File:  [local] / rpl / lapack / lapack / dpbrfs.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:03 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DPBRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DPBRFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbrfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbrfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbrfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
   22: *                          LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   31: *      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DPBRFS improves the computed solution to a system of linear
   41: *> equations when the coefficient matrix is symmetric positive definite
   42: *> and banded, and provides error bounds and backward error estimates
   43: *> for the solution.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>          = 'U':  Upper triangle of A is stored;
   53: *>          = 'L':  Lower triangle of A is stored.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] KD
   63: *> \verbatim
   64: *>          KD is INTEGER
   65: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   66: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] NRHS
   70: *> \verbatim
   71: *>          NRHS is INTEGER
   72: *>          The number of right hand sides, i.e., the number of columns
   73: *>          of the matrices B and X.  NRHS >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] AB
   77: *> \verbatim
   78: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
   79: *>          The upper or lower triangle of the symmetric band matrix A,
   80: *>          stored in the first KD+1 rows of the array.  The j-th column
   81: *>          of A is stored in the j-th column of the array AB as follows:
   82: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   83: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   84: *> \endverbatim
   85: *>
   86: *> \param[in] LDAB
   87: *> \verbatim
   88: *>          LDAB is INTEGER
   89: *>          The leading dimension of the array AB.  LDAB >= KD+1.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] AFB
   93: *> \verbatim
   94: *>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
   95: *>          The triangular factor U or L from the Cholesky factorization
   96: *>          A = U**T*U or A = L*L**T of the band matrix A as computed by
   97: *>          DPBTRF, in the same storage format as A (see AB).
   98: *> \endverbatim
   99: *>
  100: *> \param[in] LDAFB
  101: *> \verbatim
  102: *>          LDAFB is INTEGER
  103: *>          The leading dimension of the array AFB.  LDAFB >= KD+1.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] B
  107: *> \verbatim
  108: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  109: *>          The right hand side matrix B.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDB
  113: *> \verbatim
  114: *>          LDB is INTEGER
  115: *>          The leading dimension of the array B.  LDB >= max(1,N).
  116: *> \endverbatim
  117: *>
  118: *> \param[in,out] X
  119: *> \verbatim
  120: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  121: *>          On entry, the solution matrix X, as computed by DPBTRS.
  122: *>          On exit, the improved solution matrix X.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LDX
  126: *> \verbatim
  127: *>          LDX is INTEGER
  128: *>          The leading dimension of the array X.  LDX >= max(1,N).
  129: *> \endverbatim
  130: *>
  131: *> \param[out] FERR
  132: *> \verbatim
  133: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  134: *>          The estimated forward error bound for each solution vector
  135: *>          X(j) (the j-th column of the solution matrix X).
  136: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  137: *>          is an estimated upper bound for the magnitude of the largest
  138: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  139: *>          largest element in X(j).  The estimate is as reliable as
  140: *>          the estimate for RCOND, and is almost always a slight
  141: *>          overestimate of the true error.
  142: *> \endverbatim
  143: *>
  144: *> \param[out] BERR
  145: *> \verbatim
  146: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  147: *>          The componentwise relative backward error of each solution
  148: *>          vector X(j) (i.e., the smallest relative change in
  149: *>          any element of A or B that makes X(j) an exact solution).
  150: *> \endverbatim
  151: *>
  152: *> \param[out] WORK
  153: *> \verbatim
  154: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
  155: *> \endverbatim
  156: *>
  157: *> \param[out] IWORK
  158: *> \verbatim
  159: *>          IWORK is INTEGER array, dimension (N)
  160: *> \endverbatim
  161: *>
  162: *> \param[out] INFO
  163: *> \verbatim
  164: *>          INFO is INTEGER
  165: *>          = 0:  successful exit
  166: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  167: *> \endverbatim
  168: *
  169: *> \par Internal Parameters:
  170: *  =========================
  171: *>
  172: *> \verbatim
  173: *>  ITMAX is the maximum number of steps of iterative refinement.
  174: *> \endverbatim
  175: *
  176: *  Authors:
  177: *  ========
  178: *
  179: *> \author Univ. of Tennessee
  180: *> \author Univ. of California Berkeley
  181: *> \author Univ. of Colorado Denver
  182: *> \author NAG Ltd.
  183: *
  184: *> \ingroup doubleOTHERcomputational
  185: *
  186: *  =====================================================================
  187:       SUBROUTINE DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
  188:      $                   LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
  189: *
  190: *  -- LAPACK computational routine --
  191: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  192: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  193: *
  194: *     .. Scalar Arguments ..
  195:       CHARACTER          UPLO
  196:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
  197: *     ..
  198: *     .. Array Arguments ..
  199:       INTEGER            IWORK( * )
  200:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  201:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  202: *     ..
  203: *
  204: *  =====================================================================
  205: *
  206: *     .. Parameters ..
  207:       INTEGER            ITMAX
  208:       PARAMETER          ( ITMAX = 5 )
  209:       DOUBLE PRECISION   ZERO
  210:       PARAMETER          ( ZERO = 0.0D+0 )
  211:       DOUBLE PRECISION   ONE
  212:       PARAMETER          ( ONE = 1.0D+0 )
  213:       DOUBLE PRECISION   TWO
  214:       PARAMETER          ( TWO = 2.0D+0 )
  215:       DOUBLE PRECISION   THREE
  216:       PARAMETER          ( THREE = 3.0D+0 )
  217: *     ..
  218: *     .. Local Scalars ..
  219:       LOGICAL            UPPER
  220:       INTEGER            COUNT, I, J, K, KASE, L, NZ
  221:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  222: *     ..
  223: *     .. Local Arrays ..
  224:       INTEGER            ISAVE( 3 )
  225: *     ..
  226: *     .. External Subroutines ..
  227:       EXTERNAL           DAXPY, DCOPY, DLACN2, DPBTRS, DSBMV, XERBLA
  228: *     ..
  229: *     .. Intrinsic Functions ..
  230:       INTRINSIC          ABS, MAX, MIN
  231: *     ..
  232: *     .. External Functions ..
  233:       LOGICAL            LSAME
  234:       DOUBLE PRECISION   DLAMCH
  235:       EXTERNAL           LSAME, DLAMCH
  236: *     ..
  237: *     .. Executable Statements ..
  238: *
  239: *     Test the input parameters.
  240: *
  241:       INFO = 0
  242:       UPPER = LSAME( UPLO, 'U' )
  243:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  244:          INFO = -1
  245:       ELSE IF( N.LT.0 ) THEN
  246:          INFO = -2
  247:       ELSE IF( KD.LT.0 ) THEN
  248:          INFO = -3
  249:       ELSE IF( NRHS.LT.0 ) THEN
  250:          INFO = -4
  251:       ELSE IF( LDAB.LT.KD+1 ) THEN
  252:          INFO = -6
  253:       ELSE IF( LDAFB.LT.KD+1 ) THEN
  254:          INFO = -8
  255:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  256:          INFO = -10
  257:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  258:          INFO = -12
  259:       END IF
  260:       IF( INFO.NE.0 ) THEN
  261:          CALL XERBLA( 'DPBRFS', -INFO )
  262:          RETURN
  263:       END IF
  264: *
  265: *     Quick return if possible
  266: *
  267:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  268:          DO 10 J = 1, NRHS
  269:             FERR( J ) = ZERO
  270:             BERR( J ) = ZERO
  271:    10    CONTINUE
  272:          RETURN
  273:       END IF
  274: *
  275: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  276: *
  277:       NZ = MIN( N+1, 2*KD+2 )
  278:       EPS = DLAMCH( 'Epsilon' )
  279:       SAFMIN = DLAMCH( 'Safe minimum' )
  280:       SAFE1 = NZ*SAFMIN
  281:       SAFE2 = SAFE1 / EPS
  282: *
  283: *     Do for each right hand side
  284: *
  285:       DO 140 J = 1, NRHS
  286: *
  287:          COUNT = 1
  288:          LSTRES = THREE
  289:    20    CONTINUE
  290: *
  291: *        Loop until stopping criterion is satisfied.
  292: *
  293: *        Compute residual R = B - A * X
  294: *
  295:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  296:          CALL DSBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
  297:      $               WORK( N+1 ), 1 )
  298: *
  299: *        Compute componentwise relative backward error from formula
  300: *
  301: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  302: *
  303: *        where abs(Z) is the componentwise absolute value of the matrix
  304: *        or vector Z.  If the i-th component of the denominator is less
  305: *        than SAFE2, then SAFE1 is added to the i-th components of the
  306: *        numerator and denominator before dividing.
  307: *
  308:          DO 30 I = 1, N
  309:             WORK( I ) = ABS( B( I, J ) )
  310:    30    CONTINUE
  311: *
  312: *        Compute abs(A)*abs(X) + abs(B).
  313: *
  314:          IF( UPPER ) THEN
  315:             DO 50 K = 1, N
  316:                S = ZERO
  317:                XK = ABS( X( K, J ) )
  318:                L = KD + 1 - K
  319:                DO 40 I = MAX( 1, K-KD ), K - 1
  320:                   WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
  321:                   S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
  322:    40          CONTINUE
  323:                WORK( K ) = WORK( K ) + ABS( AB( KD+1, K ) )*XK + S
  324:    50       CONTINUE
  325:          ELSE
  326:             DO 70 K = 1, N
  327:                S = ZERO
  328:                XK = ABS( X( K, J ) )
  329:                WORK( K ) = WORK( K ) + ABS( AB( 1, K ) )*XK
  330:                L = 1 - K
  331:                DO 60 I = K + 1, MIN( N, K+KD )
  332:                   WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
  333:                   S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
  334:    60          CONTINUE
  335:                WORK( K ) = WORK( K ) + S
  336:    70       CONTINUE
  337:          END IF
  338:          S = ZERO
  339:          DO 80 I = 1, N
  340:             IF( WORK( I ).GT.SAFE2 ) THEN
  341:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  342:             ELSE
  343:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  344:      $             ( WORK( I )+SAFE1 ) )
  345:             END IF
  346:    80    CONTINUE
  347:          BERR( J ) = S
  348: *
  349: *        Test stopping criterion. Continue iterating if
  350: *           1) The residual BERR(J) is larger than machine epsilon, and
  351: *           2) BERR(J) decreased by at least a factor of 2 during the
  352: *              last iteration, and
  353: *           3) At most ITMAX iterations tried.
  354: *
  355:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  356:      $       COUNT.LE.ITMAX ) THEN
  357: *
  358: *           Update solution and try again.
  359: *
  360:             CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
  361:      $                   INFO )
  362:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  363:             LSTRES = BERR( J )
  364:             COUNT = COUNT + 1
  365:             GO TO 20
  366:          END IF
  367: *
  368: *        Bound error from formula
  369: *
  370: *        norm(X - XTRUE) / norm(X) .le. FERR =
  371: *        norm( abs(inv(A))*
  372: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  373: *
  374: *        where
  375: *          norm(Z) is the magnitude of the largest component of Z
  376: *          inv(A) is the inverse of A
  377: *          abs(Z) is the componentwise absolute value of the matrix or
  378: *             vector Z
  379: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  380: *          EPS is machine epsilon
  381: *
  382: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  383: *        is incremented by SAFE1 if the i-th component of
  384: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  385: *
  386: *        Use DLACN2 to estimate the infinity-norm of the matrix
  387: *           inv(A) * diag(W),
  388: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  389: *
  390:          DO 90 I = 1, N
  391:             IF( WORK( I ).GT.SAFE2 ) THEN
  392:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  393:             ELSE
  394:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  395:             END IF
  396:    90    CONTINUE
  397: *
  398:          KASE = 0
  399:   100    CONTINUE
  400:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  401:      $                KASE, ISAVE )
  402:          IF( KASE.NE.0 ) THEN
  403:             IF( KASE.EQ.1 ) THEN
  404: *
  405: *              Multiply by diag(W)*inv(A**T).
  406: *
  407:                CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
  408:      $                      INFO )
  409:                DO 110 I = 1, N
  410:                   WORK( N+I ) = WORK( N+I )*WORK( I )
  411:   110          CONTINUE
  412:             ELSE IF( KASE.EQ.2 ) THEN
  413: *
  414: *              Multiply by inv(A)*diag(W).
  415: *
  416:                DO 120 I = 1, N
  417:                   WORK( N+I ) = WORK( N+I )*WORK( I )
  418:   120          CONTINUE
  419:                CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
  420:      $                      INFO )
  421:             END IF
  422:             GO TO 100
  423:          END IF
  424: *
  425: *        Normalize error.
  426: *
  427:          LSTRES = ZERO
  428:          DO 130 I = 1, N
  429:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  430:   130    CONTINUE
  431:          IF( LSTRES.NE.ZERO )
  432:      $      FERR( J ) = FERR( J ) / LSTRES
  433: *
  434:   140 CONTINUE
  435: *
  436:       RETURN
  437: *
  438: *     End of DPBRFS
  439: *
  440:       END

CVSweb interface <joel.bertrand@systella.fr>