAENV.
  195: *
  196: *          If LWORK = -1, then a workspace query is assumed; the routine
  197: *          only calculates the optimal size of the WORK array, returns
  198: *          this value as the first entry of the WORK array, and no error
  199: *          message related to LWORK is issued by XERBLA.
  200: *
  201: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
  202: *          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
  203: *
  204: *  LIWORK  (input) INTEGER
  205: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
  206: *
  207: *          If LIWORK = -1, then a workspace query is assumed; the
  208: *          routine only calculates the optimal size of the IWORK array,
  209: *          returns this value as the first entry of the IWORK array, and
  210: *          no error message related to LIWORK is issued by XERBLA.
  211: *
  212: *  INFO    (output) INTEGER
  213: *          = 0:  successful exit
  214: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  215: *          > 0:  Internal error
  216: *
  217: *  Further Details
  218: *  ===============
  219: *
  220: *  Based on contributions by
  221: *     Inderjit Dhillon, IBM Almaden, USA
  222: *     Osni Marques, LBNL/NERSC, USA
  223: *     Ken Stanley, Computer Science Division, University of
  224: *       California at Berkeley, USA
  225: *     Jason Riedy, Computer Science Division, University of
  226: *       California at Berkeley, USA
  227: *
  228: * =====================================================================
  229: *
  230: *     .. Parameters ..
  231:       DOUBLE PRECISION   ZERO, ONE, TWO
  232:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  233: *     ..
  234: *     .. Local Scalars ..
  235:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, VALEIG, WANTZ,
  236:      $                   TRYRAC
  237:       CHARACTER          ORDER
  238:       INTEGER            I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
  239:      $                   INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU,
  240:      $                   INDWK, INDWKN, ISCALE, J, JJ, LIWMIN,
  241:      $                   LLWORK, LLWRKN, LWKOPT, LWMIN, NB, NSPLIT
  242:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  243:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  244: *     ..
  245: *     .. External Functions ..
  246:       LOGICAL            LSAME
  247:       INTEGER            ILAENV
  248:       DOUBLE PRECISION   DLAMCH, DLANSY
  249:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
  250: *     ..
  251: *     .. External Subroutines ..
  252:       EXTERNAL           DCOPY, DORMTR, DSCAL, DSTEBZ, DSTEMR, DSTEIN,
  253:      $                   DSTERF, DSWAP, DSYTRD, XERBLA
  254: *     ..
  255: *     .. Intrinsic Functions ..
  256:       INTRINSIC          MAX, MIN, SQRT
  257: *     ..
  258: *     .. Executable Statements ..
  259: *
  260: *     Test the input parameters.
  261: *
  262:       IEEEOK = ILAENV( 10, 'DSYEVR', 'N', 1, 2, 3, 4 )
  263: *
  264:       LOWER = LSAME( UPLO, 'L' )
  265:       WANTZ = LSAME( JOBZ, 'V' )
  266:       ALLEIG = LSAME( RANGE, 'A' )
  267:       VALEIG = LSAME( RANGE, 'V' )
  268:       INDEIG = LSAME( RANGE, 'I' )
  269: *
  270:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
  271: *
  272:       LWMIN = MAX( 1, 26*N )
  273:       LIWMIN = MAX( 1, 10*N )
  274: *
  275:       INFO = 0
  276:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  277:          INFO = -1
  278:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  279:          INFO = -2
  280:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  281:          INFO = -3
  282:       ELSE IF( N.LT.0 ) THEN
  283:          INFO = -4
  284:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  285:          INFO = -6
  286:       ELSE
  287:          IF( VALEIG ) THEN
  288:             IF( N.GT.0 .AND. VU.LE.VL )
  289:      $         INFO = -8
  290:          ELSE IF( INDEIG ) THEN
  291:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  292:                INFO = -9
  293:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  294:                INFO = -10
  295:             END IF
  296:          END IF
  297:       END IF
  298:       IF( INFO.EQ.0 ) THEN
  299:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  300:             INFO = -15
  301:          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  302:             INFO = -18
  303:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  304:             INFO = -20
  305:          END IF
  306:       END IF
  307: *
  308:       IF( INFO.EQ.0 ) THEN
  309:          NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
  310:          NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
  311:          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
  312:          WORK( 1 ) = LWKOPT
  313:          IWORK( 1 ) = LIWMIN
  314:       END IF
  315: *
  316:       IF( INFO.NE.0 ) THEN
  317:          CALL XERBLA( 'DSYEVR', -INFO )
  318:          RETURN
  319:       ELSE IF( LQUERY ) THEN
  320:          RETURN
  321:       END IF
  322: *
  323: *     Quick return if possible
  324: *
  325:       M = 0
  326:       IF( N.EQ.0 ) THEN
  327:          WORK( 1 ) = 1
  328:          RETURN
  329:       END IF
  330: *
  331:       IF( N.EQ.1 ) THEN
  332:          WORK( 1 ) = 7
  333:          IF( ALLEIG .OR. INDEIG ) THEN
  334:             M = 1
  335:             W( 1 ) = A( 1, 1 )
  336:          ELSE
  337:             IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
  338:                M = 1
  339:                W( 1 ) = A( 1, 1 )
  340:             END IF
  341:          END IF
  342:          IF( WANTZ )
  343:      $      Z( 1, 1 ) = ONE
  344:          RETURN
  345:       END IF
  346: *
  347: *     Get machine constants.
  348: *
  349:       SAFMIN = DLAMCH( 'Safe minimum' )
  350:       EPS = DLAMCH( 'Precision' )
  351:       SMLNUM = SAFMIN / EPS
  352:       BIGNUM = ONE / SMLNUM
  353:       RMIN = SQRT( SMLNUM )
  354:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  355: *
  356: *     Scale matrix to allowable range, if necessary.
  357: *
  358:       ISCALE = 0
  359:       ABSTLL = ABSTOL
  360:       VLL = VL
  361:       VUU = VU
  362:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
  363:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  364:          ISCALE = 1
  365:          SIGMA = RMIN / ANRM
  366:       ELSE IF( ANRM.GT.RMAX ) THEN
  367:          ISCALE = 1
  368:          SIGMA = RMAX / ANRM
  369:       END IF
  370:       IF( ISCALE.EQ.1 ) THEN
  371:          IF( LOWER ) THEN
  372:             DO 10 J = 1, N
  373:                CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  374:    10       CONTINUE
  375:          ELSE
  376:             DO 20 J = 1, N
  377:                CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
  378:    20       CONTINUE
  379:          END IF
  380:          IF( ABSTOL.GT.0 )
  381:      $      ABSTLL = ABSTOL*SIGMA
  382:          IF( VALEIG ) THEN
  383:             VLL = VL*SIGMA
  384:             VUU = VU*SIGMA
  385:          END IF
  386:       END IF
  387: 
  388: *     Initialize indices into workspaces.  Note: The IWORK indices are
  389: *     used only if DSTERF or DSTEMR fail.
  390: 
  391: *     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
  392: *     elementary reflectors used in DSYTRD.
  393:       INDTAU = 1
  394: *     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
  395:       INDD = INDTAU + N
  396: *     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
  397: *     tridiagonal matrix from DSYTRD.
  398:       INDE = INDD + N
  399: *     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
  400: *     -written by DSTEMR (the DSTERF path copies the diagonal to W).
  401:       INDDD = INDE + N
  402: *     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
  403: *     -written while computing the eigenvalues in DSTERF and DSTEMR.
  404:       INDEE = INDDD + N
  405: *     INDWK is the starting offset of the left-over workspace, and
  406: *     LLWORK is the remaining workspace size.
  407:       INDWK = INDEE + N
  408:       LLWORK = LWORK - INDWK + 1
  409: 
  410: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
  411: *     stores the block indices of each of the M<=N eigenvalues.
  412:       INDIBL = 1
  413: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
  414: *     stores the starting and finishing indices of each block.
  415:       INDISP = INDIBL + N
  416: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
  417: *     that corresponding to eigenvectors that fail to converge in
  418: *     DSTEIN.  This information is discarded; if any fail, the driver
  419: *     returns INFO > 0.
  420:       INDIFL = INDISP + N
  421: *     INDIWO is the offset of the remaining integer workspace.
  422:       INDIWO = INDISP + N
  423: 
  424: *
  425: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
  426: *
  427:       CALL DSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
  428:      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
  429: *
  430: *     If all eigenvalues are desired
  431: *     then call DSTERF or DSTEMR and DORMTR.
  432: *
  433:       IF( ( ALLEIG .OR. ( INDEIG .AND. IL.EQ.1 .AND. IU.EQ.N ) ) .AND.
  434:      $    IEEEOK.EQ.1 ) THEN
  435:          IF( .NOT.WANTZ ) THEN
  436:             CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  437:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  438:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  439:          ELSE
  440:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  441:             CALL DCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
  442: *
  443:             IF (ABSTOL .LE. TWO*N*EPS) THEN
  444:                TRYRAC = .TRUE.
  445:             ELSE
  446:                TRYRAC = .FALSE.
  447:             END IF
  448:             CALL DSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ),
  449:      $                   VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ,
  450:      $                   TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK,
  451:      $                   INFO )
  452: *
  453: *
  454: *
  455: *        Apply orthogonal matrix used in reduction to tridiagonal
  456: *        form to eigenvectors returned by DSTEIN.
  457: *
  458:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
  459:                INDWKN = INDE
  460:                LLWRKN = LWORK - INDWKN + 1
  461:                CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA,
  462:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
  463:      $                      LLWRKN, IINFO )
  464:             END IF
  465:          END IF
  466: *
  467: *
  468:          IF( INFO.EQ.0 ) THEN
  469: *           Everything worked.  Skip DSTEBZ/DSTEIN.  IWORK(:) are
  470: *           undefined.
  471:             M = N
  472:             GO TO 30
  473:          END IF
  474:          INFO = 0
  475:       END IF
  476: *
  477: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
  478: *     Also call DSTEBZ and DSTEIN if DSTEMR fails.
  479: *
  480:       IF( WANTZ ) THEN
  481:          ORDER = 'B'
  482:       ELSE
  483:          ORDER = 'E'
  484:       END IF
  485: 
  486:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  487:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  488:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ),
  489:      $             IWORK( INDIWO ), INFO )
  490: *
  491:       IF( WANTZ ) THEN
  492:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  493:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  494:      $                WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ),
  495:      $                INFO )
  496: *
  497: *        Apply orthogonal matrix used in reduction to tridiagonal
  498: *        form to eigenvectors returned by DSTEIN.
  499: *
  500:          INDWKN = INDE
  501:          LLWRKN = LWORK - INDWKN + 1
  502:          CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  503:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
  504:       END IF
  505: *
  506: *     If matrix was scaled, then rescale eigenvalues appropriately.
  507: *
  508: *  Jump here if DSTEMR/DSTEIN succeeded.
  509:    30 CONTINUE
  510:       IF( ISCALE.EQ.1 ) THEN
  511:          IF( INFO.EQ.0 ) THEN
  512:             IMAX = M
  513:          ELSE
  514:             IMAX = INFO - 1
  515:          END IF
  516:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  517:       END IF
  518: *
  519: *     If eigenvalues are not in order, then sort them, along with
  520: *     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.
  521: *     It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do
  522: *     not return this detailed information to the user.
  523: *
  524:       IF( WANTZ ) THEN
  525:          DO 50 J = 1, M - 1
  526:             I = 0
  527:             TMP1 = W( J )
  528:             DO 40 JJ = J + 1, M
  529:                IF( W( JJ ).LT.TMP1 ) THEN
  530:                   I = JJ
  531:                   TMP1 = W( JJ )
  532:                END IF
  533:    40       CONTINUE
  534: *
  535:             IF( I.NE.0 ) THEN
  536:                W( I ) = W( J )
  537:                W( J ) = TMP1
  538:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  539:             END IF
  540:    50    CONTINUE
  541:       END IF
  542: *
  543: *     Set WORK(1) to optimal workspace size.
  544: *
  545:       WORK( 1 ) = LWKOPT
  546:       IWORK( 1 ) = LIWMIN
  547: *
  548:       RETURN
  549: *
  550: *     End of DSYEVR
  551: *
  552:       END

CVSweb interface <joel.bertrand@systella.fr>