File:  [local] / rpl / lapack / lapack / dorgtsqr.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:01 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DORGTSQR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DORGTSQR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgtsqr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgtsqr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgtsqr.f">
   15: *> [TXT]</a>
   16: *>
   17: *  Definition:
   18: *  ===========
   19: *
   20: *       SUBROUTINE DORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
   21: *      $                     INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
   28: *       ..
   29: *
   30: *> \par Purpose:
   31: *  =============
   32: *>
   33: *> \verbatim
   34: *>
   35: *> DORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
   36: *> which are the first N columns of a product of real orthogonal
   37: *> matrices of order M which are returned by DLATSQR
   38: *>
   39: *>      Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
   40: *>
   41: *> See the documentation for DLATSQR.
   42: *> \endverbatim
   43: *
   44: *  Arguments:
   45: *  ==========
   46: *
   47: *> \param[in] M
   48: *> \verbatim
   49: *>          M is INTEGER
   50: *>          The number of rows of the matrix A.  M >= 0.
   51: *> \endverbatim
   52: *>
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>          The number of columns of the matrix A. M >= N >= 0.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] MB
   60: *> \verbatim
   61: *>          MB is INTEGER
   62: *>          The row block size used by DLATSQR to return
   63: *>          arrays A and T. MB > N.
   64: *>          (Note that if MB > M, then M is used instead of MB
   65: *>          as the row block size).
   66: *> \endverbatim
   67: *>
   68: *> \param[in] NB
   69: *> \verbatim
   70: *>          NB is INTEGER
   71: *>          The column block size used by DLATSQR to return
   72: *>          arrays A and T. NB >= 1.
   73: *>          (Note that if NB > N, then N is used instead of NB
   74: *>          as the column block size).
   75: *> \endverbatim
   76: *>
   77: *> \param[in,out] A
   78: *> \verbatim
   79: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   80: *>
   81: *>          On entry:
   82: *>
   83: *>             The elements on and above the diagonal are not accessed.
   84: *>             The elements below the diagonal represent the unit
   85: *>             lower-trapezoidal blocked matrix V computed by DLATSQR
   86: *>             that defines the input matrices Q_in(k) (ones on the
   87: *>             diagonal are not stored) (same format as the output A
   88: *>             below the diagonal in DLATSQR).
   89: *>
   90: *>          On exit:
   91: *>
   92: *>             The array A contains an M-by-N orthonormal matrix Q_out,
   93: *>             i.e the columns of A are orthogonal unit vectors.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDA
   97: *> \verbatim
   98: *>          LDA is INTEGER
   99: *>          The leading dimension of the array A.  LDA >= max(1,M).
  100: *> \endverbatim
  101: *>
  102: *> \param[in] T
  103: *> \verbatim
  104: *>          T is DOUBLE PRECISION array,
  105: *>          dimension (LDT, N * NIRB)
  106: *>          where NIRB = Number_of_input_row_blocks
  107: *>                     = MAX( 1, CEIL((M-N)/(MB-N)) )
  108: *>          Let NICB = Number_of_input_col_blocks
  109: *>                   = CEIL(N/NB)
  110: *>
  111: *>          The upper-triangular block reflectors used to define the
  112: *>          input matrices Q_in(k), k=(1:NIRB*NICB). The block
  113: *>          reflectors are stored in compact form in NIRB block
  114: *>          reflector sequences. Each of NIRB block reflector sequences
  115: *>          is stored in a larger NB-by-N column block of T and consists
  116: *>          of NICB smaller NB-by-NB upper-triangular column blocks.
  117: *>          (same format as the output T in DLATSQR).
  118: *> \endverbatim
  119: *>
  120: *> \param[in] LDT
  121: *> \verbatim
  122: *>          LDT is INTEGER
  123: *>          The leading dimension of the array T.
  124: *>          LDT >= max(1,min(NB1,N)).
  125: *> \endverbatim
  126: *>
  127: *> \param[out] WORK
  128: *> \verbatim
  129: *>          (workspace) DOUBLE PRECISION array, dimension (MAX(2,LWORK))
  130: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LWORK
  134: *> \verbatim
  135: *>          The dimension of the array WORK.  LWORK >= (M+NB)*N.
  136: *>          If LWORK = -1, then a workspace query is assumed.
  137: *>          The routine only calculates the optimal size of the WORK
  138: *>          array, returns this value as the first entry of the WORK
  139: *>          array, and no error message related to LWORK is issued
  140: *>          by XERBLA.
  141: *> \endverbatim
  142: *>
  143: *> \param[out] INFO
  144: *> \verbatim
  145: *>          INFO is INTEGER
  146: *>          = 0:  successful exit
  147: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  148: *> \endverbatim
  149: *>
  150: *  Authors:
  151: *  ========
  152: *
  153: *> \author Univ. of Tennessee
  154: *> \author Univ. of California Berkeley
  155: *> \author Univ. of Colorado Denver
  156: *> \author NAG Ltd.
  157: *
  158: *> \date November 2019
  159: *
  160: *> \ingroup doubleOTHERcomputational
  161: *
  162: *> \par Contributors:
  163: *  ==================
  164: *>
  165: *> \verbatim
  166: *>
  167: *> November 2019, Igor Kozachenko,
  168: *>                Computer Science Division,
  169: *>                University of California, Berkeley
  170: *>
  171: *> \endverbatim
  172: *
  173: *  =====================================================================
  174:       SUBROUTINE DORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
  175:      $                     INFO )
  176:       IMPLICIT NONE
  177: *
  178: *  -- LAPACK computational routine (version 3.9.0) --
  179: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  180: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181: *     November 2019
  182: *
  183: *     .. Scalar Arguments ..
  184:       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
  185: *     ..
  186: *     .. Array Arguments ..
  187:       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
  188: *     ..
  189: *
  190: *  =====================================================================
  191: *
  192: *     .. Parameters ..
  193:       DOUBLE PRECISION   ONE, ZERO
  194:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  195: *     ..
  196: *     .. Local Scalars ..
  197:       LOGICAL            LQUERY
  198:       INTEGER            IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
  199: *     ..
  200: *     .. External Subroutines ..
  201:       EXTERNAL           DCOPY, DLAMTSQR, DLASET, XERBLA
  202: *     ..
  203: *     .. Intrinsic Functions ..
  204:       INTRINSIC          DBLE, MAX, MIN
  205: *     ..
  206: *     .. Executable Statements ..
  207: *
  208: *     Test the input parameters
  209: *
  210:       LQUERY  = LWORK.EQ.-1
  211:       INFO = 0
  212:       IF( M.LT.0 ) THEN
  213:          INFO = -1
  214:       ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
  215:          INFO = -2
  216:       ELSE IF( MB.LE.N ) THEN
  217:          INFO = -3
  218:       ELSE IF( NB.LT.1 ) THEN
  219:          INFO = -4
  220:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  221:          INFO = -6
  222:       ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
  223:          INFO = -8
  224:       ELSE
  225: *
  226: *        Test the input LWORK for the dimension of the array WORK.
  227: *        This workspace is used to store array C(LDC, N) and WORK(LWORK)
  228: *        in the call to DLAMTSQR. See the documentation for DLAMTSQR.
  229: *
  230:          IF( LWORK.LT.2 .AND. (.NOT.LQUERY) ) THEN
  231:             INFO = -10
  232:          ELSE
  233: *
  234: *           Set block size for column blocks
  235: *
  236:             NBLOCAL = MIN( NB, N )
  237: *
  238: *           LWORK = -1, then set the size for the array C(LDC,N)
  239: *           in DLAMTSQR call and set the optimal size of the work array
  240: *           WORK(LWORK) in DLAMTSQR call.
  241: *
  242:             LDC = M
  243:             LC = LDC*N
  244:             LW = N * NBLOCAL
  245: *
  246:             LWORKOPT = LC+LW
  247: *
  248:             IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
  249:                INFO = -10
  250:             END IF
  251:          END IF
  252: *
  253:       END IF
  254: *
  255: *     Handle error in the input parameters and return workspace query.
  256: *
  257:       IF( INFO.NE.0 ) THEN
  258:          CALL XERBLA( 'DORGTSQR', -INFO )
  259:          RETURN
  260:       ELSE IF ( LQUERY ) THEN
  261:          WORK( 1 ) = DBLE( LWORKOPT )
  262:          RETURN
  263:       END IF
  264: *
  265: *     Quick return if possible
  266: *
  267:       IF( MIN( M, N ).EQ.0 ) THEN
  268:          WORK( 1 ) = DBLE( LWORKOPT )
  269:          RETURN
  270:       END IF
  271: *
  272: *     (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
  273: *     of M-by-M orthogonal matrix Q_in, which is implicitly stored in
  274: *     the subdiagonal part of input array A and in the input array T.
  275: *     Perform by the following operation using the routine DLAMTSQR.
  276: *
  277: *         Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
  278: *                        ( 0 )        0 is a (M-N)-by-N zero matrix.
  279: *
  280: *     (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
  281: *     on the diagonal and zeros elsewhere.
  282: *
  283:       CALL DLASET( 'F', M, N, ZERO, ONE, WORK, LDC )
  284: *
  285: *     (1b)  On input, WORK(1:LDC*N) stores ( I );
  286: *                                          ( 0 )
  287: *
  288: *           On output, WORK(1:LDC*N) stores Q1_in.
  289: *
  290:       CALL DLAMTSQR( 'L', 'N', M, N, N, MB, NBLOCAL, A, LDA, T, LDT,
  291:      $               WORK, LDC, WORK( LC+1 ), LW, IINFO )
  292: *
  293: *     (2) Copy the result from the part of the work array (1:M,1:N)
  294: *     with the leading dimension LDC that starts at WORK(1) into
  295: *     the output array A(1:M,1:N) column-by-column.
  296: *
  297:       DO J = 1, N
  298:          CALL DCOPY( M, WORK( (J-1)*LDC + 1 ), 1, A( 1, J ), 1 )
  299:       END DO
  300: *
  301:       WORK( 1 ) = DBLE( LWORKOPT )
  302:       RETURN
  303: *
  304: *     End of DORGTSQR
  305: *
  306:       END

CVSweb interface <joel.bertrand@systella.fr>