File:  [local] / rpl / lapack / lapack / dpftrf.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:03 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DPFTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DPFTRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpftrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpftrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpftrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO
   25: *       INTEGER            N, INFO
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( 0: * )
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> DPFTRF computes the Cholesky factorization of a real symmetric
   37: *> positive definite matrix A.
   38: *>
   39: *> The factorization has the form
   40: *>    A = U**T * U,  if UPLO = 'U', or
   41: *>    A = L  * L**T,  if UPLO = 'L',
   42: *> where U is an upper triangular matrix and L is lower triangular.
   43: *>
   44: *> This is the block version of the algorithm, calling Level 3 BLAS.
   45: *> \endverbatim
   46: *
   47: *  Arguments:
   48: *  ==========
   49: *
   50: *> \param[in] TRANSR
   51: *> \verbatim
   52: *>          TRANSR is CHARACTER*1
   53: *>          = 'N':  The Normal TRANSR of RFP A is stored;
   54: *>          = 'T':  The Transpose TRANSR of RFP A is stored.
   55: *> \endverbatim
   56: *>
   57: *> \param[in] UPLO
   58: *> \verbatim
   59: *>          UPLO is CHARACTER*1
   60: *>          = 'U':  Upper triangle of RFP A is stored;
   61: *>          = 'L':  Lower triangle of RFP A is stored.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] N
   65: *> \verbatim
   66: *>          N is INTEGER
   67: *>          The order of the matrix A.  N >= 0.
   68: *> \endverbatim
   69: *>
   70: *> \param[in,out] A
   71: *> \verbatim
   72: *>          A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 );
   73: *>          On entry, the symmetric matrix A in RFP format. RFP format is
   74: *>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
   75: *>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   76: *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
   77: *>          the transpose of RFP A as defined when
   78: *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   79: *>          follows: If UPLO = 'U' the RFP A contains the NT elements of
   80: *>          upper packed A. If UPLO = 'L' the RFP A contains the elements
   81: *>          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
   82: *>          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
   83: *>          is odd. See the Note below for more details.
   84: *>
   85: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
   86: *>          factorization RFP A = U**T*U or RFP A = L*L**T.
   87: *> \endverbatim
   88: *>
   89: *> \param[out] INFO
   90: *> \verbatim
   91: *>          INFO is INTEGER
   92: *>          = 0:  successful exit
   93: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   94: *>          > 0:  if INFO = i, the leading minor of order i is not
   95: *>                positive definite, and the factorization could not be
   96: *>                completed.
   97: *> \endverbatim
   98: *
   99: *  Authors:
  100: *  ========
  101: *
  102: *> \author Univ. of Tennessee
  103: *> \author Univ. of California Berkeley
  104: *> \author Univ. of Colorado Denver
  105: *> \author NAG Ltd.
  106: *
  107: *> \ingroup doubleOTHERcomputational
  108: *
  109: *> \par Further Details:
  110: *  =====================
  111: *>
  112: *> \verbatim
  113: *>
  114: *>  We first consider Rectangular Full Packed (RFP) Format when N is
  115: *>  even. We give an example where N = 6.
  116: *>
  117: *>      AP is Upper             AP is Lower
  118: *>
  119: *>   00 01 02 03 04 05       00
  120: *>      11 12 13 14 15       10 11
  121: *>         22 23 24 25       20 21 22
  122: *>            33 34 35       30 31 32 33
  123: *>               44 45       40 41 42 43 44
  124: *>                  55       50 51 52 53 54 55
  125: *>
  126: *>
  127: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  128: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  129: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  130: *>  the transpose of the first three columns of AP upper.
  131: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  132: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  133: *>  the transpose of the last three columns of AP lower.
  134: *>  This covers the case N even and TRANSR = 'N'.
  135: *>
  136: *>         RFP A                   RFP A
  137: *>
  138: *>        03 04 05                33 43 53
  139: *>        13 14 15                00 44 54
  140: *>        23 24 25                10 11 55
  141: *>        33 34 35                20 21 22
  142: *>        00 44 45                30 31 32
  143: *>        01 11 55                40 41 42
  144: *>        02 12 22                50 51 52
  145: *>
  146: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  147: *>  transpose of RFP A above. One therefore gets:
  148: *>
  149: *>
  150: *>           RFP A                   RFP A
  151: *>
  152: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  153: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  154: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  155: *>
  156: *>
  157: *>  We then consider Rectangular Full Packed (RFP) Format when N is
  158: *>  odd. We give an example where N = 5.
  159: *>
  160: *>     AP is Upper                 AP is Lower
  161: *>
  162: *>   00 01 02 03 04              00
  163: *>      11 12 13 14              10 11
  164: *>         22 23 24              20 21 22
  165: *>            33 34              30 31 32 33
  166: *>               44              40 41 42 43 44
  167: *>
  168: *>
  169: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  170: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  171: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  172: *>  the transpose of the first two columns of AP upper.
  173: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  174: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  175: *>  the transpose of the last two columns of AP lower.
  176: *>  This covers the case N odd and TRANSR = 'N'.
  177: *>
  178: *>         RFP A                   RFP A
  179: *>
  180: *>        02 03 04                00 33 43
  181: *>        12 13 14                10 11 44
  182: *>        22 23 24                20 21 22
  183: *>        00 33 34                30 31 32
  184: *>        01 11 44                40 41 42
  185: *>
  186: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  187: *>  transpose of RFP A above. One therefore gets:
  188: *>
  189: *>           RFP A                   RFP A
  190: *>
  191: *>     02 12 22 00 01             00 10 20 30 40 50
  192: *>     03 13 23 33 11             33 11 21 31 41 51
  193: *>     04 14 24 34 44             43 44 22 32 42 52
  194: *> \endverbatim
  195: *>
  196: *  =====================================================================
  197:       SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
  198: *
  199: *  -- LAPACK computational routine --
  200: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  201: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  202: *
  203: *     .. Scalar Arguments ..
  204:       CHARACTER          TRANSR, UPLO
  205:       INTEGER            N, INFO
  206: *     ..
  207: *     .. Array Arguments ..
  208:       DOUBLE PRECISION   A( 0: * )
  209: *
  210: *  =====================================================================
  211: *
  212: *     .. Parameters ..
  213:       DOUBLE PRECISION   ONE
  214:       PARAMETER          ( ONE = 1.0D+0 )
  215: *     ..
  216: *     .. Local Scalars ..
  217:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  218:       INTEGER            N1, N2, K
  219: *     ..
  220: *     .. External Functions ..
  221:       LOGICAL            LSAME
  222:       EXTERNAL           LSAME
  223: *     ..
  224: *     .. External Subroutines ..
  225:       EXTERNAL           XERBLA, DSYRK, DPOTRF, DTRSM
  226: *     ..
  227: *     .. Intrinsic Functions ..
  228:       INTRINSIC          MOD
  229: *     ..
  230: *     .. Executable Statements ..
  231: *
  232: *     Test the input parameters.
  233: *
  234:       INFO = 0
  235:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  236:       LOWER = LSAME( UPLO, 'L' )
  237:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  238:          INFO = -1
  239:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  240:          INFO = -2
  241:       ELSE IF( N.LT.0 ) THEN
  242:          INFO = -3
  243:       END IF
  244:       IF( INFO.NE.0 ) THEN
  245:          CALL XERBLA( 'DPFTRF', -INFO )
  246:          RETURN
  247:       END IF
  248: *
  249: *     Quick return if possible
  250: *
  251:       IF( N.EQ.0 )
  252:      $   RETURN
  253: *
  254: *     If N is odd, set NISODD = .TRUE.
  255: *     If N is even, set K = N/2 and NISODD = .FALSE.
  256: *
  257:       IF( MOD( N, 2 ).EQ.0 ) THEN
  258:          K = N / 2
  259:          NISODD = .FALSE.
  260:       ELSE
  261:          NISODD = .TRUE.
  262:       END IF
  263: *
  264: *     Set N1 and N2 depending on LOWER
  265: *
  266:       IF( LOWER ) THEN
  267:          N2 = N / 2
  268:          N1 = N - N2
  269:       ELSE
  270:          N1 = N / 2
  271:          N2 = N - N1
  272:       END IF
  273: *
  274: *     start execution: there are eight cases
  275: *
  276:       IF( NISODD ) THEN
  277: *
  278: *        N is odd
  279: *
  280:          IF( NORMALTRANSR ) THEN
  281: *
  282: *           N is odd and TRANSR = 'N'
  283: *
  284:             IF( LOWER ) THEN
  285: *
  286: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  287: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  288: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
  289: *
  290:                CALL DPOTRF( 'L', N1, A( 0 ), N, INFO )
  291:                IF( INFO.GT.0 )
  292:      $            RETURN
  293:                CALL DTRSM( 'R', 'L', 'T', 'N', N2, N1, ONE, A( 0 ), N,
  294:      $                     A( N1 ), N )
  295:                CALL DSYRK( 'U', 'N', N2, N1, -ONE, A( N1 ), N, ONE,
  296:      $                     A( N ), N )
  297:                CALL DPOTRF( 'U', N2, A( N ), N, INFO )
  298:                IF( INFO.GT.0 )
  299:      $            INFO = INFO + N1
  300: *
  301:             ELSE
  302: *
  303: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  304: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  305: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  306: *
  307:                CALL DPOTRF( 'L', N1, A( N2 ), N, INFO )
  308:                IF( INFO.GT.0 )
  309:      $            RETURN
  310:                CALL DTRSM( 'L', 'L', 'N', 'N', N1, N2, ONE, A( N2 ), N,
  311:      $                     A( 0 ), N )
  312:                CALL DSYRK( 'U', 'T', N2, N1, -ONE, A( 0 ), N, ONE,
  313:      $                     A( N1 ), N )
  314:                CALL DPOTRF( 'U', N2, A( N1 ), N, INFO )
  315:                IF( INFO.GT.0 )
  316:      $            INFO = INFO + N1
  317: *
  318:             END IF
  319: *
  320:          ELSE
  321: *
  322: *           N is odd and TRANSR = 'T'
  323: *
  324:             IF( LOWER ) THEN
  325: *
  326: *              SRPA for LOWER, TRANSPOSE and N is odd
  327: *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  328: *              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
  329: *
  330:                CALL DPOTRF( 'U', N1, A( 0 ), N1, INFO )
  331:                IF( INFO.GT.0 )
  332:      $            RETURN
  333:                CALL DTRSM( 'L', 'U', 'T', 'N', N1, N2, ONE, A( 0 ), N1,
  334:      $                     A( N1*N1 ), N1 )
  335:                CALL DSYRK( 'L', 'T', N2, N1, -ONE, A( N1*N1 ), N1, ONE,
  336:      $                     A( 1 ), N1 )
  337:                CALL DPOTRF( 'L', N2, A( 1 ), N1, INFO )
  338:                IF( INFO.GT.0 )
  339:      $            INFO = INFO + N1
  340: *
  341:             ELSE
  342: *
  343: *              SRPA for UPPER, TRANSPOSE and N is odd
  344: *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  345: *              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
  346: *
  347:                CALL DPOTRF( 'U', N1, A( N2*N2 ), N2, INFO )
  348:                IF( INFO.GT.0 )
  349:      $            RETURN
  350:                CALL DTRSM( 'R', 'U', 'N', 'N', N2, N1, ONE, A( N2*N2 ),
  351:      $                     N2, A( 0 ), N2 )
  352:                CALL DSYRK( 'L', 'N', N2, N1, -ONE, A( 0 ), N2, ONE,
  353:      $                     A( N1*N2 ), N2 )
  354:                CALL DPOTRF( 'L', N2, A( N1*N2 ), N2, INFO )
  355:                IF( INFO.GT.0 )
  356:      $            INFO = INFO + N1
  357: *
  358:             END IF
  359: *
  360:          END IF
  361: *
  362:       ELSE
  363: *
  364: *        N is even
  365: *
  366:          IF( NORMALTRANSR ) THEN
  367: *
  368: *           N is even and TRANSR = 'N'
  369: *
  370:             IF( LOWER ) THEN
  371: *
  372: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  373: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  374: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  375: *
  376:                CALL DPOTRF( 'L', K, A( 1 ), N+1, INFO )
  377:                IF( INFO.GT.0 )
  378:      $            RETURN
  379:                CALL DTRSM( 'R', 'L', 'T', 'N', K, K, ONE, A( 1 ), N+1,
  380:      $                     A( K+1 ), N+1 )
  381:                CALL DSYRK( 'U', 'N', K, K, -ONE, A( K+1 ), N+1, ONE,
  382:      $                     A( 0 ), N+1 )
  383:                CALL DPOTRF( 'U', K, A( 0 ), N+1, INFO )
  384:                IF( INFO.GT.0 )
  385:      $            INFO = INFO + K
  386: *
  387:             ELSE
  388: *
  389: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  390: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  391: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  392: *
  393:                CALL DPOTRF( 'L', K, A( K+1 ), N+1, INFO )
  394:                IF( INFO.GT.0 )
  395:      $            RETURN
  396:                CALL DTRSM( 'L', 'L', 'N', 'N', K, K, ONE, A( K+1 ),
  397:      $                     N+1, A( 0 ), N+1 )
  398:                CALL DSYRK( 'U', 'T', K, K, -ONE, A( 0 ), N+1, ONE,
  399:      $                     A( K ), N+1 )
  400:                CALL DPOTRF( 'U', K, A( K ), N+1, INFO )
  401:                IF( INFO.GT.0 )
  402:      $            INFO = INFO + K
  403: *
  404:             END IF
  405: *
  406:          ELSE
  407: *
  408: *           N is even and TRANSR = 'T'
  409: *
  410:             IF( LOWER ) THEN
  411: *
  412: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  413: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  414: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  415: *
  416:                CALL DPOTRF( 'U', K, A( 0+K ), K, INFO )
  417:                IF( INFO.GT.0 )
  418:      $            RETURN
  419:                CALL DTRSM( 'L', 'U', 'T', 'N', K, K, ONE, A( K ), N1,
  420:      $                     A( K*( K+1 ) ), K )
  421:                CALL DSYRK( 'L', 'T', K, K, -ONE, A( K*( K+1 ) ), K, ONE,
  422:      $                     A( 0 ), K )
  423:                CALL DPOTRF( 'L', K, A( 0 ), K, INFO )
  424:                IF( INFO.GT.0 )
  425:      $            INFO = INFO + K
  426: *
  427:             ELSE
  428: *
  429: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  430: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  431: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  432: *
  433:                CALL DPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO )
  434:                IF( INFO.GT.0 )
  435:      $            RETURN
  436:                CALL DTRSM( 'R', 'U', 'N', 'N', K, K, ONE,
  437:      $                     A( K*( K+1 ) ), K, A( 0 ), K )
  438:                CALL DSYRK( 'L', 'N', K, K, -ONE, A( 0 ), K, ONE,
  439:      $                     A( K*K ), K )
  440:                CALL DPOTRF( 'L', K, A( K*K ), K, INFO )
  441:                IF( INFO.GT.0 )
  442:      $            INFO = INFO + K
  443: *
  444:             END IF
  445: *
  446:          END IF
  447: *
  448:       END IF
  449: *
  450:       RETURN
  451: *
  452: *     End of DPFTRF
  453: *
  454:       END

CVSweb interface <joel.bertrand@systella.fr>