File:  [local] / rpl / lapack / lapack / dposvxx.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:24 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DPOSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
    2:      $                    S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
    3:      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
    4:      $                    NPARAMS, PARAMS, WORK, IWORK, INFO )
    5: *
    6: *     -- LAPACK driver routine (version 3.2.2)                          --
    7: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    8: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    9: *     -- June 2010                                                    --
   10: *
   11: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   12: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   13: *
   14:       IMPLICIT NONE
   15: *     ..
   16: *     .. Scalar Arguments ..
   17:       CHARACTER          EQUED, FACT, UPLO
   18:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
   19:      $                   N_ERR_BNDS
   20:       DOUBLE PRECISION   RCOND, RPVGRW
   21: *     ..
   22: *     .. Array Arguments ..
   23:       INTEGER            IWORK( * )
   24:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   25:      $                   X( LDX, * ), WORK( * )
   26:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
   27:      $                   ERR_BNDS_NORM( NRHS, * ),
   28:      $                   ERR_BNDS_COMP( NRHS, * )
   29: *     ..
   30: *
   31: *     Purpose
   32: *     =======
   33: *
   34: *     DPOSVXX uses the Cholesky factorization A = U**T*U or A = L*L**T
   35: *     to compute the solution to a double precision system of linear equations
   36: *     A * X = B, where A is an N-by-N symmetric positive definite matrix
   37: *     and X and B are N-by-NRHS matrices.
   38: *
   39: *     If requested, both normwise and maximum componentwise error bounds
   40: *     are returned. DPOSVXX will return a solution with a tiny
   41: *     guaranteed error (O(eps) where eps is the working machine
   42: *     precision) unless the matrix is very ill-conditioned, in which
   43: *     case a warning is returned. Relevant condition numbers also are
   44: *     calculated and returned.
   45: *
   46: *     DPOSVXX accepts user-provided factorizations and equilibration
   47: *     factors; see the definitions of the FACT and EQUED options.
   48: *     Solving with refinement and using a factorization from a previous
   49: *     DPOSVXX call will also produce a solution with either O(eps)
   50: *     errors or warnings, but we cannot make that claim for general
   51: *     user-provided factorizations and equilibration factors if they
   52: *     differ from what DPOSVXX would itself produce.
   53: *
   54: *     Description
   55: *     ===========
   56: *
   57: *     The following steps are performed:
   58: *
   59: *     1. If FACT = 'E', double precision scaling factors are computed to equilibrate
   60: *     the system:
   61: *
   62: *       diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
   63: *
   64: *     Whether or not the system will be equilibrated depends on the
   65: *     scaling of the matrix A, but if equilibration is used, A is
   66: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   67: *
   68: *     2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   69: *     factor the matrix A (after equilibration if FACT = 'E') as
   70: *        A = U**T* U,  if UPLO = 'U', or
   71: *        A = L * L**T,  if UPLO = 'L',
   72: *     where U is an upper triangular matrix and L is a lower triangular
   73: *     matrix.
   74: *
   75: *     3. If the leading i-by-i principal minor is not positive definite,
   76: *     then the routine returns with INFO = i. Otherwise, the factored
   77: *     form of A is used to estimate the condition number of the matrix
   78: *     A (see argument RCOND).  If the reciprocal of the condition number
   79: *     is less than machine precision, the routine still goes on to solve
   80: *     for X and compute error bounds as described below.
   81: *
   82: *     4. The system of equations is solved for X using the factored form
   83: *     of A.
   84: *
   85: *     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
   86: *     the routine will use iterative refinement to try to get a small
   87: *     error and error bounds.  Refinement calculates the residual to at
   88: *     least twice the working precision.
   89: *
   90: *     6. If equilibration was used, the matrix X is premultiplied by
   91: *     diag(S) so that it solves the original system before
   92: *     equilibration.
   93: *
   94: *     Arguments
   95: *     =========
   96: *
   97: *     Some optional parameters are bundled in the PARAMS array.  These
   98: *     settings determine how refinement is performed, but often the
   99: *     defaults are acceptable.  If the defaults are acceptable, users
  100: *     can pass NPARAMS = 0 which prevents the source code from accessing
  101: *     the PARAMS argument.
  102: *
  103: *     FACT    (input) CHARACTER*1
  104: *     Specifies whether or not the factored form of the matrix A is
  105: *     supplied on entry, and if not, whether the matrix A should be
  106: *     equilibrated before it is factored.
  107: *       = 'F':  On entry, AF contains the factored form of A.
  108: *               If EQUED is not 'N', the matrix A has been
  109: *               equilibrated with scaling factors given by S.
  110: *               A and AF are not modified.
  111: *       = 'N':  The matrix A will be copied to AF and factored.
  112: *       = 'E':  The matrix A will be equilibrated if necessary, then
  113: *               copied to AF and factored.
  114: *
  115: *     UPLO    (input) CHARACTER*1
  116: *       = 'U':  Upper triangle of A is stored;
  117: *       = 'L':  Lower triangle of A is stored.
  118: *
  119: *     N       (input) INTEGER
  120: *     The number of linear equations, i.e., the order of the
  121: *     matrix A.  N >= 0.
  122: *
  123: *     NRHS    (input) INTEGER
  124: *     The number of right hand sides, i.e., the number of columns
  125: *     of the matrices B and X.  NRHS >= 0.
  126: *
  127: *     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
  128: *     On entry, the symmetric matrix A, except if FACT = 'F' and EQUED =
  129: *     'Y', then A must contain the equilibrated matrix
  130: *     diag(S)*A*diag(S).  If UPLO = 'U', the leading N-by-N upper
  131: *     triangular part of A contains the upper triangular part of the
  132: *     matrix A, and the strictly lower triangular part of A is not
  133: *     referenced.  If UPLO = 'L', the leading N-by-N lower triangular
  134: *     part of A contains the lower triangular part of the matrix A, and
  135: *     the strictly upper triangular part of A is not referenced.  A is
  136: *     not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED =
  137: *     'N' on exit.
  138: *
  139: *     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  140: *     diag(S)*A*diag(S).
  141: *
  142: *     LDA     (input) INTEGER
  143: *     The leading dimension of the array A.  LDA >= max(1,N).
  144: *
  145: *     AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
  146: *     If FACT = 'F', then AF is an input argument and on entry
  147: *     contains the triangular factor U or L from the Cholesky
  148: *     factorization A = U**T*U or A = L*L**T, in the same storage
  149: *     format as A.  If EQUED .ne. 'N', then AF is the factored
  150: *     form of the equilibrated matrix diag(S)*A*diag(S).
  151: *
  152: *     If FACT = 'N', then AF is an output argument and on exit
  153: *     returns the triangular factor U or L from the Cholesky
  154: *     factorization A = U**T*U or A = L*L**T of the original
  155: *     matrix A.
  156: *
  157: *     If FACT = 'E', then AF is an output argument and on exit
  158: *     returns the triangular factor U or L from the Cholesky
  159: *     factorization A = U**T*U or A = L*L**T of the equilibrated
  160: *     matrix A (see the description of A for the form of the
  161: *     equilibrated matrix).
  162: *
  163: *     LDAF    (input) INTEGER
  164: *     The leading dimension of the array AF.  LDAF >= max(1,N).
  165: *
  166: *     EQUED   (input or output) CHARACTER*1
  167: *     Specifies the form of equilibration that was done.
  168: *       = 'N':  No equilibration (always true if FACT = 'N').
  169: *       = 'Y':  Both row and column equilibration, i.e., A has been
  170: *               replaced by diag(S) * A * diag(S).
  171: *     EQUED is an input argument if FACT = 'F'; otherwise, it is an
  172: *     output argument.
  173: *
  174: *     S       (input or output) DOUBLE PRECISION array, dimension (N)
  175: *     The row scale factors for A.  If EQUED = 'Y', A is multiplied on
  176: *     the left and right by diag(S).  S is an input argument if FACT =
  177: *     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
  178: *     = 'Y', each element of S must be positive.  If S is output, each
  179: *     element of S is a power of the radix. If S is input, each element
  180: *     of S should be a power of the radix to ensure a reliable solution
  181: *     and error estimates. Scaling by powers of the radix does not cause
  182: *     rounding errors unless the result underflows or overflows.
  183: *     Rounding errors during scaling lead to refining with a matrix that
  184: *     is not equivalent to the input matrix, producing error estimates
  185: *     that may not be reliable.
  186: *
  187: *     B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
  188: *     On entry, the N-by-NRHS right hand side matrix B.
  189: *     On exit,
  190: *     if EQUED = 'N', B is not modified;
  191: *     if EQUED = 'Y', B is overwritten by diag(S)*B;
  192: *
  193: *     LDB     (input) INTEGER
  194: *     The leading dimension of the array B.  LDB >= max(1,N).
  195: *
  196: *     X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
  197: *     If INFO = 0, the N-by-NRHS solution matrix X to the original
  198: *     system of equations.  Note that A and B are modified on exit if
  199: *     EQUED .ne. 'N', and the solution to the equilibrated system is
  200: *     inv(diag(S))*X.
  201: *
  202: *     LDX     (input) INTEGER
  203: *     The leading dimension of the array X.  LDX >= max(1,N).
  204: *
  205: *     RCOND   (output) DOUBLE PRECISION
  206: *     Reciprocal scaled condition number.  This is an estimate of the
  207: *     reciprocal Skeel condition number of the matrix A after
  208: *     equilibration (if done).  If this is less than the machine
  209: *     precision (in particular, if it is zero), the matrix is singular
  210: *     to working precision.  Note that the error may still be small even
  211: *     if this number is very small and the matrix appears ill-
  212: *     conditioned.
  213: *
  214: *     RPVGRW  (output) DOUBLE PRECISION
  215: *     Reciprocal pivot growth.  On exit, this contains the reciprocal
  216: *     pivot growth factor norm(A)/norm(U). The "max absolute element"
  217: *     norm is used.  If this is much less than 1, then the stability of
  218: *     the LU factorization of the (equilibrated) matrix A could be poor.
  219: *     This also means that the solution X, estimated condition numbers,
  220: *     and error bounds could be unreliable. If factorization fails with
  221: *     0<INFO<=N, then this contains the reciprocal pivot growth factor
  222: *     for the leading INFO columns of A.
  223: *
  224: *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  225: *     Componentwise relative backward error.  This is the
  226: *     componentwise relative backward error of each solution vector X(j)
  227: *     (i.e., the smallest relative change in any element of A or B that
  228: *     makes X(j) an exact solution).
  229: *
  230: *     N_ERR_BNDS (input) INTEGER
  231: *     Number of error bounds to return for each right hand side
  232: *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  233: *     ERR_BNDS_COMP below.
  234: *
  235: *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  236: *     For each right-hand side, this array contains information about
  237: *     various error bounds and condition numbers corresponding to the
  238: *     normwise relative error, which is defined as follows:
  239: *
  240: *     Normwise relative error in the ith solution vector:
  241: *             max_j (abs(XTRUE(j,i) - X(j,i)))
  242: *            ------------------------------
  243: *                  max_j abs(X(j,i))
  244: *
  245: *     The array is indexed by the type of error information as described
  246: *     below. There currently are up to three pieces of information
  247: *     returned.
  248: *
  249: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  250: *     right-hand side.
  251: *
  252: *     The second index in ERR_BNDS_NORM(:,err) contains the following
  253: *     three fields:
  254: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  255: *              reciprocal condition number is less than the threshold
  256: *              sqrt(n) * dlamch('Epsilon').
  257: *
  258: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  259: *              almost certainly within a factor of 10 of the true error
  260: *              so long as the next entry is greater than the threshold
  261: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
  262: *              be trusted if the previous boolean is true.
  263: *
  264: *     err = 3  Reciprocal condition number: Estimated normwise
  265: *              reciprocal condition number.  Compared with the threshold
  266: *              sqrt(n) * dlamch('Epsilon') to determine if the error
  267: *              estimate is "guaranteed". These reciprocal condition
  268: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  269: *              appropriately scaled matrix Z.
  270: *              Let Z = S*A, where S scales each row by a power of the
  271: *              radix so all absolute row sums of Z are approximately 1.
  272: *
  273: *     See Lapack Working Note 165 for further details and extra
  274: *     cautions.
  275: *
  276: *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  277: *     For each right-hand side, this array contains information about
  278: *     various error bounds and condition numbers corresponding to the
  279: *     componentwise relative error, which is defined as follows:
  280: *
  281: *     Componentwise relative error in the ith solution vector:
  282: *                    abs(XTRUE(j,i) - X(j,i))
  283: *             max_j ----------------------
  284: *                         abs(X(j,i))
  285: *
  286: *     The array is indexed by the right-hand side i (on which the
  287: *     componentwise relative error depends), and the type of error
  288: *     information as described below. There currently are up to three
  289: *     pieces of information returned for each right-hand side. If
  290: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  291: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  292: *     the first (:,N_ERR_BNDS) entries are returned.
  293: *
  294: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  295: *     right-hand side.
  296: *
  297: *     The second index in ERR_BNDS_COMP(:,err) contains the following
  298: *     three fields:
  299: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  300: *              reciprocal condition number is less than the threshold
  301: *              sqrt(n) * dlamch('Epsilon').
  302: *
  303: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  304: *              almost certainly within a factor of 10 of the true error
  305: *              so long as the next entry is greater than the threshold
  306: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
  307: *              be trusted if the previous boolean is true.
  308: *
  309: *     err = 3  Reciprocal condition number: Estimated componentwise
  310: *              reciprocal condition number.  Compared with the threshold
  311: *              sqrt(n) * dlamch('Epsilon') to determine if the error
  312: *              estimate is "guaranteed". These reciprocal condition
  313: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  314: *              appropriately scaled matrix Z.
  315: *              Let Z = S*(A*diag(x)), where x is the solution for the
  316: *              current right-hand side and S scales each row of
  317: *              A*diag(x) by a power of the radix so all absolute row
  318: *              sums of Z are approximately 1.
  319: *
  320: *     See Lapack Working Note 165 for further details and extra
  321: *     cautions.
  322: *
  323: *     NPARAMS (input) INTEGER
  324: *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
  325: *     PARAMS array is never referenced and default values are used.
  326: *
  327: *     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS
  328: *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
  329: *     that entry will be filled with default value used for that
  330: *     parameter.  Only positions up to NPARAMS are accessed; defaults
  331: *     are used for higher-numbered parameters.
  332: *
  333: *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  334: *            refinement or not.
  335: *         Default: 1.0D+0
  336: *            = 0.0 : No refinement is performed, and no error bounds are
  337: *                    computed.
  338: *            = 1.0 : Use the extra-precise refinement algorithm.
  339: *              (other values are reserved for future use)
  340: *
  341: *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  342: *            computations allowed for refinement.
  343: *         Default: 10
  344: *         Aggressive: Set to 100 to permit convergence using approximate
  345: *                     factorizations or factorizations other than LU. If
  346: *                     the factorization uses a technique other than
  347: *                     Gaussian elimination, the guarantees in
  348: *                     err_bnds_norm and err_bnds_comp may no longer be
  349: *                     trustworthy.
  350: *
  351: *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  352: *            will attempt to find a solution with small componentwise
  353: *            relative error in the double-precision algorithm.  Positive
  354: *            is true, 0.0 is false.
  355: *         Default: 1.0 (attempt componentwise convergence)
  356: *
  357: *     WORK    (workspace) DOUBLE PRECISION array, dimension (4*N)
  358: *
  359: *     IWORK   (workspace) INTEGER array, dimension (N)
  360: *
  361: *     INFO    (output) INTEGER
  362: *       = 0:  Successful exit. The solution to every right-hand side is
  363: *         guaranteed.
  364: *       < 0:  If INFO = -i, the i-th argument had an illegal value
  365: *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  366: *         has been completed, but the factor U is exactly singular, so
  367: *         the solution and error bounds could not be computed. RCOND = 0
  368: *         is returned.
  369: *       = N+J: The solution corresponding to the Jth right-hand side is
  370: *         not guaranteed. The solutions corresponding to other right-
  371: *         hand sides K with K > J may not be guaranteed as well, but
  372: *         only the first such right-hand side is reported. If a small
  373: *         componentwise error is not requested (PARAMS(3) = 0.0) then
  374: *         the Jth right-hand side is the first with a normwise error
  375: *         bound that is not guaranteed (the smallest J such
  376: *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  377: *         the Jth right-hand side is the first with either a normwise or
  378: *         componentwise error bound that is not guaranteed (the smallest
  379: *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  380: *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  381: *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  382: *         about all of the right-hand sides check ERR_BNDS_NORM or
  383: *         ERR_BNDS_COMP.
  384: *
  385: *     ==================================================================
  386: *
  387: *     .. Parameters ..
  388:       DOUBLE PRECISION   ZERO, ONE
  389:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  390:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  391:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  392:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  393:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  394:      $                   BERR_I = 3 )
  395:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  396:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  397:      $                   PIV_GROWTH_I = 9 )
  398: *     ..
  399: *     .. Local Scalars ..
  400:       LOGICAL            EQUIL, NOFACT, RCEQU
  401:       INTEGER            INFEQU, J
  402:       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX,
  403:      $                   SCOND, SMLNUM
  404: *     ..
  405: *     .. External Functions ..
  406:       EXTERNAL           LSAME, DLAMCH, DLA_PORPVGRW
  407:       LOGICAL            LSAME
  408:       DOUBLE PRECISION   DLAMCH, DLA_PORPVGRW
  409: *     ..
  410: *     .. External Subroutines ..
  411:       EXTERNAL           DPOEQUB, DPOTRF, DPOTRS, DLACPY, DLAQSY,
  412:      $                   XERBLA, DLASCL2, DPORFSX
  413: *     ..
  414: *     .. Intrinsic Functions ..
  415:       INTRINSIC          MAX, MIN
  416: *     ..
  417: *     .. Executable Statements ..
  418: *
  419:       INFO = 0
  420:       NOFACT = LSAME( FACT, 'N' )
  421:       EQUIL = LSAME( FACT, 'E' )
  422:       SMLNUM = DLAMCH( 'Safe minimum' )
  423:       BIGNUM = ONE / SMLNUM
  424:       IF( NOFACT .OR. EQUIL ) THEN
  425:          EQUED = 'N'
  426:          RCEQU = .FALSE.
  427:       ELSE
  428:          RCEQU = LSAME( EQUED, 'Y' )
  429:       ENDIF
  430: *
  431: *     Default is failure.  If an input parameter is wrong or
  432: *     factorization fails, make everything look horrible.  Only the
  433: *     pivot growth is set here, the rest is initialized in DPORFSX.
  434: *
  435:       RPVGRW = ZERO
  436: *
  437: *     Test the input parameters.  PARAMS is not tested until DPORFSX.
  438: *
  439:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
  440:      $     LSAME( FACT, 'F' ) ) THEN
  441:          INFO = -1
  442:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND.
  443:      $         .NOT.LSAME( UPLO, 'L' ) ) THEN
  444:          INFO = -2
  445:       ELSE IF( N.LT.0 ) THEN
  446:          INFO = -3
  447:       ELSE IF( NRHS.LT.0 ) THEN
  448:          INFO = -4
  449:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  450:          INFO = -6
  451:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  452:          INFO = -8
  453:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  454:      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  455:          INFO = -9
  456:       ELSE
  457:          IF ( RCEQU ) THEN
  458:             SMIN = BIGNUM
  459:             SMAX = ZERO
  460:             DO 10 J = 1, N
  461:                SMIN = MIN( SMIN, S( J ) )
  462:                SMAX = MAX( SMAX, S( J ) )
  463:  10         CONTINUE
  464:             IF( SMIN.LE.ZERO ) THEN
  465:                INFO = -10
  466:             ELSE IF( N.GT.0 ) THEN
  467:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  468:             ELSE
  469:                SCOND = ONE
  470:             END IF
  471:          END IF
  472:          IF( INFO.EQ.0 ) THEN
  473:             IF( LDB.LT.MAX( 1, N ) ) THEN
  474:                INFO = -12
  475:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  476:                INFO = -14
  477:             END IF
  478:          END IF
  479:       END IF
  480: *
  481:       IF( INFO.NE.0 ) THEN
  482:          CALL XERBLA( 'DPOSVXX', -INFO )
  483:          RETURN
  484:       END IF
  485: *
  486:       IF( EQUIL ) THEN
  487: *
  488: *     Compute row and column scalings to equilibrate the matrix A.
  489: *
  490:          CALL DPOEQUB( N, A, LDA, S, SCOND, AMAX, INFEQU )
  491:          IF( INFEQU.EQ.0 ) THEN
  492: *
  493: *     Equilibrate the matrix.
  494: *
  495:             CALL DLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
  496:             RCEQU = LSAME( EQUED, 'Y' )
  497:          END IF
  498:       END IF
  499: *
  500: *     Scale the right-hand side.
  501: *
  502:       IF( RCEQU ) CALL DLASCL2( N, NRHS, S, B, LDB )
  503: *
  504:       IF( NOFACT .OR. EQUIL ) THEN
  505: *
  506: *        Compute the Cholesky factorization of A.
  507: *
  508:          CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  509:          CALL DPOTRF( UPLO, N, AF, LDAF, INFO )
  510: *
  511: *        Return if INFO is non-zero.
  512: *
  513:          IF( INFO.NE.0 ) THEN
  514: *
  515: *           Pivot in column INFO is exactly 0
  516: *           Compute the reciprocal pivot growth factor of the
  517: *           leading rank-deficient INFO columns of A.
  518: *
  519:             RPVGRW = DLA_PORPVGRW( UPLO, INFO, A, LDA, AF, LDAF, WORK )
  520:             RETURN
  521:          ENDIF
  522:       END IF
  523: *
  524: *     Compute the reciprocal growth factor RPVGRW.
  525: *
  526:       RPVGRW = DLA_PORPVGRW( UPLO, N, A, LDA, AF, LDAF, WORK )
  527: *
  528: *     Compute the solution matrix X.
  529: *
  530:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  531:       CALL DPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
  532: *
  533: *     Use iterative refinement to improve the computed solution and
  534: *     compute error bounds and backward error estimates for it.
  535: *
  536:       CALL DPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF,
  537:      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
  538:      $     ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
  539: 
  540: *
  541: *     Scale solutions.
  542: *
  543:       IF ( RCEQU ) THEN
  544:          CALL DLASCL2 ( N, NRHS, S, X, LDX )
  545:       END IF
  546: *
  547:       RETURN
  548: *
  549: *     End of DPOSVXX
  550: *
  551:       END

CVSweb interface <joel.bertrand@systella.fr>