File:  [local] / rpl / lapack / lapack / dporfs.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:04 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DPORFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DPORFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dporfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dporfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dporfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X,
   22: *                          LDX, FERR, BERR, WORK, IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   31: *      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DPORFS improves the computed solution to a system of linear
   41: *> equations when the coefficient matrix is symmetric positive definite,
   42: *> and provides error bounds and backward error estimates for the
   43: *> solution.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>          = 'U':  Upper triangle of A is stored;
   53: *>          = 'L':  Lower triangle of A is stored.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] NRHS
   63: *> \verbatim
   64: *>          NRHS is INTEGER
   65: *>          The number of right hand sides, i.e., the number of columns
   66: *>          of the matrices B and X.  NRHS >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] A
   70: *> \verbatim
   71: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   72: *>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
   73: *>          upper triangular part of A contains the upper triangular part
   74: *>          of the matrix A, and the strictly lower triangular part of A
   75: *>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
   76: *>          triangular part of A contains the lower triangular part of
   77: *>          the matrix A, and the strictly upper triangular part of A is
   78: *>          not referenced.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] LDA
   82: *> \verbatim
   83: *>          LDA is INTEGER
   84: *>          The leading dimension of the array A.  LDA >= max(1,N).
   85: *> \endverbatim
   86: *>
   87: *> \param[in] AF
   88: *> \verbatim
   89: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
   90: *>          The triangular factor U or L from the Cholesky factorization
   91: *>          A = U**T*U or A = L*L**T, as computed by DPOTRF.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] LDAF
   95: *> \verbatim
   96: *>          LDAF is INTEGER
   97: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
   98: *> \endverbatim
   99: *>
  100: *> \param[in] B
  101: *> \verbatim
  102: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  103: *>          The right hand side matrix B.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] LDB
  107: *> \verbatim
  108: *>          LDB is INTEGER
  109: *>          The leading dimension of the array B.  LDB >= max(1,N).
  110: *> \endverbatim
  111: *>
  112: *> \param[in,out] X
  113: *> \verbatim
  114: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  115: *>          On entry, the solution matrix X, as computed by DPOTRS.
  116: *>          On exit, the improved solution matrix X.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] LDX
  120: *> \verbatim
  121: *>          LDX is INTEGER
  122: *>          The leading dimension of the array X.  LDX >= max(1,N).
  123: *> \endverbatim
  124: *>
  125: *> \param[out] FERR
  126: *> \verbatim
  127: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  128: *>          The estimated forward error bound for each solution vector
  129: *>          X(j) (the j-th column of the solution matrix X).
  130: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  131: *>          is an estimated upper bound for the magnitude of the largest
  132: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  133: *>          largest element in X(j).  The estimate is as reliable as
  134: *>          the estimate for RCOND, and is almost always a slight
  135: *>          overestimate of the true error.
  136: *> \endverbatim
  137: *>
  138: *> \param[out] BERR
  139: *> \verbatim
  140: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  141: *>          The componentwise relative backward error of each solution
  142: *>          vector X(j) (i.e., the smallest relative change in
  143: *>          any element of A or B that makes X(j) an exact solution).
  144: *> \endverbatim
  145: *>
  146: *> \param[out] WORK
  147: *> \verbatim
  148: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
  149: *> \endverbatim
  150: *>
  151: *> \param[out] IWORK
  152: *> \verbatim
  153: *>          IWORK is INTEGER array, dimension (N)
  154: *> \endverbatim
  155: *>
  156: *> \param[out] INFO
  157: *> \verbatim
  158: *>          INFO is INTEGER
  159: *>          = 0:  successful exit
  160: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  161: *> \endverbatim
  162: *
  163: *> \par Internal Parameters:
  164: *  =========================
  165: *>
  166: *> \verbatim
  167: *>  ITMAX is the maximum number of steps of iterative refinement.
  168: *> \endverbatim
  169: *
  170: *  Authors:
  171: *  ========
  172: *
  173: *> \author Univ. of Tennessee
  174: *> \author Univ. of California Berkeley
  175: *> \author Univ. of Colorado Denver
  176: *> \author NAG Ltd.
  177: *
  178: *> \ingroup doublePOcomputational
  179: *
  180: *  =====================================================================
  181:       SUBROUTINE DPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X,
  182:      $                   LDX, FERR, BERR, WORK, IWORK, INFO )
  183: *
  184: *  -- LAPACK computational routine --
  185: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  186: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  187: *
  188: *     .. Scalar Arguments ..
  189:       CHARACTER          UPLO
  190:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
  191: *     ..
  192: *     .. Array Arguments ..
  193:       INTEGER            IWORK( * )
  194:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  195:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  196: *     ..
  197: *
  198: *  =====================================================================
  199: *
  200: *     .. Parameters ..
  201:       INTEGER            ITMAX
  202:       PARAMETER          ( ITMAX = 5 )
  203:       DOUBLE PRECISION   ZERO
  204:       PARAMETER          ( ZERO = 0.0D+0 )
  205:       DOUBLE PRECISION   ONE
  206:       PARAMETER          ( ONE = 1.0D+0 )
  207:       DOUBLE PRECISION   TWO
  208:       PARAMETER          ( TWO = 2.0D+0 )
  209:       DOUBLE PRECISION   THREE
  210:       PARAMETER          ( THREE = 3.0D+0 )
  211: *     ..
  212: *     .. Local Scalars ..
  213:       LOGICAL            UPPER
  214:       INTEGER            COUNT, I, J, K, KASE, NZ
  215:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  216: *     ..
  217: *     .. Local Arrays ..
  218:       INTEGER            ISAVE( 3 )
  219: *     ..
  220: *     .. External Subroutines ..
  221:       EXTERNAL           DAXPY, DCOPY, DLACN2, DPOTRS, DSYMV, XERBLA
  222: *     ..
  223: *     .. Intrinsic Functions ..
  224:       INTRINSIC          ABS, MAX
  225: *     ..
  226: *     .. External Functions ..
  227:       LOGICAL            LSAME
  228:       DOUBLE PRECISION   DLAMCH
  229:       EXTERNAL           LSAME, DLAMCH
  230: *     ..
  231: *     .. Executable Statements ..
  232: *
  233: *     Test the input parameters.
  234: *
  235:       INFO = 0
  236:       UPPER = LSAME( UPLO, 'U' )
  237:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  238:          INFO = -1
  239:       ELSE IF( N.LT.0 ) THEN
  240:          INFO = -2
  241:       ELSE IF( NRHS.LT.0 ) THEN
  242:          INFO = -3
  243:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  244:          INFO = -5
  245:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  246:          INFO = -7
  247:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  248:          INFO = -9
  249:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  250:          INFO = -11
  251:       END IF
  252:       IF( INFO.NE.0 ) THEN
  253:          CALL XERBLA( 'DPORFS', -INFO )
  254:          RETURN
  255:       END IF
  256: *
  257: *     Quick return if possible
  258: *
  259:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  260:          DO 10 J = 1, NRHS
  261:             FERR( J ) = ZERO
  262:             BERR( J ) = ZERO
  263:    10    CONTINUE
  264:          RETURN
  265:       END IF
  266: *
  267: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  268: *
  269:       NZ = N + 1
  270:       EPS = DLAMCH( 'Epsilon' )
  271:       SAFMIN = DLAMCH( 'Safe minimum' )
  272:       SAFE1 = NZ*SAFMIN
  273:       SAFE2 = SAFE1 / EPS
  274: *
  275: *     Do for each right hand side
  276: *
  277:       DO 140 J = 1, NRHS
  278: *
  279:          COUNT = 1
  280:          LSTRES = THREE
  281:    20    CONTINUE
  282: *
  283: *        Loop until stopping criterion is satisfied.
  284: *
  285: *        Compute residual R = B - A * X
  286: *
  287:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  288:          CALL DSYMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE,
  289:      $               WORK( N+1 ), 1 )
  290: *
  291: *        Compute componentwise relative backward error from formula
  292: *
  293: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  294: *
  295: *        where abs(Z) is the componentwise absolute value of the matrix
  296: *        or vector Z.  If the i-th component of the denominator is less
  297: *        than SAFE2, then SAFE1 is added to the i-th components of the
  298: *        numerator and denominator before dividing.
  299: *
  300:          DO 30 I = 1, N
  301:             WORK( I ) = ABS( B( I, J ) )
  302:    30    CONTINUE
  303: *
  304: *        Compute abs(A)*abs(X) + abs(B).
  305: *
  306:          IF( UPPER ) THEN
  307:             DO 50 K = 1, N
  308:                S = ZERO
  309:                XK = ABS( X( K, J ) )
  310:                DO 40 I = 1, K - 1
  311:                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  312:                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  313:    40          CONTINUE
  314:                WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK + S
  315:    50       CONTINUE
  316:          ELSE
  317:             DO 70 K = 1, N
  318:                S = ZERO
  319:                XK = ABS( X( K, J ) )
  320:                WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK
  321:                DO 60 I = K + 1, N
  322:                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  323:                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  324:    60          CONTINUE
  325:                WORK( K ) = WORK( K ) + S
  326:    70       CONTINUE
  327:          END IF
  328:          S = ZERO
  329:          DO 80 I = 1, N
  330:             IF( WORK( I ).GT.SAFE2 ) THEN
  331:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  332:             ELSE
  333:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  334:      $             ( WORK( I )+SAFE1 ) )
  335:             END IF
  336:    80    CONTINUE
  337:          BERR( J ) = S
  338: *
  339: *        Test stopping criterion. Continue iterating if
  340: *           1) The residual BERR(J) is larger than machine epsilon, and
  341: *           2) BERR(J) decreased by at least a factor of 2 during the
  342: *              last iteration, and
  343: *           3) At most ITMAX iterations tried.
  344: *
  345:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  346:      $       COUNT.LE.ITMAX ) THEN
  347: *
  348: *           Update solution and try again.
  349: *
  350:             CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO )
  351:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  352:             LSTRES = BERR( J )
  353:             COUNT = COUNT + 1
  354:             GO TO 20
  355:          END IF
  356: *
  357: *        Bound error from formula
  358: *
  359: *        norm(X - XTRUE) / norm(X) .le. FERR =
  360: *        norm( abs(inv(A))*
  361: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  362: *
  363: *        where
  364: *          norm(Z) is the magnitude of the largest component of Z
  365: *          inv(A) is the inverse of A
  366: *          abs(Z) is the componentwise absolute value of the matrix or
  367: *             vector Z
  368: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  369: *          EPS is machine epsilon
  370: *
  371: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  372: *        is incremented by SAFE1 if the i-th component of
  373: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  374: *
  375: *        Use DLACN2 to estimate the infinity-norm of the matrix
  376: *           inv(A) * diag(W),
  377: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  378: *
  379:          DO 90 I = 1, N
  380:             IF( WORK( I ).GT.SAFE2 ) THEN
  381:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  382:             ELSE
  383:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  384:             END IF
  385:    90    CONTINUE
  386: *
  387:          KASE = 0
  388:   100    CONTINUE
  389:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  390:      $                KASE, ISAVE )
  391:          IF( KASE.NE.0 ) THEN
  392:             IF( KASE.EQ.1 ) THEN
  393: *
  394: *              Multiply by diag(W)*inv(A**T).
  395: *
  396:                CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO )
  397:                DO 110 I = 1, N
  398:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  399:   110          CONTINUE
  400:             ELSE IF( KASE.EQ.2 ) THEN
  401: *
  402: *              Multiply by inv(A)*diag(W).
  403: *
  404:                DO 120 I = 1, N
  405:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  406:   120          CONTINUE
  407:                CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO )
  408:             END IF
  409:             GO TO 100
  410:          END IF
  411: *
  412: *        Normalize error.
  413: *
  414:          LSTRES = ZERO
  415:          DO 130 I = 1, N
  416:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  417:   130    CONTINUE
  418:          IF( LSTRES.NE.ZERO )
  419:      $      FERR( J ) = FERR( J ) / LSTRES
  420: *
  421:   140 CONTINUE
  422: *
  423:       RETURN
  424: *
  425: *     End of DPORFS
  426: *
  427:       END

CVSweb interface <joel.bertrand@systella.fr>