Annotation of rpl/lapack/lapack/dorgtsqr.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b DORGTSQR
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DORGTSQR + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgtsqr.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgtsqr.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgtsqr.f">
        !            15: *> [TXT]</a>
        !            16: *>
        !            17: *  Definition:
        !            18: *  ===========
        !            19: *
        !            20: *       SUBROUTINE DORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
        !            21: *      $                     INFO )
        !            22: *
        !            23: *       .. Scalar Arguments ..
        !            24: *       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
        !            25: *       ..
        !            26: *       .. Array Arguments ..
        !            27: *       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
        !            28: *       ..
        !            29: *
        !            30: *> \par Purpose:
        !            31: *  =============
        !            32: *>
        !            33: *> \verbatim
        !            34: *>
        !            35: *> DORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
        !            36: *> which are the first N columns of a product of real orthogonal
        !            37: *> matrices of order M which are returned by DLATSQR
        !            38: *>
        !            39: *>      Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
        !            40: *>
        !            41: *> See the documentation for DLATSQR.
        !            42: *> \endverbatim
        !            43: *
        !            44: *  Arguments:
        !            45: *  ==========
        !            46: *
        !            47: *> \param[in] M
        !            48: *> \verbatim
        !            49: *>          M is INTEGER
        !            50: *>          The number of rows of the matrix A.  M >= 0.
        !            51: *> \endverbatim
        !            52: *>
        !            53: *> \param[in] N
        !            54: *> \verbatim
        !            55: *>          N is INTEGER
        !            56: *>          The number of columns of the matrix A. M >= N >= 0.
        !            57: *> \endverbatim
        !            58: *>
        !            59: *> \param[in] MB
        !            60: *> \verbatim
        !            61: *>          MB is INTEGER
        !            62: *>          The row block size used by DLATSQR to return
        !            63: *>          arrays A and T. MB > N.
        !            64: *>          (Note that if MB > M, then M is used instead of MB
        !            65: *>          as the row block size).
        !            66: *> \endverbatim
        !            67: *>
        !            68: *> \param[in] NB
        !            69: *> \verbatim
        !            70: *>          NB is INTEGER
        !            71: *>          The column block size used by DLATSQR to return
        !            72: *>          arrays A and T. NB >= 1.
        !            73: *>          (Note that if NB > N, then N is used instead of NB
        !            74: *>          as the column block size).
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in,out] A
        !            78: *> \verbatim
        !            79: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !            80: *>
        !            81: *>          On entry:
        !            82: *>
        !            83: *>             The elements on and above the diagonal are not accessed.
        !            84: *>             The elements below the diagonal represent the unit
        !            85: *>             lower-trapezoidal blocked matrix V computed by DLATSQR
        !            86: *>             that defines the input matrices Q_in(k) (ones on the
        !            87: *>             diagonal are not stored) (same format as the output A
        !            88: *>             below the diagonal in DLATSQR).
        !            89: *>
        !            90: *>          On exit:
        !            91: *>
        !            92: *>             The array A contains an M-by-N orthonormal matrix Q_out,
        !            93: *>             i.e the columns of A are orthogonal unit vectors.
        !            94: *> \endverbatim
        !            95: *>
        !            96: *> \param[in] LDA
        !            97: *> \verbatim
        !            98: *>          LDA is INTEGER
        !            99: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !           100: *> \endverbatim
        !           101: *>
        !           102: *> \param[in] T
        !           103: *> \verbatim
        !           104: *>          T is DOUBLE PRECISION array,
        !           105: *>          dimension (LDT, N * NIRB)
        !           106: *>          where NIRB = Number_of_input_row_blocks
        !           107: *>                     = MAX( 1, CEIL((M-N)/(MB-N)) )
        !           108: *>          Let NICB = Number_of_input_col_blocks
        !           109: *>                   = CEIL(N/NB)
        !           110: *>
        !           111: *>          The upper-triangular block reflectors used to define the
        !           112: *>          input matrices Q_in(k), k=(1:NIRB*NICB). The block
        !           113: *>          reflectors are stored in compact form in NIRB block
        !           114: *>          reflector sequences. Each of NIRB block reflector sequences
        !           115: *>          is stored in a larger NB-by-N column block of T and consists
        !           116: *>          of NICB smaller NB-by-NB upper-triangular column blocks.
        !           117: *>          (same format as the output T in DLATSQR).
        !           118: *> \endverbatim
        !           119: *>
        !           120: *> \param[in] LDT
        !           121: *> \verbatim
        !           122: *>          LDT is INTEGER
        !           123: *>          The leading dimension of the array T.
        !           124: *>          LDT >= max(1,min(NB1,N)).
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[out] WORK
        !           128: *> \verbatim
        !           129: *>          (workspace) DOUBLE PRECISION array, dimension (MAX(2,LWORK))
        !           130: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[in] LWORK
        !           134: *> \verbatim
        !           135: *>          The dimension of the array WORK.  LWORK >= (M+NB)*N.
        !           136: *>          If LWORK = -1, then a workspace query is assumed.
        !           137: *>          The routine only calculates the optimal size of the WORK
        !           138: *>          array, returns this value as the first entry of the WORK
        !           139: *>          array, and no error message related to LWORK is issued
        !           140: *>          by XERBLA.
        !           141: *> \endverbatim
        !           142: *>
        !           143: *> \param[out] INFO
        !           144: *> \verbatim
        !           145: *>          INFO is INTEGER
        !           146: *>          = 0:  successful exit
        !           147: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           148: *> \endverbatim
        !           149: *>
        !           150: *  Authors:
        !           151: *  ========
        !           152: *
        !           153: *> \author Univ. of Tennessee
        !           154: *> \author Univ. of California Berkeley
        !           155: *> \author Univ. of Colorado Denver
        !           156: *> \author NAG Ltd.
        !           157: *
        !           158: *> \date November 2019
        !           159: *
        !           160: *> \ingroup doubleOTHERcomputational
        !           161: *
        !           162: *> \par Contributors:
        !           163: *  ==================
        !           164: *>
        !           165: *> \verbatim
        !           166: *>
        !           167: *> November 2019, Igor Kozachenko,
        !           168: *>                Computer Science Division,
        !           169: *>                University of California, Berkeley
        !           170: *>
        !           171: *> \endverbatim
        !           172: *
        !           173: *  =====================================================================
        !           174:       SUBROUTINE DORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
        !           175:      $                     INFO )
        !           176:       IMPLICIT NONE
        !           177: *
        !           178: *  -- LAPACK computational routine (version 3.9.0) --
        !           179: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           180: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           181: *     November 2019
        !           182: *
        !           183: *     .. Scalar Arguments ..
        !           184:       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
        !           185: *     ..
        !           186: *     .. Array Arguments ..
        !           187:       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
        !           188: *     ..
        !           189: *
        !           190: *  =====================================================================
        !           191: *
        !           192: *     .. Parameters ..
        !           193:       DOUBLE PRECISION   ONE, ZERO
        !           194:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
        !           195: *     ..
        !           196: *     .. Local Scalars ..
        !           197:       LOGICAL            LQUERY
        !           198:       INTEGER            IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
        !           199: *     ..
        !           200: *     .. External Subroutines ..
        !           201:       EXTERNAL           DCOPY, DLAMTSQR, DLASET, XERBLA
        !           202: *     ..
        !           203: *     .. Intrinsic Functions ..
        !           204:       INTRINSIC          DBLE, MAX, MIN
        !           205: *     ..
        !           206: *     .. Executable Statements ..
        !           207: *
        !           208: *     Test the input parameters
        !           209: *
        !           210:       LQUERY  = LWORK.EQ.-1
        !           211:       INFO = 0
        !           212:       IF( M.LT.0 ) THEN
        !           213:          INFO = -1
        !           214:       ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
        !           215:          INFO = -2
        !           216:       ELSE IF( MB.LE.N ) THEN
        !           217:          INFO = -3
        !           218:       ELSE IF( NB.LT.1 ) THEN
        !           219:          INFO = -4
        !           220:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           221:          INFO = -6
        !           222:       ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
        !           223:          INFO = -8
        !           224:       ELSE
        !           225: *
        !           226: *        Test the input LWORK for the dimension of the array WORK.
        !           227: *        This workspace is used to store array C(LDC, N) and WORK(LWORK)
        !           228: *        in the call to DLAMTSQR. See the documentation for DLAMTSQR.
        !           229: *
        !           230:          IF( LWORK.LT.2 .AND. (.NOT.LQUERY) ) THEN
        !           231:             INFO = -10
        !           232:          ELSE
        !           233: *
        !           234: *           Set block size for column blocks
        !           235: *
        !           236:             NBLOCAL = MIN( NB, N )
        !           237: *
        !           238: *           LWORK = -1, then set the size for the array C(LDC,N)
        !           239: *           in DLAMTSQR call and set the optimal size of the work array
        !           240: *           WORK(LWORK) in DLAMTSQR call.
        !           241: *
        !           242:             LDC = M
        !           243:             LC = LDC*N
        !           244:             LW = N * NBLOCAL
        !           245: *
        !           246:             LWORKOPT = LC+LW
        !           247: *
        !           248:             IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
        !           249:                INFO = -10
        !           250:             END IF
        !           251:          END IF
        !           252: *
        !           253:       END IF
        !           254: *
        !           255: *     Handle error in the input parameters and return workspace query.
        !           256: *
        !           257:       IF( INFO.NE.0 ) THEN
        !           258:          CALL XERBLA( 'DORGTSQR', -INFO )
        !           259:          RETURN
        !           260:       ELSE IF ( LQUERY ) THEN
        !           261:          WORK( 1 ) = DBLE( LWORKOPT )
        !           262:          RETURN
        !           263:       END IF
        !           264: *
        !           265: *     Quick return if possible
        !           266: *
        !           267:       IF( MIN( M, N ).EQ.0 ) THEN
        !           268:          WORK( 1 ) = DBLE( LWORKOPT )
        !           269:          RETURN
        !           270:       END IF
        !           271: *
        !           272: *     (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
        !           273: *     of M-by-M orthogonal matrix Q_in, which is implicitly stored in
        !           274: *     the subdiagonal part of input array A and in the input array T.
        !           275: *     Perform by the following operation using the routine DLAMTSQR.
        !           276: *
        !           277: *         Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
        !           278: *                        ( 0 )        0 is a (M-N)-by-N zero matrix.
        !           279: *
        !           280: *     (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
        !           281: *     on the diagonal and zeros elsewhere.
        !           282: *
        !           283:       CALL DLASET( 'F', M, N, ZERO, ONE, WORK, LDC )
        !           284: *
        !           285: *     (1b)  On input, WORK(1:LDC*N) stores ( I );
        !           286: *                                          ( 0 )
        !           287: *
        !           288: *           On output, WORK(1:LDC*N) stores Q1_in.
        !           289: *
        !           290:       CALL DLAMTSQR( 'L', 'N', M, N, N, MB, NBLOCAL, A, LDA, T, LDT,
        !           291:      $               WORK, LDC, WORK( LC+1 ), LW, IINFO )
        !           292: *
        !           293: *     (2) Copy the result from the part of the work array (1:M,1:N)
        !           294: *     with the leading dimension LDC that starts at WORK(1) into
        !           295: *     the output array A(1:M,1:N) column-by-column.
        !           296: *
        !           297:       DO J = 1, N
        !           298:          CALL DCOPY( M, WORK( (J-1)*LDC + 1 ), 1, A( 1, J ), 1 )
        !           299:       END DO
        !           300: *
        !           301:       WORK( 1 ) = DBLE( LWORKOPT )
        !           302:       RETURN
        !           303: *
        !           304: *     End of DORGTSQR
        !           305: *
        !           306:       END

CVSweb interface <joel.bertrand@systella.fr>