Annotation of rpl/lapack/lapack/dsyevr.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
                      2:      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
                      3:      $                   IWORK, LIWORK, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
                     13:       DOUBLE PRECISION   ABSTOL, VL, VU
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            ISUPPZ( * ), IWORK( * )
                     17:       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  DSYEVR computes selected eigenvalues and, optionally, eigenvectors
                     24: *  of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
                     25: *  selected by specifying either a range of values or a range of
                     26: *  indices for the desired eigenvalues.
                     27: *
                     28: *  DSYEVR first reduces the matrix A to tridiagonal form T with a call
                     29: *  to DSYTRD.  Then, whenever possible, DSYEVR calls DSTEMR to compute
                     30: *  the eigenspectrum using Relatively Robust Representations.  DSTEMR
                     31: *  computes eigenvalues by the dqds algorithm, while orthogonal
                     32: *  eigenvectors are computed from various "good" L D L^T representations
                     33: *  (also known as Relatively Robust Representations). Gram-Schmidt
                     34: *  orthogonalization is avoided as far as possible. More specifically,
                     35: *  the various steps of the algorithm are as follows.
                     36: *
                     37: *  For each unreduced block (submatrix) of T,
                     38: *     (a) Compute T - sigma I  = L D L^T, so that L and D
                     39: *         define all the wanted eigenvalues to high relative accuracy.
                     40: *         This means that small relative changes in the entries of D and L
                     41: *         cause only small relative changes in the eigenvalues and
                     42: *         eigenvectors. The standard (unfactored) representation of the
                     43: *         tridiagonal matrix T does not have this property in general.
                     44: *     (b) Compute the eigenvalues to suitable accuracy.
                     45: *         If the eigenvectors are desired, the algorithm attains full
                     46: *         accuracy of the computed eigenvalues only right before
                     47: *         the corresponding vectors have to be computed, see steps c) and d).
                     48: *     (c) For each cluster of close eigenvalues, select a new
                     49: *         shift close to the cluster, find a new factorization, and refine
                     50: *         the shifted eigenvalues to suitable accuracy.
                     51: *     (d) For each eigenvalue with a large enough relative separation compute
                     52: *         the corresponding eigenvector by forming a rank revealing twisted
                     53: *         factorization. Go back to (c) for any clusters that remain.
                     54: *
                     55: *  The desired accuracy of the output can be specified by the input
                     56: *  parameter ABSTOL.
                     57: *
                     58: *  For more details, see DSTEMR's documentation and:
                     59: *  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
                     60: *    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
                     61: *    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
                     62: *  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
                     63: *    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
                     64: *    2004.  Also LAPACK Working Note 154.
                     65: *  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
                     66: *    tridiagonal eigenvalue/eigenvector problem",
                     67: *    Computer Science Division Technical Report No. UCB/CSD-97-971,
                     68: *    UC Berkeley, May 1997.
                     69: *
                     70: *
                     71: *  Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested
                     72: *  on machines which conform to the ieee-754 floating point standard.
                     73: *  DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and
                     74: *  when partial spectrum requests are made.
                     75: *
                     76: *  Normal execution of DSTEMR may create NaNs and infinities and
                     77: *  hence may abort due to a floating point exception in environments
                     78: *  which do not handle NaNs and infinities in the ieee standard default
                     79: *  manner.
                     80: *
                     81: *  Arguments
                     82: *  =========
                     83: *
                     84: *  JOBZ    (input) CHARACTER*1
                     85: *          = 'N':  Compute eigenvalues only;
                     86: *          = 'V':  Compute eigenvalues and eigenvectors.
                     87: *
                     88: *  RANGE   (input) CHARACTER*1
                     89: *          = 'A': all eigenvalues will be found.
                     90: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     91: *                 will be found.
                     92: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     93: ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
                     94: ********** DSTEIN are called
                     95: *
                     96: *  UPLO    (input) CHARACTER*1
                     97: *          = 'U':  Upper triangle of A is stored;
                     98: *          = 'L':  Lower triangle of A is stored.
                     99: *
                    100: *  N       (input) INTEGER
                    101: *          The order of the matrix A.  N >= 0.
                    102: *
                    103: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
                    104: *          On entry, the symmetric matrix A.  If UPLO = 'U', the
                    105: *          leading N-by-N upper triangular part of A contains the
                    106: *          upper triangular part of the matrix A.  If UPLO = 'L',
                    107: *          the leading N-by-N lower triangular part of A contains
                    108: *          the lower triangular part of the matrix A.
                    109: *          On exit, the lower triangle (if UPLO='L') or the upper
                    110: *          triangle (if UPLO='U') of A, including the diagonal, is
                    111: *          destroyed.
                    112: *
                    113: *  LDA     (input) INTEGER
                    114: *          The leading dimension of the array A.  LDA >= max(1,N).
                    115: *
                    116: *  VL      (input) DOUBLE PRECISION
                    117: *  VU      (input) DOUBLE PRECISION
                    118: *          If RANGE='V', the lower and upper bounds of the interval to
                    119: *          be searched for eigenvalues. VL < VU.
                    120: *          Not referenced if RANGE = 'A' or 'I'.
                    121: *
                    122: *  IL      (input) INTEGER
                    123: *  IU      (input) INTEGER
                    124: *          If RANGE='I', the indices (in ascending order) of the
                    125: *          smallest and largest eigenvalues to be returned.
                    126: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    127: *          Not referenced if RANGE = 'A' or 'V'.
                    128: *
                    129: *  ABSTOL  (input) DOUBLE PRECISION
                    130: *          The absolute error tolerance for the eigenvalues.
                    131: *          An approximate eigenvalue is accepted as converged
                    132: *          when it is determined to lie in an interval [a,b]
                    133: *          of width less than or equal to
                    134: *
                    135: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    136: *
                    137: *          where EPS is the machine precision.  If ABSTOL is less than
                    138: *          or equal to zero, then  EPS*|T|  will be used in its place,
                    139: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                    140: *          by reducing A to tridiagonal form.
                    141: *
                    142: *          See "Computing Small Singular Values of Bidiagonal Matrices
                    143: *          with Guaranteed High Relative Accuracy," by Demmel and
                    144: *          Kahan, LAPACK Working Note #3.
                    145: *
                    146: *          If high relative accuracy is important, set ABSTOL to
                    147: *          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
                    148: *          eigenvalues are computed to high relative accuracy when
                    149: *          possible in future releases.  The current code does not
                    150: *          make any guarantees about high relative accuracy, but
                    151: *          future releases will. See J. Barlow and J. Demmel,
                    152: *          "Computing Accurate Eigensystems of Scaled Diagonally
                    153: *          Dominant Matrices", LAPACK Working Note #7, for a discussion
                    154: *          of which matrices define their eigenvalues to high relative
                    155: *          accuracy.
                    156: *
                    157: *  M       (output) INTEGER
                    158: *          The total number of eigenvalues found.  0 <= M <= N.
                    159: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    160: *
                    161: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    162: *          The first M elements contain the selected eigenvalues in
                    163: *          ascending order.
                    164: *
                    165: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
                    166: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    167: *          contain the orthonormal eigenvectors of the matrix A
                    168: *          corresponding to the selected eigenvalues, with the i-th
                    169: *          column of Z holding the eigenvector associated with W(i).
                    170: *          If JOBZ = 'N', then Z is not referenced.
                    171: *          Note: the user must ensure that at least max(1,M) columns are
                    172: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    173: *          is not known in advance and an upper bound must be used.
                    174: *          Supplying N columns is always safe.
                    175: *
                    176: *  LDZ     (input) INTEGER
                    177: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    178: *          JOBZ = 'V', LDZ >= max(1,N).
                    179: *
                    180: *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
                    181: *          The support of the eigenvectors in Z, i.e., the indices
                    182: *          indicating the nonzero elements in Z. The i-th eigenvector
                    183: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
                    184: *          ISUPPZ( 2*i ).
                    185: ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
                    186: *
                    187: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    188: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    189: *
                    190: *  LWORK   (input) INTEGER
                    191: *          The dimension of the array WORK.  LWORK >= max(1,26*N).
                    192: *          For optimal efficiency, LWORK >= (NB+6)*N,
                    193: *          where NB is the max of the blocksize for DSYTRD and DORMTR
                    194: *          returned by ILAENV.
                    195: *
                    196: *          If LWORK = -1, then a workspace query is assumed; the routine
                    197: *          only calculates the optimal size of the WORK array, returns
                    198: *          this value as the first entry of the WORK array, and no error
                    199: *          message related to LWORK is issued by XERBLA.
                    200: *
                    201: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                    202: *          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
                    203: *
                    204: *  LIWORK  (input) INTEGER
                    205: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
                    206: *
                    207: *          If LIWORK = -1, then a workspace query is assumed; the
                    208: *          routine only calculates the optimal size of the IWORK array,
                    209: *          returns this value as the first entry of the IWORK array, and
                    210: *          no error message related to LIWORK is issued by XERBLA.
                    211: *
                    212: *  INFO    (output) INTEGER
                    213: *          = 0:  successful exit
                    214: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    215: *          > 0:  Internal error
                    216: *
                    217: *  Further Details
                    218: *  ===============
                    219: *
                    220: *  Based on contributions by
                    221: *     Inderjit Dhillon, IBM Almaden, USA
                    222: *     Osni Marques, LBNL/NERSC, USA
                    223: *     Ken Stanley, Computer Science Division, University of
                    224: *       California at Berkeley, USA
                    225: *     Jason Riedy, Computer Science Division, University of
                    226: *       California at Berkeley, USA
                    227: *
                    228: * =====================================================================
                    229: *
                    230: *     .. Parameters ..
                    231:       DOUBLE PRECISION   ZERO, ONE, TWO
                    232:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
                    233: *     ..
                    234: *     .. Local Scalars ..
                    235:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, VALEIG, WANTZ,
                    236:      $                   TRYRAC
                    237:       CHARACTER          ORDER
                    238:       INTEGER            I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
                    239:      $                   INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU,
                    240:      $                   INDWK, INDWKN, ISCALE, J, JJ, LIWMIN,
                    241:      $                   LLWORK, LLWRKN, LWKOPT, LWMIN, NB, NSPLIT
                    242:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    243:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    244: *     ..
                    245: *     .. External Functions ..
                    246:       LOGICAL            LSAME
                    247:       INTEGER            ILAENV
                    248:       DOUBLE PRECISION   DLAMCH, DLANSY
                    249:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
                    250: *     ..
                    251: *     .. External Subroutines ..
                    252:       EXTERNAL           DCOPY, DORMTR, DSCAL, DSTEBZ, DSTEMR, DSTEIN,
                    253:      $                   DSTERF, DSWAP, DSYTRD, XERBLA
                    254: *     ..
                    255: *     .. Intrinsic Functions ..
                    256:       INTRINSIC          MAX, MIN, SQRT
                    257: *     ..
                    258: *     .. Executable Statements ..
                    259: *
                    260: *     Test the input parameters.
                    261: *
                    262:       IEEEOK = ILAENV( 10, 'DSYEVR', 'N', 1, 2, 3, 4 )
                    263: *
                    264:       LOWER = LSAME( UPLO, 'L' )
                    265:       WANTZ = LSAME( JOBZ, 'V' )
                    266:       ALLEIG = LSAME( RANGE, 'A' )
                    267:       VALEIG = LSAME( RANGE, 'V' )
                    268:       INDEIG = LSAME( RANGE, 'I' )
                    269: *
                    270:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
                    271: *
                    272:       LWMIN = MAX( 1, 26*N )
                    273:       LIWMIN = MAX( 1, 10*N )
                    274: *
                    275:       INFO = 0
                    276:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    277:          INFO = -1
                    278:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    279:          INFO = -2
                    280:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    281:          INFO = -3
                    282:       ELSE IF( N.LT.0 ) THEN
                    283:          INFO = -4
                    284:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    285:          INFO = -6
                    286:       ELSE
                    287:          IF( VALEIG ) THEN
                    288:             IF( N.GT.0 .AND. VU.LE.VL )
                    289:      $         INFO = -8
                    290:          ELSE IF( INDEIG ) THEN
                    291:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    292:                INFO = -9
                    293:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    294:                INFO = -10
                    295:             END IF
                    296:          END IF
                    297:       END IF
                    298:       IF( INFO.EQ.0 ) THEN
                    299:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    300:             INFO = -15
                    301:          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    302:             INFO = -18
                    303:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    304:             INFO = -20
                    305:          END IF
                    306:       END IF
                    307: *
                    308:       IF( INFO.EQ.0 ) THEN
                    309:          NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
                    310:          NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
                    311:          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
                    312:          WORK( 1 ) = LWKOPT
                    313:          IWORK( 1 ) = LIWMIN
                    314:       END IF
                    315: *
                    316:       IF( INFO.NE.0 ) THEN
                    317:          CALL XERBLA( 'DSYEVR', -INFO )
                    318:          RETURN
                    319:       ELSE IF( LQUERY ) THEN
                    320:          RETURN
                    321:       END IF
                    322: *
                    323: *     Quick return if possible
                    324: *
                    325:       M = 0
                    326:       IF( N.EQ.0 ) THEN
                    327:          WORK( 1 ) = 1
                    328:          RETURN
                    329:       END IF
                    330: *
                    331:       IF( N.EQ.1 ) THEN
                    332:          WORK( 1 ) = 7
                    333:          IF( ALLEIG .OR. INDEIG ) THEN
                    334:             M = 1
                    335:             W( 1 ) = A( 1, 1 )
                    336:          ELSE
                    337:             IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
                    338:                M = 1
                    339:                W( 1 ) = A( 1, 1 )
                    340:             END IF
                    341:          END IF
                    342:          IF( WANTZ )
                    343:      $      Z( 1, 1 ) = ONE
                    344:          RETURN
                    345:       END IF
                    346: *
                    347: *     Get machine constants.
                    348: *
                    349:       SAFMIN = DLAMCH( 'Safe minimum' )
                    350:       EPS = DLAMCH( 'Precision' )
                    351:       SMLNUM = SAFMIN / EPS
                    352:       BIGNUM = ONE / SMLNUM
                    353:       RMIN = SQRT( SMLNUM )
                    354:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    355: *
                    356: *     Scale matrix to allowable range, if necessary.
                    357: *
                    358:       ISCALE = 0
                    359:       ABSTLL = ABSTOL
                    360:       VLL = VL
                    361:       VUU = VU
                    362:       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
                    363:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    364:          ISCALE = 1
                    365:          SIGMA = RMIN / ANRM
                    366:       ELSE IF( ANRM.GT.RMAX ) THEN
                    367:          ISCALE = 1
                    368:          SIGMA = RMAX / ANRM
                    369:       END IF
                    370:       IF( ISCALE.EQ.1 ) THEN
                    371:          IF( LOWER ) THEN
                    372:             DO 10 J = 1, N
                    373:                CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
                    374:    10       CONTINUE
                    375:          ELSE
                    376:             DO 20 J = 1, N
                    377:                CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
                    378:    20       CONTINUE
                    379:          END IF
                    380:          IF( ABSTOL.GT.0 )
                    381:      $      ABSTLL = ABSTOL*SIGMA
                    382:          IF( VALEIG ) THEN
                    383:             VLL = VL*SIGMA
                    384:             VUU = VU*SIGMA
                    385:          END IF
                    386:       END IF
                    387: 
                    388: *     Initialize indices into workspaces.  Note: The IWORK indices are
                    389: *     used only if DSTERF or DSTEMR fail.
                    390: 
                    391: *     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
                    392: *     elementary reflectors used in DSYTRD.
                    393:       INDTAU = 1
                    394: *     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
                    395:       INDD = INDTAU + N
                    396: *     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
                    397: *     tridiagonal matrix from DSYTRD.
                    398:       INDE = INDD + N
                    399: *     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
                    400: *     -written by DSTEMR (the DSTERF path copies the diagonal to W).
                    401:       INDDD = INDE + N
                    402: *     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
                    403: *     -written while computing the eigenvalues in DSTERF and DSTEMR.
                    404:       INDEE = INDDD + N
                    405: *     INDWK is the starting offset of the left-over workspace, and
                    406: *     LLWORK is the remaining workspace size.
                    407:       INDWK = INDEE + N
                    408:       LLWORK = LWORK - INDWK + 1
                    409: 
                    410: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
                    411: *     stores the block indices of each of the M<=N eigenvalues.
                    412:       INDIBL = 1
                    413: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
                    414: *     stores the starting and finishing indices of each block.
                    415:       INDISP = INDIBL + N
                    416: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
                    417: *     that corresponding to eigenvectors that fail to converge in
                    418: *     DSTEIN.  This information is discarded; if any fail, the driver
                    419: *     returns INFO > 0.
                    420:       INDIFL = INDISP + N
                    421: *     INDIWO is the offset of the remaining integer workspace.
                    422:       INDIWO = INDISP + N
                    423: 
                    424: *
                    425: *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
                    426: *
                    427:       CALL DSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
                    428:      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
                    429: *
                    430: *     If all eigenvalues are desired
                    431: *     then call DSTERF or DSTEMR and DORMTR.
                    432: *
                    433:       IF( ( ALLEIG .OR. ( INDEIG .AND. IL.EQ.1 .AND. IU.EQ.N ) ) .AND.
                    434:      $    IEEEOK.EQ.1 ) THEN
                    435:          IF( .NOT.WANTZ ) THEN
                    436:             CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
                    437:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    438:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
                    439:          ELSE
                    440:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    441:             CALL DCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
                    442: *
                    443:             IF (ABSTOL .LE. TWO*N*EPS) THEN
                    444:                TRYRAC = .TRUE.
                    445:             ELSE
                    446:                TRYRAC = .FALSE.
                    447:             END IF
                    448:             CALL DSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ),
                    449:      $                   VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ,
                    450:      $                   TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK,
                    451:      $                   INFO )
                    452: *
                    453: *
                    454: *
                    455: *        Apply orthogonal matrix used in reduction to tridiagonal
                    456: *        form to eigenvectors returned by DSTEIN.
                    457: *
                    458:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
                    459:                INDWKN = INDE
                    460:                LLWRKN = LWORK - INDWKN + 1
                    461:                CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA,
                    462:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
                    463:      $                      LLWRKN, IINFO )
                    464:             END IF
                    465:          END IF
                    466: *
                    467: *
                    468:          IF( INFO.EQ.0 ) THEN
                    469: *           Everything worked.  Skip DSTEBZ/DSTEIN.  IWORK(:) are
                    470: *           undefined.
                    471:             M = N
                    472:             GO TO 30
                    473:          END IF
                    474:          INFO = 0
                    475:       END IF
                    476: *
                    477: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
                    478: *     Also call DSTEBZ and DSTEIN if DSTEMR fails.
                    479: *
                    480:       IF( WANTZ ) THEN
                    481:          ORDER = 'B'
                    482:       ELSE
                    483:          ORDER = 'E'
                    484:       END IF
                    485: 
                    486:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    487:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
                    488:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ),
                    489:      $             IWORK( INDIWO ), INFO )
                    490: *
                    491:       IF( WANTZ ) THEN
                    492:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
                    493:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    494:      $                WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ),
                    495:      $                INFO )
                    496: *
                    497: *        Apply orthogonal matrix used in reduction to tridiagonal
                    498: *        form to eigenvectors returned by DSTEIN.
                    499: *
                    500:          INDWKN = INDE
                    501:          LLWRKN = LWORK - INDWKN + 1
                    502:          CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
                    503:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
                    504:       END IF
                    505: *
                    506: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    507: *
                    508: *  Jump here if DSTEMR/DSTEIN succeeded.
                    509:    30 CONTINUE
                    510:       IF( ISCALE.EQ.1 ) THEN
                    511:          IF( INFO.EQ.0 ) THEN
                    512:             IMAX = M
                    513:          ELSE
                    514:             IMAX = INFO - 1
                    515:          END IF
                    516:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    517:       END IF
                    518: *
                    519: *     If eigenvalues are not in order, then sort them, along with
                    520: *     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.
                    521: *     It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do
                    522: *     not return this detailed information to the user.
                    523: *
                    524:       IF( WANTZ ) THEN
                    525:          DO 50 J = 1, M - 1
                    526:             I = 0
                    527:             TMP1 = W( J )
                    528:             DO 40 JJ = J + 1, M
                    529:                IF( W( JJ ).LT.TMP1 ) THEN
                    530:                   I = JJ
                    531:                   TMP1 = W( JJ )
                    532:                END IF
                    533:    40       CONTINUE
                    534: *
                    535:             IF( I.NE.0 ) THEN
                    536:                W( I ) = W( J )
                    537:                W( J ) = TMP1
                    538:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    539:             END IF
                    540:    50    CONTINUE
                    541:       END IF
                    542: *
                    543: *     Set WORK(1) to optimal workspace size.
                    544: *
                    545:       WORK( 1 ) = LWKOPT
                    546:       IWORK( 1 ) = LIWMIN
                    547: *
                    548:       RETURN
                    549: *
                    550: *     End of DSYEVR
                    551: *
                    552:       END

CVSweb interface <joel.bertrand@systella.fr>