Annotation of rpl/lapack/lapack/dpftrf.f, revision 1.16

1.7       bertrand    1: *> \brief \b DPFTRF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
1.1       bertrand    4: *
1.13      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
1.7       bertrand    8: *> \htmlonly
1.13      bertrand    9: *> Download DPFTRF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpftrf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpftrf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpftrf.f">
1.7       bertrand   15: *> [TXT]</a>
1.13      bertrand   16: *> \endhtmlonly
1.7       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
1.13      bertrand   22: *
1.7       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          TRANSR, UPLO
                     25: *       INTEGER            N, INFO
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   A( 0: * )
1.13      bertrand   29: *
1.7       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DPFTRF computes the Cholesky factorization of a real symmetric
                     37: *> positive definite matrix A.
                     38: *>
                     39: *> The factorization has the form
                     40: *>    A = U**T * U,  if UPLO = 'U', or
                     41: *>    A = L  * L**T,  if UPLO = 'L',
                     42: *> where U is an upper triangular matrix and L is lower triangular.
                     43: *>
                     44: *> This is the block version of the algorithm, calling Level 3 BLAS.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] TRANSR
                     51: *> \verbatim
                     52: *>          TRANSR is CHARACTER*1
                     53: *>          = 'N':  The Normal TRANSR of RFP A is stored;
                     54: *>          = 'T':  The Transpose TRANSR of RFP A is stored.
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] UPLO
                     58: *> \verbatim
                     59: *>          UPLO is CHARACTER*1
                     60: *>          = 'U':  Upper triangle of RFP A is stored;
                     61: *>          = 'L':  Lower triangle of RFP A is stored.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] N
                     65: *> \verbatim
                     66: *>          N is INTEGER
                     67: *>          The order of the matrix A.  N >= 0.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in,out] A
                     71: *> \verbatim
                     72: *>          A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 );
                     73: *>          On entry, the symmetric matrix A in RFP format. RFP format is
                     74: *>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
                     75: *>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
                     76: *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
                     77: *>          the transpose of RFP A as defined when
                     78: *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
                     79: *>          follows: If UPLO = 'U' the RFP A contains the NT elements of
                     80: *>          upper packed A. If UPLO = 'L' the RFP A contains the elements
                     81: *>          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
                     82: *>          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
                     83: *>          is odd. See the Note below for more details.
                     84: *>
                     85: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
                     86: *>          factorization RFP A = U**T*U or RFP A = L*L**T.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[out] INFO
                     90: *> \verbatim
                     91: *>          INFO is INTEGER
                     92: *>          = 0:  successful exit
                     93: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                     94: *>          > 0:  if INFO = i, the leading minor of order i is not
                     95: *>                positive definite, and the factorization could not be
                     96: *>                completed.
                     97: *> \endverbatim
                     98: *
                     99: *  Authors:
                    100: *  ========
                    101: *
1.13      bertrand  102: *> \author Univ. of Tennessee
                    103: *> \author Univ. of California Berkeley
                    104: *> \author Univ. of Colorado Denver
                    105: *> \author NAG Ltd.
1.7       bertrand  106: *
                    107: *> \ingroup doubleOTHERcomputational
                    108: *
                    109: *> \par Further Details:
                    110: *  =====================
                    111: *>
                    112: *> \verbatim
                    113: *>
                    114: *>  We first consider Rectangular Full Packed (RFP) Format when N is
                    115: *>  even. We give an example where N = 6.
                    116: *>
                    117: *>      AP is Upper             AP is Lower
                    118: *>
                    119: *>   00 01 02 03 04 05       00
                    120: *>      11 12 13 14 15       10 11
                    121: *>         22 23 24 25       20 21 22
                    122: *>            33 34 35       30 31 32 33
                    123: *>               44 45       40 41 42 43 44
                    124: *>                  55       50 51 52 53 54 55
                    125: *>
                    126: *>
                    127: *>  Let TRANSR = 'N'. RFP holds AP as follows:
                    128: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
                    129: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
                    130: *>  the transpose of the first three columns of AP upper.
                    131: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
                    132: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
                    133: *>  the transpose of the last three columns of AP lower.
                    134: *>  This covers the case N even and TRANSR = 'N'.
                    135: *>
                    136: *>         RFP A                   RFP A
                    137: *>
                    138: *>        03 04 05                33 43 53
                    139: *>        13 14 15                00 44 54
                    140: *>        23 24 25                10 11 55
                    141: *>        33 34 35                20 21 22
                    142: *>        00 44 45                30 31 32
                    143: *>        01 11 55                40 41 42
                    144: *>        02 12 22                50 51 52
                    145: *>
                    146: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
                    147: *>  transpose of RFP A above. One therefore gets:
                    148: *>
                    149: *>
                    150: *>           RFP A                   RFP A
                    151: *>
                    152: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
                    153: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
                    154: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
                    155: *>
                    156: *>
                    157: *>  We then consider Rectangular Full Packed (RFP) Format when N is
                    158: *>  odd. We give an example where N = 5.
                    159: *>
                    160: *>     AP is Upper                 AP is Lower
                    161: *>
                    162: *>   00 01 02 03 04              00
                    163: *>      11 12 13 14              10 11
                    164: *>         22 23 24              20 21 22
                    165: *>            33 34              30 31 32 33
                    166: *>               44              40 41 42 43 44
                    167: *>
                    168: *>
                    169: *>  Let TRANSR = 'N'. RFP holds AP as follows:
                    170: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
                    171: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
                    172: *>  the transpose of the first two columns of AP upper.
                    173: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
                    174: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
                    175: *>  the transpose of the last two columns of AP lower.
                    176: *>  This covers the case N odd and TRANSR = 'N'.
                    177: *>
                    178: *>         RFP A                   RFP A
                    179: *>
                    180: *>        02 03 04                00 33 43
                    181: *>        12 13 14                10 11 44
                    182: *>        22 23 24                20 21 22
                    183: *>        00 33 34                30 31 32
                    184: *>        01 11 44                40 41 42
                    185: *>
                    186: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
                    187: *>  transpose of RFP A above. One therefore gets:
                    188: *>
                    189: *>           RFP A                   RFP A
                    190: *>
                    191: *>     02 12 22 00 01             00 10 20 30 40 50
                    192: *>     03 13 23 33 11             33 11 21 31 41 51
                    193: *>     04 14 24 34 44             43 44 22 32 42 52
                    194: *> \endverbatim
                    195: *>
                    196: *  =====================================================================
                    197:       SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
1.1       bertrand  198: *
1.16    ! bertrand  199: *  -- LAPACK computational routine --
1.1       bertrand  200: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    201: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    202: *
                    203: *     .. Scalar Arguments ..
                    204:       CHARACTER          TRANSR, UPLO
                    205:       INTEGER            N, INFO
                    206: *     ..
                    207: *     .. Array Arguments ..
                    208:       DOUBLE PRECISION   A( 0: * )
                    209: *
                    210: *  =====================================================================
                    211: *
                    212: *     .. Parameters ..
                    213:       DOUBLE PRECISION   ONE
                    214:       PARAMETER          ( ONE = 1.0D+0 )
                    215: *     ..
                    216: *     .. Local Scalars ..
                    217:       LOGICAL            LOWER, NISODD, NORMALTRANSR
                    218:       INTEGER            N1, N2, K
                    219: *     ..
                    220: *     .. External Functions ..
                    221:       LOGICAL            LSAME
                    222:       EXTERNAL           LSAME
                    223: *     ..
                    224: *     .. External Subroutines ..
                    225:       EXTERNAL           XERBLA, DSYRK, DPOTRF, DTRSM
                    226: *     ..
                    227: *     .. Intrinsic Functions ..
                    228:       INTRINSIC          MOD
                    229: *     ..
                    230: *     .. Executable Statements ..
                    231: *
                    232: *     Test the input parameters.
                    233: *
                    234:       INFO = 0
                    235:       NORMALTRANSR = LSAME( TRANSR, 'N' )
                    236:       LOWER = LSAME( UPLO, 'L' )
                    237:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
                    238:          INFO = -1
                    239:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
                    240:          INFO = -2
                    241:       ELSE IF( N.LT.0 ) THEN
                    242:          INFO = -3
                    243:       END IF
                    244:       IF( INFO.NE.0 ) THEN
                    245:          CALL XERBLA( 'DPFTRF', -INFO )
                    246:          RETURN
                    247:       END IF
                    248: *
                    249: *     Quick return if possible
                    250: *
                    251:       IF( N.EQ.0 )
1.6       bertrand  252:      $   RETURN
1.1       bertrand  253: *
                    254: *     If N is odd, set NISODD = .TRUE.
                    255: *     If N is even, set K = N/2 and NISODD = .FALSE.
                    256: *
                    257:       IF( MOD( N, 2 ).EQ.0 ) THEN
                    258:          K = N / 2
                    259:          NISODD = .FALSE.
                    260:       ELSE
                    261:          NISODD = .TRUE.
                    262:       END IF
                    263: *
                    264: *     Set N1 and N2 depending on LOWER
                    265: *
                    266:       IF( LOWER ) THEN
                    267:          N2 = N / 2
                    268:          N1 = N - N2
                    269:       ELSE
                    270:          N1 = N / 2
                    271:          N2 = N - N1
                    272:       END IF
                    273: *
                    274: *     start execution: there are eight cases
                    275: *
                    276:       IF( NISODD ) THEN
                    277: *
                    278: *        N is odd
                    279: *
                    280:          IF( NORMALTRANSR ) THEN
                    281: *
                    282: *           N is odd and TRANSR = 'N'
                    283: *
                    284:             IF( LOWER ) THEN
                    285: *
                    286: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
                    287: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
                    288: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
                    289: *
                    290:                CALL DPOTRF( 'L', N1, A( 0 ), N, INFO )
                    291:                IF( INFO.GT.0 )
1.6       bertrand  292:      $            RETURN
1.1       bertrand  293:                CALL DTRSM( 'R', 'L', 'T', 'N', N2, N1, ONE, A( 0 ), N,
1.6       bertrand  294:      $                     A( N1 ), N )
1.1       bertrand  295:                CALL DSYRK( 'U', 'N', N2, N1, -ONE, A( N1 ), N, ONE,
1.6       bertrand  296:      $                     A( N ), N )
1.1       bertrand  297:                CALL DPOTRF( 'U', N2, A( N ), N, INFO )
                    298:                IF( INFO.GT.0 )
1.6       bertrand  299:      $            INFO = INFO + N1
1.1       bertrand  300: *
                    301:             ELSE
                    302: *
                    303: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
                    304: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
                    305: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
                    306: *
                    307:                CALL DPOTRF( 'L', N1, A( N2 ), N, INFO )
                    308:                IF( INFO.GT.0 )
1.6       bertrand  309:      $            RETURN
1.1       bertrand  310:                CALL DTRSM( 'L', 'L', 'N', 'N', N1, N2, ONE, A( N2 ), N,
1.6       bertrand  311:      $                     A( 0 ), N )
1.1       bertrand  312:                CALL DSYRK( 'U', 'T', N2, N1, -ONE, A( 0 ), N, ONE,
1.6       bertrand  313:      $                     A( N1 ), N )
1.1       bertrand  314:                CALL DPOTRF( 'U', N2, A( N1 ), N, INFO )
                    315:                IF( INFO.GT.0 )
1.6       bertrand  316:      $            INFO = INFO + N1
1.1       bertrand  317: *
                    318:             END IF
                    319: *
                    320:          ELSE
                    321: *
                    322: *           N is odd and TRANSR = 'T'
                    323: *
                    324:             IF( LOWER ) THEN
                    325: *
                    326: *              SRPA for LOWER, TRANSPOSE and N is odd
                    327: *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
                    328: *              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
                    329: *
                    330:                CALL DPOTRF( 'U', N1, A( 0 ), N1, INFO )
                    331:                IF( INFO.GT.0 )
1.6       bertrand  332:      $            RETURN
1.1       bertrand  333:                CALL DTRSM( 'L', 'U', 'T', 'N', N1, N2, ONE, A( 0 ), N1,
1.6       bertrand  334:      $                     A( N1*N1 ), N1 )
1.1       bertrand  335:                CALL DSYRK( 'L', 'T', N2, N1, -ONE, A( N1*N1 ), N1, ONE,
1.6       bertrand  336:      $                     A( 1 ), N1 )
1.1       bertrand  337:                CALL DPOTRF( 'L', N2, A( 1 ), N1, INFO )
                    338:                IF( INFO.GT.0 )
1.6       bertrand  339:      $            INFO = INFO + N1
1.1       bertrand  340: *
                    341:             ELSE
                    342: *
                    343: *              SRPA for UPPER, TRANSPOSE and N is odd
                    344: *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
                    345: *              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
                    346: *
                    347:                CALL DPOTRF( 'U', N1, A( N2*N2 ), N2, INFO )
                    348:                IF( INFO.GT.0 )
1.6       bertrand  349:      $            RETURN
1.1       bertrand  350:                CALL DTRSM( 'R', 'U', 'N', 'N', N2, N1, ONE, A( N2*N2 ),
1.6       bertrand  351:      $                     N2, A( 0 ), N2 )
1.1       bertrand  352:                CALL DSYRK( 'L', 'N', N2, N1, -ONE, A( 0 ), N2, ONE,
1.6       bertrand  353:      $                     A( N1*N2 ), N2 )
1.1       bertrand  354:                CALL DPOTRF( 'L', N2, A( N1*N2 ), N2, INFO )
                    355:                IF( INFO.GT.0 )
1.6       bertrand  356:      $            INFO = INFO + N1
1.1       bertrand  357: *
                    358:             END IF
                    359: *
                    360:          END IF
                    361: *
                    362:       ELSE
                    363: *
                    364: *        N is even
                    365: *
                    366:          IF( NORMALTRANSR ) THEN
                    367: *
                    368: *           N is even and TRANSR = 'N'
                    369: *
                    370:             IF( LOWER ) THEN
                    371: *
                    372: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
                    373: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
                    374: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
                    375: *
                    376:                CALL DPOTRF( 'L', K, A( 1 ), N+1, INFO )
                    377:                IF( INFO.GT.0 )
1.6       bertrand  378:      $            RETURN
1.1       bertrand  379:                CALL DTRSM( 'R', 'L', 'T', 'N', K, K, ONE, A( 1 ), N+1,
1.6       bertrand  380:      $                     A( K+1 ), N+1 )
1.1       bertrand  381:                CALL DSYRK( 'U', 'N', K, K, -ONE, A( K+1 ), N+1, ONE,
1.6       bertrand  382:      $                     A( 0 ), N+1 )
1.1       bertrand  383:                CALL DPOTRF( 'U', K, A( 0 ), N+1, INFO )
                    384:                IF( INFO.GT.0 )
1.6       bertrand  385:      $            INFO = INFO + K
1.1       bertrand  386: *
                    387:             ELSE
                    388: *
                    389: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
                    390: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
                    391: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
                    392: *
                    393:                CALL DPOTRF( 'L', K, A( K+1 ), N+1, INFO )
                    394:                IF( INFO.GT.0 )
1.6       bertrand  395:      $            RETURN
1.1       bertrand  396:                CALL DTRSM( 'L', 'L', 'N', 'N', K, K, ONE, A( K+1 ),
1.6       bertrand  397:      $                     N+1, A( 0 ), N+1 )
1.1       bertrand  398:                CALL DSYRK( 'U', 'T', K, K, -ONE, A( 0 ), N+1, ONE,
1.6       bertrand  399:      $                     A( K ), N+1 )
1.1       bertrand  400:                CALL DPOTRF( 'U', K, A( K ), N+1, INFO )
                    401:                IF( INFO.GT.0 )
1.6       bertrand  402:      $            INFO = INFO + K
1.1       bertrand  403: *
                    404:             END IF
                    405: *
                    406:          ELSE
                    407: *
                    408: *           N is even and TRANSR = 'T'
                    409: *
                    410:             IF( LOWER ) THEN
                    411: *
                    412: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
                    413: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
                    414: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
                    415: *
                    416:                CALL DPOTRF( 'U', K, A( 0+K ), K, INFO )
                    417:                IF( INFO.GT.0 )
1.6       bertrand  418:      $            RETURN
1.1       bertrand  419:                CALL DTRSM( 'L', 'U', 'T', 'N', K, K, ONE, A( K ), N1,
1.6       bertrand  420:      $                     A( K*( K+1 ) ), K )
1.1       bertrand  421:                CALL DSYRK( 'L', 'T', K, K, -ONE, A( K*( K+1 ) ), K, ONE,
1.6       bertrand  422:      $                     A( 0 ), K )
1.1       bertrand  423:                CALL DPOTRF( 'L', K, A( 0 ), K, INFO )
                    424:                IF( INFO.GT.0 )
1.6       bertrand  425:      $            INFO = INFO + K
1.1       bertrand  426: *
                    427:             ELSE
                    428: *
                    429: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
                    430: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
                    431: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
                    432: *
                    433:                CALL DPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO )
                    434:                IF( INFO.GT.0 )
1.6       bertrand  435:      $            RETURN
1.1       bertrand  436:                CALL DTRSM( 'R', 'U', 'N', 'N', K, K, ONE,
1.6       bertrand  437:      $                     A( K*( K+1 ) ), K, A( 0 ), K )
1.1       bertrand  438:                CALL DSYRK( 'L', 'N', K, K, -ONE, A( 0 ), K, ONE,
1.6       bertrand  439:      $                     A( K*K ), K )
1.1       bertrand  440:                CALL DPOTRF( 'L', K, A( K*K ), K, INFO )
                    441:                IF( INFO.GT.0 )
1.6       bertrand  442:      $            INFO = INFO + K
1.1       bertrand  443: *
                    444:             END IF
                    445: *
                    446:          END IF
                    447: *
                    448:       END IF
                    449: *
                    450:       RETURN
                    451: *
                    452: *     End of DPFTRF
                    453: *
                    454:       END

CVSweb interface <joel.bertrand@systella.fr>