Annotation of rpl/lapack/lapack/dsbgvx.f, revision 1.5

1.1       bertrand    1:       SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
                      2:      $                   LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
                      3:      $                   LDZ, WORK, IWORK, IFAIL, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
                     13:      $                   N
                     14:       DOUBLE PRECISION   ABSTOL, VL, VU
                     15: *     ..
                     16: *     .. Array Arguments ..
                     17:       INTEGER            IFAIL( * ), IWORK( * )
                     18:       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
                     19:      $                   W( * ), WORK( * ), Z( LDZ, * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  DSBGVX computes selected eigenvalues, and optionally, eigenvectors
                     26: *  of a real generalized symmetric-definite banded eigenproblem, of
                     27: *  the form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric
                     28: *  and banded, and B is also positive definite.  Eigenvalues and
                     29: *  eigenvectors can be selected by specifying either all eigenvalues,
                     30: *  a range of values or a range of indices for the desired eigenvalues.
                     31: *
                     32: *  Arguments
                     33: *  =========
                     34: *
                     35: *  JOBZ    (input) CHARACTER*1
                     36: *          = 'N':  Compute eigenvalues only;
                     37: *          = 'V':  Compute eigenvalues and eigenvectors.
                     38: *
                     39: *  RANGE   (input) CHARACTER*1
                     40: *          = 'A': all eigenvalues will be found.
                     41: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     42: *                 will be found.
                     43: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     44: *
                     45: *  UPLO    (input) CHARACTER*1
                     46: *          = 'U':  Upper triangles of A and B are stored;
                     47: *          = 'L':  Lower triangles of A and B are stored.
                     48: *
                     49: *  N       (input) INTEGER
                     50: *          The order of the matrices A and B.  N >= 0.
                     51: *
                     52: *  KA      (input) INTEGER
                     53: *          The number of superdiagonals of the matrix A if UPLO = 'U',
                     54: *          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
                     55: *
                     56: *  KB      (input) INTEGER
                     57: *          The number of superdiagonals of the matrix B if UPLO = 'U',
                     58: *          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
                     59: *
                     60: *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
                     61: *          On entry, the upper or lower triangle of the symmetric band
                     62: *          matrix A, stored in the first ka+1 rows of the array.  The
                     63: *          j-th column of A is stored in the j-th column of the array AB
                     64: *          as follows:
                     65: *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
                     66: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
                     67: *
                     68: *          On exit, the contents of AB are destroyed.
                     69: *
                     70: *  LDAB    (input) INTEGER
                     71: *          The leading dimension of the array AB.  LDAB >= KA+1.
                     72: *
                     73: *  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
                     74: *          On entry, the upper or lower triangle of the symmetric band
                     75: *          matrix B, stored in the first kb+1 rows of the array.  The
                     76: *          j-th column of B is stored in the j-th column of the array BB
                     77: *          as follows:
                     78: *          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
                     79: *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
                     80: *
                     81: *          On exit, the factor S from the split Cholesky factorization
                     82: *          B = S**T*S, as returned by DPBSTF.
                     83: *
                     84: *  LDBB    (input) INTEGER
                     85: *          The leading dimension of the array BB.  LDBB >= KB+1.
                     86: *
                     87: *  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N)
                     88: *          If JOBZ = 'V', the n-by-n matrix used in the reduction of
                     89: *          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
                     90: *          and consequently C to tridiagonal form.
                     91: *          If JOBZ = 'N', the array Q is not referenced.
                     92: *
                     93: *  LDQ     (input) INTEGER
                     94: *          The leading dimension of the array Q.  If JOBZ = 'N',
                     95: *          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
                     96: *
                     97: *  VL      (input) DOUBLE PRECISION
                     98: *  VU      (input) DOUBLE PRECISION
                     99: *          If RANGE='V', the lower and upper bounds of the interval to
                    100: *          be searched for eigenvalues. VL < VU.
                    101: *          Not referenced if RANGE = 'A' or 'I'.
                    102: *
                    103: *  IL      (input) INTEGER
                    104: *  IU      (input) INTEGER
                    105: *          If RANGE='I', the indices (in ascending order) of the
                    106: *          smallest and largest eigenvalues to be returned.
                    107: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    108: *          Not referenced if RANGE = 'A' or 'V'.
                    109: *
                    110: *  ABSTOL  (input) DOUBLE PRECISION
                    111: *          The absolute error tolerance for the eigenvalues.
                    112: *          An approximate eigenvalue is accepted as converged
                    113: *          when it is determined to lie in an interval [a,b]
                    114: *          of width less than or equal to
                    115: *
                    116: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    117: *
                    118: *          where EPS is the machine precision.  If ABSTOL is less than
                    119: *          or equal to zero, then  EPS*|T|  will be used in its place,
                    120: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                    121: *          by reducing A to tridiagonal form.
                    122: *
                    123: *          Eigenvalues will be computed most accurately when ABSTOL is
                    124: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    125: *          If this routine returns with INFO>0, indicating that some
                    126: *          eigenvectors did not converge, try setting ABSTOL to
                    127: *          2*DLAMCH('S').
                    128: *
                    129: *  M       (output) INTEGER
                    130: *          The total number of eigenvalues found.  0 <= M <= N.
                    131: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    132: *
                    133: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    134: *          If INFO = 0, the eigenvalues in ascending order.
                    135: *
                    136: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
                    137: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                    138: *          eigenvectors, with the i-th column of Z holding the
                    139: *          eigenvector associated with W(i).  The eigenvectors are
                    140: *          normalized so Z**T*B*Z = I.
                    141: *          If JOBZ = 'N', then Z is not referenced.
                    142: *
                    143: *  LDZ     (input) INTEGER
                    144: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    145: *          JOBZ = 'V', LDZ >= max(1,N).
                    146: *
                    147: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (7*N)
                    148: *
                    149: *  IWORK   (workspace/output) INTEGER array, dimension (5*N)
                    150: *
                    151: *  IFAIL   (output) INTEGER array, dimension (M)
                    152: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    153: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    154: *          indices of the eigenvalues that failed to converge.
                    155: *          If JOBZ = 'N', then IFAIL is not referenced.
                    156: *
                    157: *  INFO    (output) INTEGER
                    158: *          = 0 : successful exit
                    159: *          < 0 : if INFO = -i, the i-th argument had an illegal value
                    160: *          <= N: if INFO = i, then i eigenvectors failed to converge.
                    161: *                  Their indices are stored in IFAIL.
                    162: *          > N : DPBSTF returned an error code; i.e.,
                    163: *                if INFO = N + i, for 1 <= i <= N, then the leading
                    164: *                minor of order i of B is not positive definite.
                    165: *                The factorization of B could not be completed and
                    166: *                no eigenvalues or eigenvectors were computed.
                    167: *
                    168: *  Further Details
                    169: *  ===============
                    170: *
                    171: *  Based on contributions by
                    172: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    173: *
                    174: *  =====================================================================
                    175: *
                    176: *     .. Parameters ..
                    177:       DOUBLE PRECISION   ZERO, ONE
                    178:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    179: *     ..
                    180: *     .. Local Scalars ..
                    181:       LOGICAL            ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
                    182:       CHARACTER          ORDER, VECT
                    183:       INTEGER            I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
                    184:      $                   INDIWO, INDWRK, ITMP1, J, JJ, NSPLIT
                    185:       DOUBLE PRECISION   TMP1
                    186: *     ..
                    187: *     .. External Functions ..
                    188:       LOGICAL            LSAME
                    189:       EXTERNAL           LSAME
                    190: *     ..
                    191: *     .. External Subroutines ..
                    192:       EXTERNAL           DCOPY, DGEMV, DLACPY, DPBSTF, DSBGST, DSBTRD,
                    193:      $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
                    194: *     ..
                    195: *     .. Intrinsic Functions ..
                    196:       INTRINSIC          MIN
                    197: *     ..
                    198: *     .. Executable Statements ..
                    199: *
                    200: *     Test the input parameters.
                    201: *
                    202:       WANTZ = LSAME( JOBZ, 'V' )
                    203:       UPPER = LSAME( UPLO, 'U' )
                    204:       ALLEIG = LSAME( RANGE, 'A' )
                    205:       VALEIG = LSAME( RANGE, 'V' )
                    206:       INDEIG = LSAME( RANGE, 'I' )
                    207: *
                    208:       INFO = 0
                    209:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    210:          INFO = -1
                    211:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    212:          INFO = -2
                    213:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    214:          INFO = -3
                    215:       ELSE IF( N.LT.0 ) THEN
                    216:          INFO = -4
                    217:       ELSE IF( KA.LT.0 ) THEN
                    218:          INFO = -5
                    219:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
                    220:          INFO = -6
                    221:       ELSE IF( LDAB.LT.KA+1 ) THEN
                    222:          INFO = -8
                    223:       ELSE IF( LDBB.LT.KB+1 ) THEN
                    224:          INFO = -10
                    225:       ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
                    226:          INFO = -12
                    227:       ELSE
                    228:          IF( VALEIG ) THEN
                    229:             IF( N.GT.0 .AND. VU.LE.VL )
                    230:      $         INFO = -14
                    231:          ELSE IF( INDEIG ) THEN
                    232:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    233:                INFO = -15
                    234:             ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    235:                INFO = -16
                    236:             END IF
                    237:          END IF
                    238:       END IF
                    239:       IF( INFO.EQ.0) THEN
                    240:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    241:             INFO = -21
                    242:          END IF
                    243:       END IF
                    244: *
                    245:       IF( INFO.NE.0 ) THEN
                    246:          CALL XERBLA( 'DSBGVX', -INFO )
                    247:          RETURN
                    248:       END IF
                    249: *
                    250: *     Quick return if possible
                    251: *
                    252:       M = 0
                    253:       IF( N.EQ.0 )
                    254:      $   RETURN
                    255: *
                    256: *     Form a split Cholesky factorization of B.
                    257: *
                    258:       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
                    259:       IF( INFO.NE.0 ) THEN
                    260:          INFO = N + INFO
                    261:          RETURN
                    262:       END IF
                    263: *
                    264: *     Transform problem to standard eigenvalue problem.
                    265: *
                    266:       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
                    267:      $             WORK, IINFO )
                    268: *
                    269: *     Reduce symmetric band matrix to tridiagonal form.
                    270: *
                    271:       INDD = 1
                    272:       INDE = INDD + N
                    273:       INDWRK = INDE + N
                    274:       IF( WANTZ ) THEN
                    275:          VECT = 'U'
                    276:       ELSE
                    277:          VECT = 'N'
                    278:       END IF
                    279:       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, WORK( INDD ),
                    280:      $             WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
                    281: *
                    282: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    283: *     to zero, then call DSTERF or SSTEQR.  If this fails for some
                    284: *     eigenvalue, then try DSTEBZ.
                    285: *
                    286:       TEST = .FALSE.
                    287:       IF( INDEIG ) THEN
                    288:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    289:             TEST = .TRUE.
                    290:          END IF
                    291:       END IF
                    292:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    293:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
                    294:          INDEE = INDWRK + 2*N
                    295:          CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    296:          IF( .NOT.WANTZ ) THEN
                    297:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
                    298:          ELSE
                    299:             CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
                    300:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
                    301:      $                   WORK( INDWRK ), INFO )
                    302:             IF( INFO.EQ.0 ) THEN
                    303:                DO 10 I = 1, N
                    304:                   IFAIL( I ) = 0
                    305:    10          CONTINUE
                    306:             END IF
                    307:          END IF
                    308:          IF( INFO.EQ.0 ) THEN
                    309:             M = N
                    310:             GO TO 30
                    311:          END IF
                    312:          INFO = 0
                    313:       END IF
                    314: *
                    315: *     Otherwise, call DSTEBZ and, if eigenvectors are desired,
                    316: *     call DSTEIN.
                    317: *
                    318:       IF( WANTZ ) THEN
                    319:          ORDER = 'B'
                    320:       ELSE
                    321:          ORDER = 'E'
                    322:       END IF
                    323:       INDIBL = 1
                    324:       INDISP = INDIBL + N
                    325:       INDIWO = INDISP + N
                    326:       CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
                    327:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
                    328:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
                    329:      $             IWORK( INDIWO ), INFO )
                    330: *
                    331:       IF( WANTZ ) THEN
                    332:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
                    333:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    334:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
                    335: *
                    336: *        Apply transformation matrix used in reduction to tridiagonal
                    337: *        form to eigenvectors returned by DSTEIN.
                    338: *
                    339:          DO 20 J = 1, M
                    340:             CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
                    341:             CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
                    342:      $                  Z( 1, J ), 1 )
                    343:    20    CONTINUE
                    344:       END IF
                    345: *
                    346:    30 CONTINUE
                    347: *
                    348: *     If eigenvalues are not in order, then sort them, along with
                    349: *     eigenvectors.
                    350: *
                    351:       IF( WANTZ ) THEN
                    352:          DO 50 J = 1, M - 1
                    353:             I = 0
                    354:             TMP1 = W( J )
                    355:             DO 40 JJ = J + 1, M
                    356:                IF( W( JJ ).LT.TMP1 ) THEN
                    357:                   I = JJ
                    358:                   TMP1 = W( JJ )
                    359:                END IF
                    360:    40       CONTINUE
                    361: *
                    362:             IF( I.NE.0 ) THEN
                    363:                ITMP1 = IWORK( INDIBL+I-1 )
                    364:                W( I ) = W( J )
                    365:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    366:                W( J ) = TMP1
                    367:                IWORK( INDIBL+J-1 ) = ITMP1
                    368:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    369:                IF( INFO.NE.0 ) THEN
                    370:                   ITMP1 = IFAIL( I )
                    371:                   IFAIL( I ) = IFAIL( J )
                    372:                   IFAIL( J ) = ITMP1
                    373:                END IF
                    374:             END IF
                    375:    50    CONTINUE
                    376:       END IF
                    377: *
                    378:       RETURN
                    379: *
                    380: *     End of DSBGVX
                    381: *
                    382:       END

CVSweb interface <joel.bertrand@systella.fr>