File:  [local] / rpl / lapack / lapack / dsbgvx.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:25 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
    2:      $                   LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
    3:      $                   LDZ, WORK, IWORK, IFAIL, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
   13:      $                   N
   14:       DOUBLE PRECISION   ABSTOL, VL, VU
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            IFAIL( * ), IWORK( * )
   18:       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
   19:      $                   W( * ), WORK( * ), Z( LDZ, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DSBGVX computes selected eigenvalues, and optionally, eigenvectors
   26: *  of a real generalized symmetric-definite banded eigenproblem, of
   27: *  the form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric
   28: *  and banded, and B is also positive definite.  Eigenvalues and
   29: *  eigenvectors can be selected by specifying either all eigenvalues,
   30: *  a range of values or a range of indices for the desired eigenvalues.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  JOBZ    (input) CHARACTER*1
   36: *          = 'N':  Compute eigenvalues only;
   37: *          = 'V':  Compute eigenvalues and eigenvectors.
   38: *
   39: *  RANGE   (input) CHARACTER*1
   40: *          = 'A': all eigenvalues will be found.
   41: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   42: *                 will be found.
   43: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   44: *
   45: *  UPLO    (input) CHARACTER*1
   46: *          = 'U':  Upper triangles of A and B are stored;
   47: *          = 'L':  Lower triangles of A and B are stored.
   48: *
   49: *  N       (input) INTEGER
   50: *          The order of the matrices A and B.  N >= 0.
   51: *
   52: *  KA      (input) INTEGER
   53: *          The number of superdiagonals of the matrix A if UPLO = 'U',
   54: *          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
   55: *
   56: *  KB      (input) INTEGER
   57: *          The number of superdiagonals of the matrix B if UPLO = 'U',
   58: *          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
   59: *
   60: *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
   61: *          On entry, the upper or lower triangle of the symmetric band
   62: *          matrix A, stored in the first ka+1 rows of the array.  The
   63: *          j-th column of A is stored in the j-th column of the array AB
   64: *          as follows:
   65: *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
   66: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
   67: *
   68: *          On exit, the contents of AB are destroyed.
   69: *
   70: *  LDAB    (input) INTEGER
   71: *          The leading dimension of the array AB.  LDAB >= KA+1.
   72: *
   73: *  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
   74: *          On entry, the upper or lower triangle of the symmetric band
   75: *          matrix B, stored in the first kb+1 rows of the array.  The
   76: *          j-th column of B is stored in the j-th column of the array BB
   77: *          as follows:
   78: *          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
   79: *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
   80: *
   81: *          On exit, the factor S from the split Cholesky factorization
   82: *          B = S**T*S, as returned by DPBSTF.
   83: *
   84: *  LDBB    (input) INTEGER
   85: *          The leading dimension of the array BB.  LDBB >= KB+1.
   86: *
   87: *  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N)
   88: *          If JOBZ = 'V', the n-by-n matrix used in the reduction of
   89: *          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
   90: *          and consequently C to tridiagonal form.
   91: *          If JOBZ = 'N', the array Q is not referenced.
   92: *
   93: *  LDQ     (input) INTEGER
   94: *          The leading dimension of the array Q.  If JOBZ = 'N',
   95: *          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
   96: *
   97: *  VL      (input) DOUBLE PRECISION
   98: *  VU      (input) DOUBLE PRECISION
   99: *          If RANGE='V', the lower and upper bounds of the interval to
  100: *          be searched for eigenvalues. VL < VU.
  101: *          Not referenced if RANGE = 'A' or 'I'.
  102: *
  103: *  IL      (input) INTEGER
  104: *  IU      (input) INTEGER
  105: *          If RANGE='I', the indices (in ascending order) of the
  106: *          smallest and largest eigenvalues to be returned.
  107: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  108: *          Not referenced if RANGE = 'A' or 'V'.
  109: *
  110: *  ABSTOL  (input) DOUBLE PRECISION
  111: *          The absolute error tolerance for the eigenvalues.
  112: *          An approximate eigenvalue is accepted as converged
  113: *          when it is determined to lie in an interval [a,b]
  114: *          of width less than or equal to
  115: *
  116: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
  117: *
  118: *          where EPS is the machine precision.  If ABSTOL is less than
  119: *          or equal to zero, then  EPS*|T|  will be used in its place,
  120: *          where |T| is the 1-norm of the tridiagonal matrix obtained
  121: *          by reducing A to tridiagonal form.
  122: *
  123: *          Eigenvalues will be computed most accurately when ABSTOL is
  124: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  125: *          If this routine returns with INFO>0, indicating that some
  126: *          eigenvectors did not converge, try setting ABSTOL to
  127: *          2*DLAMCH('S').
  128: *
  129: *  M       (output) INTEGER
  130: *          The total number of eigenvalues found.  0 <= M <= N.
  131: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  132: *
  133: *  W       (output) DOUBLE PRECISION array, dimension (N)
  134: *          If INFO = 0, the eigenvalues in ascending order.
  135: *
  136: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
  137: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  138: *          eigenvectors, with the i-th column of Z holding the
  139: *          eigenvector associated with W(i).  The eigenvectors are
  140: *          normalized so Z**T*B*Z = I.
  141: *          If JOBZ = 'N', then Z is not referenced.
  142: *
  143: *  LDZ     (input) INTEGER
  144: *          The leading dimension of the array Z.  LDZ >= 1, and if
  145: *          JOBZ = 'V', LDZ >= max(1,N).
  146: *
  147: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (7*N)
  148: *
  149: *  IWORK   (workspace/output) INTEGER array, dimension (5*N)
  150: *
  151: *  IFAIL   (output) INTEGER array, dimension (M)
  152: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
  153: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  154: *          indices of the eigenvalues that failed to converge.
  155: *          If JOBZ = 'N', then IFAIL is not referenced.
  156: *
  157: *  INFO    (output) INTEGER
  158: *          = 0 : successful exit
  159: *          < 0 : if INFO = -i, the i-th argument had an illegal value
  160: *          <= N: if INFO = i, then i eigenvectors failed to converge.
  161: *                  Their indices are stored in IFAIL.
  162: *          > N : DPBSTF returned an error code; i.e.,
  163: *                if INFO = N + i, for 1 <= i <= N, then the leading
  164: *                minor of order i of B is not positive definite.
  165: *                The factorization of B could not be completed and
  166: *                no eigenvalues or eigenvectors were computed.
  167: *
  168: *  Further Details
  169: *  ===============
  170: *
  171: *  Based on contributions by
  172: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  173: *
  174: *  =====================================================================
  175: *
  176: *     .. Parameters ..
  177:       DOUBLE PRECISION   ZERO, ONE
  178:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  179: *     ..
  180: *     .. Local Scalars ..
  181:       LOGICAL            ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
  182:       CHARACTER          ORDER, VECT
  183:       INTEGER            I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
  184:      $                   INDIWO, INDWRK, ITMP1, J, JJ, NSPLIT
  185:       DOUBLE PRECISION   TMP1
  186: *     ..
  187: *     .. External Functions ..
  188:       LOGICAL            LSAME
  189:       EXTERNAL           LSAME
  190: *     ..
  191: *     .. External Subroutines ..
  192:       EXTERNAL           DCOPY, DGEMV, DLACPY, DPBSTF, DSBGST, DSBTRD,
  193:      $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
  194: *     ..
  195: *     .. Intrinsic Functions ..
  196:       INTRINSIC          MIN
  197: *     ..
  198: *     .. Executable Statements ..
  199: *
  200: *     Test the input parameters.
  201: *
  202:       WANTZ = LSAME( JOBZ, 'V' )
  203:       UPPER = LSAME( UPLO, 'U' )
  204:       ALLEIG = LSAME( RANGE, 'A' )
  205:       VALEIG = LSAME( RANGE, 'V' )
  206:       INDEIG = LSAME( RANGE, 'I' )
  207: *
  208:       INFO = 0
  209:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  210:          INFO = -1
  211:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  212:          INFO = -2
  213:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  214:          INFO = -3
  215:       ELSE IF( N.LT.0 ) THEN
  216:          INFO = -4
  217:       ELSE IF( KA.LT.0 ) THEN
  218:          INFO = -5
  219:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
  220:          INFO = -6
  221:       ELSE IF( LDAB.LT.KA+1 ) THEN
  222:          INFO = -8
  223:       ELSE IF( LDBB.LT.KB+1 ) THEN
  224:          INFO = -10
  225:       ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
  226:          INFO = -12
  227:       ELSE
  228:          IF( VALEIG ) THEN
  229:             IF( N.GT.0 .AND. VU.LE.VL )
  230:      $         INFO = -14
  231:          ELSE IF( INDEIG ) THEN
  232:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  233:                INFO = -15
  234:             ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  235:                INFO = -16
  236:             END IF
  237:          END IF
  238:       END IF
  239:       IF( INFO.EQ.0) THEN
  240:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  241:             INFO = -21
  242:          END IF
  243:       END IF
  244: *
  245:       IF( INFO.NE.0 ) THEN
  246:          CALL XERBLA( 'DSBGVX', -INFO )
  247:          RETURN
  248:       END IF
  249: *
  250: *     Quick return if possible
  251: *
  252:       M = 0
  253:       IF( N.EQ.0 )
  254:      $   RETURN
  255: *
  256: *     Form a split Cholesky factorization of B.
  257: *
  258:       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
  259:       IF( INFO.NE.0 ) THEN
  260:          INFO = N + INFO
  261:          RETURN
  262:       END IF
  263: *
  264: *     Transform problem to standard eigenvalue problem.
  265: *
  266:       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
  267:      $             WORK, IINFO )
  268: *
  269: *     Reduce symmetric band matrix to tridiagonal form.
  270: *
  271:       INDD = 1
  272:       INDE = INDD + N
  273:       INDWRK = INDE + N
  274:       IF( WANTZ ) THEN
  275:          VECT = 'U'
  276:       ELSE
  277:          VECT = 'N'
  278:       END IF
  279:       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, WORK( INDD ),
  280:      $             WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  281: *
  282: *     If all eigenvalues are desired and ABSTOL is less than or equal
  283: *     to zero, then call DSTERF or SSTEQR.  If this fails for some
  284: *     eigenvalue, then try DSTEBZ.
  285: *
  286:       TEST = .FALSE.
  287:       IF( INDEIG ) THEN
  288:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  289:             TEST = .TRUE.
  290:          END IF
  291:       END IF
  292:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  293:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  294:          INDEE = INDWRK + 2*N
  295:          CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  296:          IF( .NOT.WANTZ ) THEN
  297:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  298:          ELSE
  299:             CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  300:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  301:      $                   WORK( INDWRK ), INFO )
  302:             IF( INFO.EQ.0 ) THEN
  303:                DO 10 I = 1, N
  304:                   IFAIL( I ) = 0
  305:    10          CONTINUE
  306:             END IF
  307:          END IF
  308:          IF( INFO.EQ.0 ) THEN
  309:             M = N
  310:             GO TO 30
  311:          END IF
  312:          INFO = 0
  313:       END IF
  314: *
  315: *     Otherwise, call DSTEBZ and, if eigenvectors are desired,
  316: *     call DSTEIN.
  317: *
  318:       IF( WANTZ ) THEN
  319:          ORDER = 'B'
  320:       ELSE
  321:          ORDER = 'E'
  322:       END IF
  323:       INDIBL = 1
  324:       INDISP = INDIBL + N
  325:       INDIWO = INDISP + N
  326:       CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
  327:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  328:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  329:      $             IWORK( INDIWO ), INFO )
  330: *
  331:       IF( WANTZ ) THEN
  332:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  333:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  334:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  335: *
  336: *        Apply transformation matrix used in reduction to tridiagonal
  337: *        form to eigenvectors returned by DSTEIN.
  338: *
  339:          DO 20 J = 1, M
  340:             CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  341:             CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
  342:      $                  Z( 1, J ), 1 )
  343:    20    CONTINUE
  344:       END IF
  345: *
  346:    30 CONTINUE
  347: *
  348: *     If eigenvalues are not in order, then sort them, along with
  349: *     eigenvectors.
  350: *
  351:       IF( WANTZ ) THEN
  352:          DO 50 J = 1, M - 1
  353:             I = 0
  354:             TMP1 = W( J )
  355:             DO 40 JJ = J + 1, M
  356:                IF( W( JJ ).LT.TMP1 ) THEN
  357:                   I = JJ
  358:                   TMP1 = W( JJ )
  359:                END IF
  360:    40       CONTINUE
  361: *
  362:             IF( I.NE.0 ) THEN
  363:                ITMP1 = IWORK( INDIBL+I-1 )
  364:                W( I ) = W( J )
  365:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  366:                W( J ) = TMP1
  367:                IWORK( INDIBL+J-1 ) = ITMP1
  368:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  369:                IF( INFO.NE.0 ) THEN
  370:                   ITMP1 = IFAIL( I )
  371:                   IFAIL( I ) = IFAIL( J )
  372:                   IFAIL( J ) = ITMP1
  373:                END IF
  374:             END IF
  375:    50    CONTINUE
  376:       END IF
  377: *
  378:       RETURN
  379: *
  380: *     End of DSBGVX
  381: *
  382:       END

CVSweb interface <joel.bertrand@systella.fr>