File:  [local] / rpl / lapack / lapack / dlatdf.f
Revision 1.21: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:00 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLATDF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatdf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatdf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatdf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
   22: *                          JPIV )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            IJOB, LDZ, N
   26: *       DOUBLE PRECISION   RDSCAL, RDSUM
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * ), JPIV( * )
   30: *       DOUBLE PRECISION   RHS( * ), Z( LDZ, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DLATDF uses the LU factorization of the n-by-n matrix Z computed by
   40: *> DGETC2 and computes a contribution to the reciprocal Dif-estimate
   41: *> by solving Z * x = b for x, and choosing the r.h.s. b such that
   42: *> the norm of x is as large as possible. On entry RHS = b holds the
   43: *> contribution from earlier solved sub-systems, and on return RHS = x.
   44: *>
   45: *> The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q,
   46: *> where P and Q are permutation matrices. L is lower triangular with
   47: *> unit diagonal elements and U is upper triangular.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] IJOB
   54: *> \verbatim
   55: *>          IJOB is INTEGER
   56: *>          IJOB = 2: First compute an approximative null-vector e
   57: *>              of Z using DGECON, e is normalized and solve for
   58: *>              Zx = +-e - f with the sign giving the greater value
   59: *>              of 2-norm(x). About 5 times as expensive as Default.
   60: *>          IJOB .ne. 2: Local look ahead strategy where all entries of
   61: *>              the r.h.s. b is chosen as either +1 or -1 (Default).
   62: *> \endverbatim
   63: *>
   64: *> \param[in] N
   65: *> \verbatim
   66: *>          N is INTEGER
   67: *>          The number of columns of the matrix Z.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] Z
   71: *> \verbatim
   72: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
   73: *>          On entry, the LU part of the factorization of the n-by-n
   74: *>          matrix Z computed by DGETC2:  Z = P * L * U * Q
   75: *> \endverbatim
   76: *>
   77: *> \param[in] LDZ
   78: *> \verbatim
   79: *>          LDZ is INTEGER
   80: *>          The leading dimension of the array Z.  LDA >= max(1, N).
   81: *> \endverbatim
   82: *>
   83: *> \param[in,out] RHS
   84: *> \verbatim
   85: *>          RHS is DOUBLE PRECISION array, dimension (N)
   86: *>          On entry, RHS contains contributions from other subsystems.
   87: *>          On exit, RHS contains the solution of the subsystem with
   88: *>          entries according to the value of IJOB (see above).
   89: *> \endverbatim
   90: *>
   91: *> \param[in,out] RDSUM
   92: *> \verbatim
   93: *>          RDSUM is DOUBLE PRECISION
   94: *>          On entry, the sum of squares of computed contributions to
   95: *>          the Dif-estimate under computation by DTGSYL, where the
   96: *>          scaling factor RDSCAL (see below) has been factored out.
   97: *>          On exit, the corresponding sum of squares updated with the
   98: *>          contributions from the current sub-system.
   99: *>          If TRANS = 'T' RDSUM is not touched.
  100: *>          NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL.
  101: *> \endverbatim
  102: *>
  103: *> \param[in,out] RDSCAL
  104: *> \verbatim
  105: *>          RDSCAL is DOUBLE PRECISION
  106: *>          On entry, scaling factor used to prevent overflow in RDSUM.
  107: *>          On exit, RDSCAL is updated w.r.t. the current contributions
  108: *>          in RDSUM.
  109: *>          If TRANS = 'T', RDSCAL is not touched.
  110: *>          NOTE: RDSCAL only makes sense when DTGSY2 is called by
  111: *>                DTGSYL.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] IPIV
  115: *> \verbatim
  116: *>          IPIV is INTEGER array, dimension (N).
  117: *>          The pivot indices; for 1 <= i <= N, row i of the
  118: *>          matrix has been interchanged with row IPIV(i).
  119: *> \endverbatim
  120: *>
  121: *> \param[in] JPIV
  122: *> \verbatim
  123: *>          JPIV is INTEGER array, dimension (N).
  124: *>          The pivot indices; for 1 <= j <= N, column j of the
  125: *>          matrix has been interchanged with column JPIV(j).
  126: *> \endverbatim
  127: *
  128: *  Authors:
  129: *  ========
  130: *
  131: *> \author Univ. of Tennessee
  132: *> \author Univ. of California Berkeley
  133: *> \author Univ. of Colorado Denver
  134: *> \author NAG Ltd.
  135: *
  136: *> \ingroup doubleOTHERauxiliary
  137: *
  138: *> \par Further Details:
  139: *  =====================
  140: *>
  141: *>  This routine is a further developed implementation of algorithm
  142: *>  BSOLVE in [1] using complete pivoting in the LU factorization.
  143: *
  144: *> \par Contributors:
  145: *  ==================
  146: *>
  147: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  148: *>     Umea University, S-901 87 Umea, Sweden.
  149: *
  150: *> \par References:
  151: *  ================
  152: *>
  153: *> \verbatim
  154: *>
  155: *>
  156: *>  [1] Bo Kagstrom and Lars Westin,
  157: *>      Generalized Schur Methods with Condition Estimators for
  158: *>      Solving the Generalized Sylvester Equation, IEEE Transactions
  159: *>      on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
  160: *>
  161: *>  [2] Peter Poromaa,
  162: *>      On Efficient and Robust Estimators for the Separation
  163: *>      between two Regular Matrix Pairs with Applications in
  164: *>      Condition Estimation. Report IMINF-95.05, Departement of
  165: *>      Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.
  166: *> \endverbatim
  167: *>
  168: *  =====================================================================
  169:       SUBROUTINE DLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
  170:      $                   JPIV )
  171: *
  172: *  -- LAPACK auxiliary routine --
  173: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  174: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  175: *
  176: *     .. Scalar Arguments ..
  177:       INTEGER            IJOB, LDZ, N
  178:       DOUBLE PRECISION   RDSCAL, RDSUM
  179: *     ..
  180: *     .. Array Arguments ..
  181:       INTEGER            IPIV( * ), JPIV( * )
  182:       DOUBLE PRECISION   RHS( * ), Z( LDZ, * )
  183: *     ..
  184: *
  185: *  =====================================================================
  186: *
  187: *     .. Parameters ..
  188:       INTEGER            MAXDIM
  189:       PARAMETER          ( MAXDIM = 8 )
  190:       DOUBLE PRECISION   ZERO, ONE
  191:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  192: *     ..
  193: *     .. Local Scalars ..
  194:       INTEGER            I, INFO, J, K
  195:       DOUBLE PRECISION   BM, BP, PMONE, SMINU, SPLUS, TEMP
  196: *     ..
  197: *     .. Local Arrays ..
  198:       INTEGER            IWORK( MAXDIM )
  199:       DOUBLE PRECISION   WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
  200: *     ..
  201: *     .. External Subroutines ..
  202:       EXTERNAL           DAXPY, DCOPY, DGECON, DGESC2, DLASSQ, DLASWP,
  203:      $                   DSCAL
  204: *     ..
  205: *     .. External Functions ..
  206:       DOUBLE PRECISION   DASUM, DDOT
  207:       EXTERNAL           DASUM, DDOT
  208: *     ..
  209: *     .. Intrinsic Functions ..
  210:       INTRINSIC          ABS, SQRT
  211: *     ..
  212: *     .. Executable Statements ..
  213: *
  214:       IF( IJOB.NE.2 ) THEN
  215: *
  216: *        Apply permutations IPIV to RHS
  217: *
  218:          CALL DLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
  219: *
  220: *        Solve for L-part choosing RHS either to +1 or -1.
  221: *
  222:          PMONE = -ONE
  223: *
  224:          DO 10 J = 1, N - 1
  225:             BP = RHS( J ) + ONE
  226:             BM = RHS( J ) - ONE
  227:             SPLUS = ONE
  228: *
  229: *           Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and
  230: *           SMIN computed more efficiently than in BSOLVE [1].
  231: *
  232:             SPLUS = SPLUS + DDOT( N-J, Z( J+1, J ), 1, Z( J+1, J ), 1 )
  233:             SMINU = DDOT( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 )
  234:             SPLUS = SPLUS*RHS( J )
  235:             IF( SPLUS.GT.SMINU ) THEN
  236:                RHS( J ) = BP
  237:             ELSE IF( SMINU.GT.SPLUS ) THEN
  238:                RHS( J ) = BM
  239:             ELSE
  240: *
  241: *              In this case the updating sums are equal and we can
  242: *              choose RHS(J) +1 or -1. The first time this happens
  243: *              we choose -1, thereafter +1. This is a simple way to
  244: *              get good estimates of matrices like Byers well-known
  245: *              example (see [1]). (Not done in BSOLVE.)
  246: *
  247:                RHS( J ) = RHS( J ) + PMONE
  248:                PMONE = ONE
  249:             END IF
  250: *
  251: *           Compute the remaining r.h.s.
  252: *
  253:             TEMP = -RHS( J )
  254:             CALL DAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
  255: *
  256:    10    CONTINUE
  257: *
  258: *        Solve for U-part, look-ahead for RHS(N) = +-1. This is not done
  259: *        in BSOLVE and will hopefully give us a better estimate because
  260: *        any ill-conditioning of the original matrix is transferred to U
  261: *        and not to L. U(N, N) is an approximation to sigma_min(LU).
  262: *
  263:          CALL DCOPY( N-1, RHS, 1, XP, 1 )
  264:          XP( N ) = RHS( N ) + ONE
  265:          RHS( N ) = RHS( N ) - ONE
  266:          SPLUS = ZERO
  267:          SMINU = ZERO
  268:          DO 30 I = N, 1, -1
  269:             TEMP = ONE / Z( I, I )
  270:             XP( I ) = XP( I )*TEMP
  271:             RHS( I ) = RHS( I )*TEMP
  272:             DO 20 K = I + 1, N
  273:                XP( I ) = XP( I ) - XP( K )*( Z( I, K )*TEMP )
  274:                RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
  275:    20       CONTINUE
  276:             SPLUS = SPLUS + ABS( XP( I ) )
  277:             SMINU = SMINU + ABS( RHS( I ) )
  278:    30    CONTINUE
  279:          IF( SPLUS.GT.SMINU )
  280:      $      CALL DCOPY( N, XP, 1, RHS, 1 )
  281: *
  282: *        Apply the permutations JPIV to the computed solution (RHS)
  283: *
  284:          CALL DLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
  285: *
  286: *        Compute the sum of squares
  287: *
  288:          CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM )
  289: *
  290:       ELSE
  291: *
  292: *        IJOB = 2, Compute approximate nullvector XM of Z
  293: *
  294:          CALL DGECON( 'I', N, Z, LDZ, ONE, TEMP, WORK, IWORK, INFO )
  295:          CALL DCOPY( N, WORK( N+1 ), 1, XM, 1 )
  296: *
  297: *        Compute RHS
  298: *
  299:          CALL DLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
  300:          TEMP = ONE / SQRT( DDOT( N, XM, 1, XM, 1 ) )
  301:          CALL DSCAL( N, TEMP, XM, 1 )
  302:          CALL DCOPY( N, XM, 1, XP, 1 )
  303:          CALL DAXPY( N, ONE, RHS, 1, XP, 1 )
  304:          CALL DAXPY( N, -ONE, XM, 1, RHS, 1 )
  305:          CALL DGESC2( N, Z, LDZ, RHS, IPIV, JPIV, TEMP )
  306:          CALL DGESC2( N, Z, LDZ, XP, IPIV, JPIV, TEMP )
  307:          IF( DASUM( N, XP, 1 ).GT.DASUM( N, RHS, 1 ) )
  308:      $      CALL DCOPY( N, XP, 1, RHS, 1 )
  309: *
  310: *        Compute the sum of squares
  311: *
  312:          CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM )
  313: *
  314:       END IF
  315: *
  316:       RETURN
  317: *
  318: *     End of DLATDF
  319: *
  320:       END

CVSweb interface <joel.bertrand@systella.fr>