Annotation of rpl/lapack/lapack/dpbrfs.f, revision 1.18

1.9       bertrand    1: *> \brief \b DPBRFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DPBRFS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbrfs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbrfs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbrfs.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
                     22: *                          LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IWORK( * )
                     30: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     31: *      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                     32: *       ..
1.15      bertrand   33: *
1.9       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> DPBRFS improves the computed solution to a system of linear
                     41: *> equations when the coefficient matrix is symmetric positive definite
                     42: *> and banded, and provides error bounds and backward error estimates
                     43: *> for the solution.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] UPLO
                     50: *> \verbatim
                     51: *>          UPLO is CHARACTER*1
                     52: *>          = 'U':  Upper triangle of A is stored;
                     53: *>          = 'L':  Lower triangle of A is stored.
                     54: *> \endverbatim
                     55: *>
                     56: *> \param[in] N
                     57: *> \verbatim
                     58: *>          N is INTEGER
                     59: *>          The order of the matrix A.  N >= 0.
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] KD
                     63: *> \verbatim
                     64: *>          KD is INTEGER
                     65: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     66: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] NRHS
                     70: *> \verbatim
                     71: *>          NRHS is INTEGER
                     72: *>          The number of right hand sides, i.e., the number of columns
                     73: *>          of the matrices B and X.  NRHS >= 0.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] AB
                     77: *> \verbatim
                     78: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
                     79: *>          The upper or lower triangle of the symmetric band matrix A,
                     80: *>          stored in the first KD+1 rows of the array.  The j-th column
                     81: *>          of A is stored in the j-th column of the array AB as follows:
                     82: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     83: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] LDAB
                     87: *> \verbatim
                     88: *>          LDAB is INTEGER
                     89: *>          The leading dimension of the array AB.  LDAB >= KD+1.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] AFB
                     93: *> \verbatim
                     94: *>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
                     95: *>          The triangular factor U or L from the Cholesky factorization
                     96: *>          A = U**T*U or A = L*L**T of the band matrix A as computed by
                     97: *>          DPBTRF, in the same storage format as A (see AB).
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] LDAFB
                    101: *> \verbatim
                    102: *>          LDAFB is INTEGER
                    103: *>          The leading dimension of the array AFB.  LDAFB >= KD+1.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] B
                    107: *> \verbatim
                    108: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    109: *>          The right hand side matrix B.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] LDB
                    113: *> \verbatim
                    114: *>          LDB is INTEGER
                    115: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in,out] X
                    119: *> \verbatim
                    120: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    121: *>          On entry, the solution matrix X, as computed by DPBTRS.
                    122: *>          On exit, the improved solution matrix X.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] LDX
                    126: *> \verbatim
                    127: *>          LDX is INTEGER
                    128: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] FERR
                    132: *> \verbatim
                    133: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    134: *>          The estimated forward error bound for each solution vector
                    135: *>          X(j) (the j-th column of the solution matrix X).
                    136: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    137: *>          is an estimated upper bound for the magnitude of the largest
                    138: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    139: *>          largest element in X(j).  The estimate is as reliable as
                    140: *>          the estimate for RCOND, and is almost always a slight
                    141: *>          overestimate of the true error.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] BERR
                    145: *> \verbatim
                    146: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    147: *>          The componentwise relative backward error of each solution
                    148: *>          vector X(j) (i.e., the smallest relative change in
                    149: *>          any element of A or B that makes X(j) an exact solution).
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] WORK
                    153: *> \verbatim
                    154: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[out] IWORK
                    158: *> \verbatim
                    159: *>          IWORK is INTEGER array, dimension (N)
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[out] INFO
                    163: *> \verbatim
                    164: *>          INFO is INTEGER
                    165: *>          = 0:  successful exit
                    166: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    167: *> \endverbatim
                    168: *
                    169: *> \par Internal Parameters:
                    170: *  =========================
                    171: *>
                    172: *> \verbatim
                    173: *>  ITMAX is the maximum number of steps of iterative refinement.
                    174: *> \endverbatim
                    175: *
                    176: *  Authors:
                    177: *  ========
                    178: *
1.15      bertrand  179: *> \author Univ. of Tennessee
                    180: *> \author Univ. of California Berkeley
                    181: *> \author Univ. of Colorado Denver
                    182: *> \author NAG Ltd.
1.9       bertrand  183: *
                    184: *> \ingroup doubleOTHERcomputational
                    185: *
                    186: *  =====================================================================
1.1       bertrand  187:       SUBROUTINE DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
                    188:      $                   LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
                    189: *
1.18    ! bertrand  190: *  -- LAPACK computational routine --
1.1       bertrand  191: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    192: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    193: *
                    194: *     .. Scalar Arguments ..
                    195:       CHARACTER          UPLO
                    196:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
                    197: *     ..
                    198: *     .. Array Arguments ..
                    199:       INTEGER            IWORK( * )
                    200:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    201:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                    202: *     ..
                    203: *
                    204: *  =====================================================================
                    205: *
                    206: *     .. Parameters ..
                    207:       INTEGER            ITMAX
                    208:       PARAMETER          ( ITMAX = 5 )
                    209:       DOUBLE PRECISION   ZERO
                    210:       PARAMETER          ( ZERO = 0.0D+0 )
                    211:       DOUBLE PRECISION   ONE
                    212:       PARAMETER          ( ONE = 1.0D+0 )
                    213:       DOUBLE PRECISION   TWO
                    214:       PARAMETER          ( TWO = 2.0D+0 )
                    215:       DOUBLE PRECISION   THREE
                    216:       PARAMETER          ( THREE = 3.0D+0 )
                    217: *     ..
                    218: *     .. Local Scalars ..
                    219:       LOGICAL            UPPER
                    220:       INTEGER            COUNT, I, J, K, KASE, L, NZ
                    221:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    222: *     ..
                    223: *     .. Local Arrays ..
                    224:       INTEGER            ISAVE( 3 )
                    225: *     ..
                    226: *     .. External Subroutines ..
                    227:       EXTERNAL           DAXPY, DCOPY, DLACN2, DPBTRS, DSBMV, XERBLA
                    228: *     ..
                    229: *     .. Intrinsic Functions ..
                    230:       INTRINSIC          ABS, MAX, MIN
                    231: *     ..
                    232: *     .. External Functions ..
                    233:       LOGICAL            LSAME
                    234:       DOUBLE PRECISION   DLAMCH
                    235:       EXTERNAL           LSAME, DLAMCH
                    236: *     ..
                    237: *     .. Executable Statements ..
                    238: *
                    239: *     Test the input parameters.
                    240: *
                    241:       INFO = 0
                    242:       UPPER = LSAME( UPLO, 'U' )
                    243:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    244:          INFO = -1
                    245:       ELSE IF( N.LT.0 ) THEN
                    246:          INFO = -2
                    247:       ELSE IF( KD.LT.0 ) THEN
                    248:          INFO = -3
                    249:       ELSE IF( NRHS.LT.0 ) THEN
                    250:          INFO = -4
                    251:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    252:          INFO = -6
                    253:       ELSE IF( LDAFB.LT.KD+1 ) THEN
                    254:          INFO = -8
                    255:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    256:          INFO = -10
                    257:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    258:          INFO = -12
                    259:       END IF
                    260:       IF( INFO.NE.0 ) THEN
                    261:          CALL XERBLA( 'DPBRFS', -INFO )
                    262:          RETURN
                    263:       END IF
                    264: *
                    265: *     Quick return if possible
                    266: *
                    267:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    268:          DO 10 J = 1, NRHS
                    269:             FERR( J ) = ZERO
                    270:             BERR( J ) = ZERO
                    271:    10    CONTINUE
                    272:          RETURN
                    273:       END IF
                    274: *
                    275: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    276: *
                    277:       NZ = MIN( N+1, 2*KD+2 )
                    278:       EPS = DLAMCH( 'Epsilon' )
                    279:       SAFMIN = DLAMCH( 'Safe minimum' )
                    280:       SAFE1 = NZ*SAFMIN
                    281:       SAFE2 = SAFE1 / EPS
                    282: *
                    283: *     Do for each right hand side
                    284: *
                    285:       DO 140 J = 1, NRHS
                    286: *
                    287:          COUNT = 1
                    288:          LSTRES = THREE
                    289:    20    CONTINUE
                    290: *
                    291: *        Loop until stopping criterion is satisfied.
                    292: *
                    293: *        Compute residual R = B - A * X
                    294: *
                    295:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
                    296:          CALL DSBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
                    297:      $               WORK( N+1 ), 1 )
                    298: *
                    299: *        Compute componentwise relative backward error from formula
                    300: *
                    301: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    302: *
                    303: *        where abs(Z) is the componentwise absolute value of the matrix
                    304: *        or vector Z.  If the i-th component of the denominator is less
                    305: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    306: *        numerator and denominator before dividing.
                    307: *
                    308:          DO 30 I = 1, N
                    309:             WORK( I ) = ABS( B( I, J ) )
                    310:    30    CONTINUE
                    311: *
                    312: *        Compute abs(A)*abs(X) + abs(B).
                    313: *
                    314:          IF( UPPER ) THEN
                    315:             DO 50 K = 1, N
                    316:                S = ZERO
                    317:                XK = ABS( X( K, J ) )
                    318:                L = KD + 1 - K
                    319:                DO 40 I = MAX( 1, K-KD ), K - 1
                    320:                   WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
                    321:                   S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
                    322:    40          CONTINUE
                    323:                WORK( K ) = WORK( K ) + ABS( AB( KD+1, K ) )*XK + S
                    324:    50       CONTINUE
                    325:          ELSE
                    326:             DO 70 K = 1, N
                    327:                S = ZERO
                    328:                XK = ABS( X( K, J ) )
                    329:                WORK( K ) = WORK( K ) + ABS( AB( 1, K ) )*XK
                    330:                L = 1 - K
                    331:                DO 60 I = K + 1, MIN( N, K+KD )
                    332:                   WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
                    333:                   S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
                    334:    60          CONTINUE
                    335:                WORK( K ) = WORK( K ) + S
                    336:    70       CONTINUE
                    337:          END IF
                    338:          S = ZERO
                    339:          DO 80 I = 1, N
                    340:             IF( WORK( I ).GT.SAFE2 ) THEN
                    341:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
                    342:             ELSE
                    343:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
                    344:      $             ( WORK( I )+SAFE1 ) )
                    345:             END IF
                    346:    80    CONTINUE
                    347:          BERR( J ) = S
                    348: *
                    349: *        Test stopping criterion. Continue iterating if
                    350: *           1) The residual BERR(J) is larger than machine epsilon, and
                    351: *           2) BERR(J) decreased by at least a factor of 2 during the
                    352: *              last iteration, and
                    353: *           3) At most ITMAX iterations tried.
                    354: *
                    355:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    356:      $       COUNT.LE.ITMAX ) THEN
                    357: *
                    358: *           Update solution and try again.
                    359: *
                    360:             CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
                    361:      $                   INFO )
                    362:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
                    363:             LSTRES = BERR( J )
                    364:             COUNT = COUNT + 1
                    365:             GO TO 20
                    366:          END IF
                    367: *
                    368: *        Bound error from formula
                    369: *
                    370: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    371: *        norm( abs(inv(A))*
                    372: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    373: *
                    374: *        where
                    375: *          norm(Z) is the magnitude of the largest component of Z
                    376: *          inv(A) is the inverse of A
                    377: *          abs(Z) is the componentwise absolute value of the matrix or
                    378: *             vector Z
                    379: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    380: *          EPS is machine epsilon
                    381: *
                    382: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    383: *        is incremented by SAFE1 if the i-th component of
                    384: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    385: *
                    386: *        Use DLACN2 to estimate the infinity-norm of the matrix
                    387: *           inv(A) * diag(W),
                    388: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    389: *
                    390:          DO 90 I = 1, N
                    391:             IF( WORK( I ).GT.SAFE2 ) THEN
                    392:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
                    393:             ELSE
                    394:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
                    395:             END IF
                    396:    90    CONTINUE
                    397: *
                    398:          KASE = 0
                    399:   100    CONTINUE
                    400:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
                    401:      $                KASE, ISAVE )
                    402:          IF( KASE.NE.0 ) THEN
                    403:             IF( KASE.EQ.1 ) THEN
                    404: *
1.8       bertrand  405: *              Multiply by diag(W)*inv(A**T).
1.1       bertrand  406: *
                    407:                CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
                    408:      $                      INFO )
                    409:                DO 110 I = 1, N
                    410:                   WORK( N+I ) = WORK( N+I )*WORK( I )
                    411:   110          CONTINUE
                    412:             ELSE IF( KASE.EQ.2 ) THEN
                    413: *
                    414: *              Multiply by inv(A)*diag(W).
                    415: *
                    416:                DO 120 I = 1, N
                    417:                   WORK( N+I ) = WORK( N+I )*WORK( I )
                    418:   120          CONTINUE
                    419:                CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
                    420:      $                      INFO )
                    421:             END IF
                    422:             GO TO 100
                    423:          END IF
                    424: *
                    425: *        Normalize error.
                    426: *
                    427:          LSTRES = ZERO
                    428:          DO 130 I = 1, N
                    429:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    430:   130    CONTINUE
                    431:          IF( LSTRES.NE.ZERO )
                    432:      $      FERR( J ) = FERR( J ) / LSTRES
                    433: *
                    434:   140 CONTINUE
                    435: *
                    436:       RETURN
                    437: *
                    438: *     End of DPBRFS
                    439: *
                    440:       END

CVSweb interface <joel.bertrand@systella.fr>