Annotation of rpl/lapack/lapack/dlatdf.f, revision 1.21

1.12      bertrand    1: *> \brief \b DLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download DLATDF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatdf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatdf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatdf.f">
1.9       bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
                     22: *                          JPIV )
1.17      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            IJOB, LDZ, N
                     26: *       DOUBLE PRECISION   RDSCAL, RDSUM
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * ), JPIV( * )
                     30: *       DOUBLE PRECISION   RHS( * ), Z( LDZ, * )
                     31: *       ..
1.17      bertrand   32: *
1.9       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DLATDF uses the LU factorization of the n-by-n matrix Z computed by
                     40: *> DGETC2 and computes a contribution to the reciprocal Dif-estimate
                     41: *> by solving Z * x = b for x, and choosing the r.h.s. b such that
                     42: *> the norm of x is as large as possible. On entry RHS = b holds the
                     43: *> contribution from earlier solved sub-systems, and on return RHS = x.
                     44: *>
                     45: *> The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q,
                     46: *> where P and Q are permutation matrices. L is lower triangular with
                     47: *> unit diagonal elements and U is upper triangular.
                     48: *> \endverbatim
                     49: *
                     50: *  Arguments:
                     51: *  ==========
                     52: *
                     53: *> \param[in] IJOB
                     54: *> \verbatim
                     55: *>          IJOB is INTEGER
                     56: *>          IJOB = 2: First compute an approximative null-vector e
                     57: *>              of Z using DGECON, e is normalized and solve for
                     58: *>              Zx = +-e - f with the sign giving the greater value
                     59: *>              of 2-norm(x). About 5 times as expensive as Default.
                     60: *>          IJOB .ne. 2: Local look ahead strategy where all entries of
1.15      bertrand   61: *>              the r.h.s. b is chosen as either +1 or -1 (Default).
1.9       bertrand   62: *> \endverbatim
                     63: *>
                     64: *> \param[in] N
                     65: *> \verbatim
                     66: *>          N is INTEGER
                     67: *>          The number of columns of the matrix Z.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] Z
                     71: *> \verbatim
                     72: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
                     73: *>          On entry, the LU part of the factorization of the n-by-n
                     74: *>          matrix Z computed by DGETC2:  Z = P * L * U * Q
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] LDZ
                     78: *> \verbatim
                     79: *>          LDZ is INTEGER
                     80: *>          The leading dimension of the array Z.  LDA >= max(1, N).
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in,out] RHS
                     84: *> \verbatim
                     85: *>          RHS is DOUBLE PRECISION array, dimension (N)
                     86: *>          On entry, RHS contains contributions from other subsystems.
                     87: *>          On exit, RHS contains the solution of the subsystem with
1.20      bertrand   88: *>          entries according to the value of IJOB (see above).
1.9       bertrand   89: *> \endverbatim
                     90: *>
                     91: *> \param[in,out] RDSUM
                     92: *> \verbatim
                     93: *>          RDSUM is DOUBLE PRECISION
                     94: *>          On entry, the sum of squares of computed contributions to
                     95: *>          the Dif-estimate under computation by DTGSYL, where the
                     96: *>          scaling factor RDSCAL (see below) has been factored out.
                     97: *>          On exit, the corresponding sum of squares updated with the
                     98: *>          contributions from the current sub-system.
                     99: *>          If TRANS = 'T' RDSUM is not touched.
                    100: *>          NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in,out] RDSCAL
                    104: *> \verbatim
                    105: *>          RDSCAL is DOUBLE PRECISION
                    106: *>          On entry, scaling factor used to prevent overflow in RDSUM.
                    107: *>          On exit, RDSCAL is updated w.r.t. the current contributions
                    108: *>          in RDSUM.
                    109: *>          If TRANS = 'T', RDSCAL is not touched.
                    110: *>          NOTE: RDSCAL only makes sense when DTGSY2 is called by
                    111: *>                DTGSYL.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] IPIV
                    115: *> \verbatim
                    116: *>          IPIV is INTEGER array, dimension (N).
                    117: *>          The pivot indices; for 1 <= i <= N, row i of the
                    118: *>          matrix has been interchanged with row IPIV(i).
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] JPIV
                    122: *> \verbatim
                    123: *>          JPIV is INTEGER array, dimension (N).
                    124: *>          The pivot indices; for 1 <= j <= N, column j of the
                    125: *>          matrix has been interchanged with column JPIV(j).
                    126: *> \endverbatim
                    127: *
                    128: *  Authors:
                    129: *  ========
                    130: *
1.17      bertrand  131: *> \author Univ. of Tennessee
                    132: *> \author Univ. of California Berkeley
                    133: *> \author Univ. of Colorado Denver
                    134: *> \author NAG Ltd.
1.9       bertrand  135: *
                    136: *> \ingroup doubleOTHERauxiliary
                    137: *
                    138: *> \par Further Details:
                    139: *  =====================
                    140: *>
                    141: *>  This routine is a further developed implementation of algorithm
                    142: *>  BSOLVE in [1] using complete pivoting in the LU factorization.
                    143: *
                    144: *> \par Contributors:
                    145: *  ==================
                    146: *>
                    147: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                    148: *>     Umea University, S-901 87 Umea, Sweden.
                    149: *
                    150: *> \par References:
                    151: *  ================
                    152: *>
                    153: *> \verbatim
                    154: *>
                    155: *>
                    156: *>  [1] Bo Kagstrom and Lars Westin,
                    157: *>      Generalized Schur Methods with Condition Estimators for
                    158: *>      Solving the Generalized Sylvester Equation, IEEE Transactions
                    159: *>      on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
                    160: *>
                    161: *>  [2] Peter Poromaa,
                    162: *>      On Efficient and Robust Estimators for the Separation
                    163: *>      between two Regular Matrix Pairs with Applications in
                    164: *>      Condition Estimation. Report IMINF-95.05, Departement of
                    165: *>      Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.
                    166: *> \endverbatim
                    167: *>
                    168: *  =====================================================================
1.1       bertrand  169:       SUBROUTINE DLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
                    170:      $                   JPIV )
                    171: *
1.21    ! bertrand  172: *  -- LAPACK auxiliary routine --
1.1       bertrand  173: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    174: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    175: *
                    176: *     .. Scalar Arguments ..
                    177:       INTEGER            IJOB, LDZ, N
                    178:       DOUBLE PRECISION   RDSCAL, RDSUM
                    179: *     ..
                    180: *     .. Array Arguments ..
                    181:       INTEGER            IPIV( * ), JPIV( * )
                    182:       DOUBLE PRECISION   RHS( * ), Z( LDZ, * )
                    183: *     ..
                    184: *
                    185: *  =====================================================================
                    186: *
                    187: *     .. Parameters ..
                    188:       INTEGER            MAXDIM
                    189:       PARAMETER          ( MAXDIM = 8 )
                    190:       DOUBLE PRECISION   ZERO, ONE
                    191:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    192: *     ..
                    193: *     .. Local Scalars ..
                    194:       INTEGER            I, INFO, J, K
                    195:       DOUBLE PRECISION   BM, BP, PMONE, SMINU, SPLUS, TEMP
                    196: *     ..
                    197: *     .. Local Arrays ..
                    198:       INTEGER            IWORK( MAXDIM )
                    199:       DOUBLE PRECISION   WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
                    200: *     ..
                    201: *     .. External Subroutines ..
                    202:       EXTERNAL           DAXPY, DCOPY, DGECON, DGESC2, DLASSQ, DLASWP,
                    203:      $                   DSCAL
                    204: *     ..
                    205: *     .. External Functions ..
                    206:       DOUBLE PRECISION   DASUM, DDOT
                    207:       EXTERNAL           DASUM, DDOT
                    208: *     ..
                    209: *     .. Intrinsic Functions ..
                    210:       INTRINSIC          ABS, SQRT
                    211: *     ..
                    212: *     .. Executable Statements ..
                    213: *
                    214:       IF( IJOB.NE.2 ) THEN
                    215: *
                    216: *        Apply permutations IPIV to RHS
                    217: *
                    218:          CALL DLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
                    219: *
                    220: *        Solve for L-part choosing RHS either to +1 or -1.
                    221: *
                    222:          PMONE = -ONE
                    223: *
                    224:          DO 10 J = 1, N - 1
                    225:             BP = RHS( J ) + ONE
                    226:             BM = RHS( J ) - ONE
                    227:             SPLUS = ONE
                    228: *
                    229: *           Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and
                    230: *           SMIN computed more efficiently than in BSOLVE [1].
                    231: *
                    232:             SPLUS = SPLUS + DDOT( N-J, Z( J+1, J ), 1, Z( J+1, J ), 1 )
                    233:             SMINU = DDOT( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 )
                    234:             SPLUS = SPLUS*RHS( J )
                    235:             IF( SPLUS.GT.SMINU ) THEN
                    236:                RHS( J ) = BP
                    237:             ELSE IF( SMINU.GT.SPLUS ) THEN
                    238:                RHS( J ) = BM
                    239:             ELSE
                    240: *
                    241: *              In this case the updating sums are equal and we can
                    242: *              choose RHS(J) +1 or -1. The first time this happens
                    243: *              we choose -1, thereafter +1. This is a simple way to
                    244: *              get good estimates of matrices like Byers well-known
                    245: *              example (see [1]). (Not done in BSOLVE.)
                    246: *
                    247:                RHS( J ) = RHS( J ) + PMONE
                    248:                PMONE = ONE
                    249:             END IF
                    250: *
                    251: *           Compute the remaining r.h.s.
                    252: *
                    253:             TEMP = -RHS( J )
                    254:             CALL DAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
                    255: *
                    256:    10    CONTINUE
                    257: *
                    258: *        Solve for U-part, look-ahead for RHS(N) = +-1. This is not done
                    259: *        in BSOLVE and will hopefully give us a better estimate because
1.20      bertrand  260: *        any ill-conditioning of the original matrix is transferred to U
1.1       bertrand  261: *        and not to L. U(N, N) is an approximation to sigma_min(LU).
                    262: *
                    263:          CALL DCOPY( N-1, RHS, 1, XP, 1 )
                    264:          XP( N ) = RHS( N ) + ONE
                    265:          RHS( N ) = RHS( N ) - ONE
                    266:          SPLUS = ZERO
                    267:          SMINU = ZERO
                    268:          DO 30 I = N, 1, -1
                    269:             TEMP = ONE / Z( I, I )
                    270:             XP( I ) = XP( I )*TEMP
                    271:             RHS( I ) = RHS( I )*TEMP
                    272:             DO 20 K = I + 1, N
                    273:                XP( I ) = XP( I ) - XP( K )*( Z( I, K )*TEMP )
                    274:                RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
                    275:    20       CONTINUE
                    276:             SPLUS = SPLUS + ABS( XP( I ) )
                    277:             SMINU = SMINU + ABS( RHS( I ) )
                    278:    30    CONTINUE
                    279:          IF( SPLUS.GT.SMINU )
                    280:      $      CALL DCOPY( N, XP, 1, RHS, 1 )
                    281: *
                    282: *        Apply the permutations JPIV to the computed solution (RHS)
                    283: *
                    284:          CALL DLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
                    285: *
                    286: *        Compute the sum of squares
                    287: *
                    288:          CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM )
                    289: *
                    290:       ELSE
                    291: *
                    292: *        IJOB = 2, Compute approximate nullvector XM of Z
                    293: *
                    294:          CALL DGECON( 'I', N, Z, LDZ, ONE, TEMP, WORK, IWORK, INFO )
                    295:          CALL DCOPY( N, WORK( N+1 ), 1, XM, 1 )
                    296: *
                    297: *        Compute RHS
                    298: *
                    299:          CALL DLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
                    300:          TEMP = ONE / SQRT( DDOT( N, XM, 1, XM, 1 ) )
                    301:          CALL DSCAL( N, TEMP, XM, 1 )
                    302:          CALL DCOPY( N, XM, 1, XP, 1 )
                    303:          CALL DAXPY( N, ONE, RHS, 1, XP, 1 )
                    304:          CALL DAXPY( N, -ONE, XM, 1, RHS, 1 )
                    305:          CALL DGESC2( N, Z, LDZ, RHS, IPIV, JPIV, TEMP )
                    306:          CALL DGESC2( N, Z, LDZ, XP, IPIV, JPIV, TEMP )
                    307:          IF( DASUM( N, XP, 1 ).GT.DASUM( N, RHS, 1 ) )
                    308:      $      CALL DCOPY( N, XP, 1, RHS, 1 )
                    309: *
                    310: *        Compute the sum of squares
                    311: *
                    312:          CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM )
                    313: *
                    314:       END IF
                    315: *
                    316:       RETURN
                    317: *
                    318: *     End of DLATDF
                    319: *
                    320:       END

CVSweb interface <joel.bertrand@systella.fr>