File:  [local] / rpl / lapack / lapack / dsfrk.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:06 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSFRK performs a symmetric rank-k operation for matrix in RFP format.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSFRK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsfrk.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsfrk.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsfrk.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
   22: *                         C )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       DOUBLE PRECISION   ALPHA, BETA
   26: *       INTEGER            K, LDA, N
   27: *       CHARACTER          TRANS, TRANSR, UPLO
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   A( LDA, * ), C( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> Level 3 BLAS like routine for C in RFP Format.
   40: *>
   41: *> DSFRK performs one of the symmetric rank--k operations
   42: *>
   43: *>    C := alpha*A*A**T + beta*C,
   44: *>
   45: *> or
   46: *>
   47: *>    C := alpha*A**T*A + beta*C,
   48: *>
   49: *> where alpha and beta are real scalars, C is an n--by--n symmetric
   50: *> matrix and A is an n--by--k matrix in the first case and a k--by--n
   51: *> matrix in the second case.
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] TRANSR
   58: *> \verbatim
   59: *>          TRANSR is CHARACTER*1
   60: *>          = 'N':  The Normal Form of RFP A is stored;
   61: *>          = 'T':  The Transpose Form of RFP A is stored.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] UPLO
   65: *> \verbatim
   66: *>          UPLO is CHARACTER*1
   67: *>           On  entry, UPLO specifies whether the upper or lower
   68: *>           triangular part of the array C is to be referenced as
   69: *>           follows:
   70: *>
   71: *>              UPLO = 'U' or 'u'   Only the upper triangular part of C
   72: *>                                  is to be referenced.
   73: *>
   74: *>              UPLO = 'L' or 'l'   Only the lower triangular part of C
   75: *>                                  is to be referenced.
   76: *>
   77: *>           Unchanged on exit.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] TRANS
   81: *> \verbatim
   82: *>          TRANS is CHARACTER*1
   83: *>           On entry, TRANS specifies the operation to be performed as
   84: *>           follows:
   85: *>
   86: *>              TRANS = 'N' or 'n'   C := alpha*A*A**T + beta*C.
   87: *>
   88: *>              TRANS = 'T' or 't'   C := alpha*A**T*A + beta*C.
   89: *>
   90: *>           Unchanged on exit.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] N
   94: *> \verbatim
   95: *>          N is INTEGER
   96: *>           On entry, N specifies the order of the matrix C. N must be
   97: *>           at least zero.
   98: *>           Unchanged on exit.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] K
  102: *> \verbatim
  103: *>          K is INTEGER
  104: *>           On entry with TRANS = 'N' or 'n', K specifies the number
  105: *>           of  columns of the matrix A, and on entry with TRANS = 'T'
  106: *>           or 't', K specifies the number of rows of the matrix A. K
  107: *>           must be at least zero.
  108: *>           Unchanged on exit.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] ALPHA
  112: *> \verbatim
  113: *>          ALPHA is DOUBLE PRECISION
  114: *>           On entry, ALPHA specifies the scalar alpha.
  115: *>           Unchanged on exit.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] A
  119: *> \verbatim
  120: *>          A is DOUBLE PRECISION array, dimension (LDA,ka)
  121: *>           where KA
  122: *>           is K  when TRANS = 'N' or 'n', and is N otherwise. Before
  123: *>           entry with TRANS = 'N' or 'n', the leading N--by--K part of
  124: *>           the array A must contain the matrix A, otherwise the leading
  125: *>           K--by--N part of the array A must contain the matrix A.
  126: *>           Unchanged on exit.
  127: *> \endverbatim
  128: *>
  129: *> \param[in] LDA
  130: *> \verbatim
  131: *>          LDA is INTEGER
  132: *>           On entry, LDA specifies the first dimension of A as declared
  133: *>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
  134: *>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
  135: *>           be at least  max( 1, k ).
  136: *>           Unchanged on exit.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] BETA
  140: *> \verbatim
  141: *>          BETA is DOUBLE PRECISION
  142: *>           On entry, BETA specifies the scalar beta.
  143: *>           Unchanged on exit.
  144: *> \endverbatim
  145: *>
  146: *> \param[in,out] C
  147: *> \verbatim
  148: *>          C is DOUBLE PRECISION array, dimension (NT)
  149: *>           NT = N*(N+1)/2. On entry, the symmetric matrix C in RFP
  150: *>           Format. RFP Format is described by TRANSR, UPLO and N.
  151: *> \endverbatim
  152: *
  153: *  Authors:
  154: *  ========
  155: *
  156: *> \author Univ. of Tennessee
  157: *> \author Univ. of California Berkeley
  158: *> \author Univ. of Colorado Denver
  159: *> \author NAG Ltd.
  160: *
  161: *> \ingroup doubleOTHERcomputational
  162: *
  163: *  =====================================================================
  164:       SUBROUTINE DSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  165:      $                  C )
  166: *
  167: *  -- LAPACK computational routine --
  168: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  169: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  170: *
  171: *     .. Scalar Arguments ..
  172:       DOUBLE PRECISION   ALPHA, BETA
  173:       INTEGER            K, LDA, N
  174:       CHARACTER          TRANS, TRANSR, UPLO
  175: *     ..
  176: *     .. Array Arguments ..
  177:       DOUBLE PRECISION   A( LDA, * ), C( * )
  178: *     ..
  179: *
  180: *  =====================================================================
  181: *
  182: *     ..
  183: *     .. Parameters ..
  184:       DOUBLE PRECISION   ONE, ZERO
  185:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  186: *     ..
  187: *     .. Local Scalars ..
  188:       LOGICAL            LOWER, NORMALTRANSR, NISODD, NOTRANS
  189:       INTEGER            INFO, NROWA, J, NK, N1, N2
  190: *     ..
  191: *     .. External Functions ..
  192:       LOGICAL            LSAME
  193:       EXTERNAL           LSAME
  194: *     ..
  195: *     .. External Subroutines ..
  196:       EXTERNAL           XERBLA, DGEMM, DSYRK
  197: *     ..
  198: *     .. Intrinsic Functions ..
  199:       INTRINSIC          MAX
  200: *     ..
  201: *     .. Executable Statements ..
  202: *
  203: *     Test the input parameters.
  204: *
  205:       INFO = 0
  206:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  207:       LOWER = LSAME( UPLO, 'L' )
  208:       NOTRANS = LSAME( TRANS, 'N' )
  209: *
  210:       IF( NOTRANS ) THEN
  211:          NROWA = N
  212:       ELSE
  213:          NROWA = K
  214:       END IF
  215: *
  216:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  217:          INFO = -1
  218:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  219:          INFO = -2
  220:       ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
  221:          INFO = -3
  222:       ELSE IF( N.LT.0 ) THEN
  223:          INFO = -4
  224:       ELSE IF( K.LT.0 ) THEN
  225:          INFO = -5
  226:       ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
  227:          INFO = -8
  228:       END IF
  229:       IF( INFO.NE.0 ) THEN
  230:          CALL XERBLA( 'DSFRK ', -INFO )
  231:          RETURN
  232:       END IF
  233: *
  234: *     Quick return if possible.
  235: *
  236: *     The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
  237: *     done (it is in DSYRK for example) and left in the general case.
  238: *
  239:       IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
  240:      $    ( BETA.EQ.ONE ) ) )RETURN
  241: *
  242:       IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
  243:          DO J = 1, ( ( N*( N+1 ) ) / 2 )
  244:             C( J ) = ZERO
  245:          END DO
  246:          RETURN
  247:       END IF
  248: *
  249: *     C is N-by-N.
  250: *     If N is odd, set NISODD = .TRUE., and N1 and N2.
  251: *     If N is even, NISODD = .FALSE., and NK.
  252: *
  253:       IF( MOD( N, 2 ).EQ.0 ) THEN
  254:          NISODD = .FALSE.
  255:          NK = N / 2
  256:       ELSE
  257:          NISODD = .TRUE.
  258:          IF( LOWER ) THEN
  259:             N2 = N / 2
  260:             N1 = N - N2
  261:          ELSE
  262:             N1 = N / 2
  263:             N2 = N - N1
  264:          END IF
  265:       END IF
  266: *
  267:       IF( NISODD ) THEN
  268: *
  269: *        N is odd
  270: *
  271:          IF( NORMALTRANSR ) THEN
  272: *
  273: *           N is odd and TRANSR = 'N'
  274: *
  275:             IF( LOWER ) THEN
  276: *
  277: *              N is odd, TRANSR = 'N', and UPLO = 'L'
  278: *
  279:                IF( NOTRANS ) THEN
  280: *
  281: *                 N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  282: *
  283:                   CALL DSYRK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  284:      $                        BETA, C( 1 ), N )
  285:                   CALL DSYRK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  286:      $                        BETA, C( N+1 ), N )
  287:                   CALL DGEMM( 'N', 'T', N2, N1, K, ALPHA, A( N1+1, 1 ),
  288:      $                        LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N )
  289: *
  290:                ELSE
  291: *
  292: *                 N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'T'
  293: *
  294:                   CALL DSYRK( 'L', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  295:      $                        BETA, C( 1 ), N )
  296:                   CALL DSYRK( 'U', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  297:      $                        BETA, C( N+1 ), N )
  298:                   CALL DGEMM( 'T', 'N', N2, N1, K, ALPHA, A( 1, N1+1 ),
  299:      $                        LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N )
  300: *
  301:                END IF
  302: *
  303:             ELSE
  304: *
  305: *              N is odd, TRANSR = 'N', and UPLO = 'U'
  306: *
  307:                IF( NOTRANS ) THEN
  308: *
  309: *                 N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  310: *
  311:                   CALL DSYRK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  312:      $                        BETA, C( N2+1 ), N )
  313:                   CALL DSYRK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
  314:      $                        BETA, C( N1+1 ), N )
  315:                   CALL DGEMM( 'N', 'T', N1, N2, K, ALPHA, A( 1, 1 ),
  316:      $                        LDA, A( N2, 1 ), LDA, BETA, C( 1 ), N )
  317: *
  318:                ELSE
  319: *
  320: *                 N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'T'
  321: *
  322:                   CALL DSYRK( 'L', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  323:      $                        BETA, C( N2+1 ), N )
  324:                   CALL DSYRK( 'U', 'T', N2, K, ALPHA, A( 1, N2 ), LDA,
  325:      $                        BETA, C( N1+1 ), N )
  326:                   CALL DGEMM( 'T', 'N', N1, N2, K, ALPHA, A( 1, 1 ),
  327:      $                        LDA, A( 1, N2 ), LDA, BETA, C( 1 ), N )
  328: *
  329:                END IF
  330: *
  331:             END IF
  332: *
  333:          ELSE
  334: *
  335: *           N is odd, and TRANSR = 'T'
  336: *
  337:             IF( LOWER ) THEN
  338: *
  339: *              N is odd, TRANSR = 'T', and UPLO = 'L'
  340: *
  341:                IF( NOTRANS ) THEN
  342: *
  343: *                 N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'N'
  344: *
  345:                   CALL DSYRK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  346:      $                        BETA, C( 1 ), N1 )
  347:                   CALL DSYRK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  348:      $                        BETA, C( 2 ), N1 )
  349:                   CALL DGEMM( 'N', 'T', N1, N2, K, ALPHA, A( 1, 1 ),
  350:      $                        LDA, A( N1+1, 1 ), LDA, BETA,
  351:      $                        C( N1*N1+1 ), N1 )
  352: *
  353:                ELSE
  354: *
  355: *                 N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'T'
  356: *
  357:                   CALL DSYRK( 'U', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  358:      $                        BETA, C( 1 ), N1 )
  359:                   CALL DSYRK( 'L', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  360:      $                        BETA, C( 2 ), N1 )
  361:                   CALL DGEMM( 'T', 'N', N1, N2, K, ALPHA, A( 1, 1 ),
  362:      $                        LDA, A( 1, N1+1 ), LDA, BETA,
  363:      $                        C( N1*N1+1 ), N1 )
  364: *
  365:                END IF
  366: *
  367:             ELSE
  368: *
  369: *              N is odd, TRANSR = 'T', and UPLO = 'U'
  370: *
  371:                IF( NOTRANS ) THEN
  372: *
  373: *                 N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'N'
  374: *
  375:                   CALL DSYRK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  376:      $                        BETA, C( N2*N2+1 ), N2 )
  377:                   CALL DSYRK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  378:      $                        BETA, C( N1*N2+1 ), N2 )
  379:                   CALL DGEMM( 'N', 'T', N2, N1, K, ALPHA, A( N1+1, 1 ),
  380:      $                        LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 )
  381: *
  382:                ELSE
  383: *
  384: *                 N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'T'
  385: *
  386:                   CALL DSYRK( 'U', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  387:      $                        BETA, C( N2*N2+1 ), N2 )
  388:                   CALL DSYRK( 'L', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  389:      $                        BETA, C( N1*N2+1 ), N2 )
  390:                   CALL DGEMM( 'T', 'N', N2, N1, K, ALPHA, A( 1, N1+1 ),
  391:      $                        LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 )
  392: *
  393:                END IF
  394: *
  395:             END IF
  396: *
  397:          END IF
  398: *
  399:       ELSE
  400: *
  401: *        N is even
  402: *
  403:          IF( NORMALTRANSR ) THEN
  404: *
  405: *           N is even and TRANSR = 'N'
  406: *
  407:             IF( LOWER ) THEN
  408: *
  409: *              N is even, TRANSR = 'N', and UPLO = 'L'
  410: *
  411:                IF( NOTRANS ) THEN
  412: *
  413: *                 N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  414: *
  415:                   CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  416:      $                        BETA, C( 2 ), N+1 )
  417:                   CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  418:      $                        BETA, C( 1 ), N+1 )
  419:                   CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( NK+1, 1 ),
  420:      $                        LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ),
  421:      $                        N+1 )
  422: *
  423:                ELSE
  424: *
  425: *                 N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'T'
  426: *
  427:                   CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  428:      $                        BETA, C( 2 ), N+1 )
  429:                   CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  430:      $                        BETA, C( 1 ), N+1 )
  431:                   CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, NK+1 ),
  432:      $                        LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ),
  433:      $                        N+1 )
  434: *
  435:                END IF
  436: *
  437:             ELSE
  438: *
  439: *              N is even, TRANSR = 'N', and UPLO = 'U'
  440: *
  441:                IF( NOTRANS ) THEN
  442: *
  443: *                 N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  444: *
  445:                   CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  446:      $                        BETA, C( NK+2 ), N+1 )
  447:                   CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  448:      $                        BETA, C( NK+1 ), N+1 )
  449:                   CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( 1, 1 ),
  450:      $                        LDA, A( NK+1, 1 ), LDA, BETA, C( 1 ),
  451:      $                        N+1 )
  452: *
  453:                ELSE
  454: *
  455: *                 N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'T'
  456: *
  457:                   CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  458:      $                        BETA, C( NK+2 ), N+1 )
  459:                   CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  460:      $                        BETA, C( NK+1 ), N+1 )
  461:                   CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, 1 ),
  462:      $                        LDA, A( 1, NK+1 ), LDA, BETA, C( 1 ),
  463:      $                        N+1 )
  464: *
  465:                END IF
  466: *
  467:             END IF
  468: *
  469:          ELSE
  470: *
  471: *           N is even, and TRANSR = 'T'
  472: *
  473:             IF( LOWER ) THEN
  474: *
  475: *              N is even, TRANSR = 'T', and UPLO = 'L'
  476: *
  477:                IF( NOTRANS ) THEN
  478: *
  479: *                 N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'N'
  480: *
  481:                   CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  482:      $                        BETA, C( NK+1 ), NK )
  483:                   CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  484:      $                        BETA, C( 1 ), NK )
  485:                   CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( 1, 1 ),
  486:      $                        LDA, A( NK+1, 1 ), LDA, BETA,
  487:      $                        C( ( ( NK+1 )*NK )+1 ), NK )
  488: *
  489:                ELSE
  490: *
  491: *                 N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'T'
  492: *
  493:                   CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  494:      $                        BETA, C( NK+1 ), NK )
  495:                   CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  496:      $                        BETA, C( 1 ), NK )
  497:                   CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, 1 ),
  498:      $                        LDA, A( 1, NK+1 ), LDA, BETA,
  499:      $                        C( ( ( NK+1 )*NK )+1 ), NK )
  500: *
  501:                END IF
  502: *
  503:             ELSE
  504: *
  505: *              N is even, TRANSR = 'T', and UPLO = 'U'
  506: *
  507:                IF( NOTRANS ) THEN
  508: *
  509: *                 N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'N'
  510: *
  511:                   CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  512:      $                        BETA, C( NK*( NK+1 )+1 ), NK )
  513:                   CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  514:      $                        BETA, C( NK*NK+1 ), NK )
  515:                   CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( NK+1, 1 ),
  516:      $                        LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK )
  517: *
  518:                ELSE
  519: *
  520: *                 N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'T'
  521: *
  522:                   CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  523:      $                        BETA, C( NK*( NK+1 )+1 ), NK )
  524:                   CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  525:      $                        BETA, C( NK*NK+1 ), NK )
  526:                   CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, NK+1 ),
  527:      $                        LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK )
  528: *
  529:                END IF
  530: *
  531:             END IF
  532: *
  533:          END IF
  534: *
  535:       END IF
  536: *
  537:       RETURN
  538: *
  539: *     End of DSFRK
  540: *
  541:       END

CVSweb interface <joel.bertrand@systella.fr>