File:  [local] / rpl / lapack / lapack / dlasyf.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:00 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLASYF computes a partial factorization of a real symmetric matrix using the Bunch-Kaufman diagonal pivoting method.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLASYF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * ), W( LDW, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLASYF computes a partial factorization of a real symmetric matrix A
   39: *> using the Bunch-Kaufman diagonal pivoting method. The partial
   40: *> factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
   44: *>
   45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
   46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *>
   51: *> DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code
   52: *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
   53: *> A22 (if UPLO = 'L').
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          Specifies whether the upper or lower triangular part of the
   63: *>          symmetric matrix A is stored:
   64: *>          = 'U':  Upper triangular
   65: *>          = 'L':  Lower triangular
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrix A.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] NB
   75: *> \verbatim
   76: *>          NB is INTEGER
   77: *>          The maximum number of columns of the matrix A that should be
   78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   79: *>          blocks.
   80: *> \endverbatim
   81: *>
   82: *> \param[out] KB
   83: *> \verbatim
   84: *>          KB is INTEGER
   85: *>          The number of columns of A that were actually factored.
   86: *>          KB is either NB-1 or NB, or N if N <= NB.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] A
   90: *> \verbatim
   91: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   92: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   93: *>          n-by-n upper triangular part of A contains the upper
   94: *>          triangular part of the matrix A, and the strictly lower
   95: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   96: *>          leading n-by-n lower triangular part of A contains the lower
   97: *>          triangular part of the matrix A, and the strictly upper
   98: *>          triangular part of A is not referenced.
   99: *>          On exit, A contains details of the partial factorization.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDA
  103: *> \verbatim
  104: *>          LDA is INTEGER
  105: *>          The leading dimension of the array A.  LDA >= max(1,N).
  106: *> \endverbatim
  107: *>
  108: *> \param[out] IPIV
  109: *> \verbatim
  110: *>          IPIV is INTEGER array, dimension (N)
  111: *>          Details of the interchanges and the block structure of D.
  112: *>
  113: *>          If UPLO = 'U':
  114: *>             Only the last KB elements of IPIV are set.
  115: *>
  116: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  117: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  118: *>
  119: *>             If IPIV(k) = IPIV(k-1) < 0, then rows and columns
  120: *>             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  121: *>             is a 2-by-2 diagonal block.
  122: *>
  123: *>          If UPLO = 'L':
  124: *>             Only the first KB elements of IPIV are set.
  125: *>
  126: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  127: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  128: *>
  129: *>             If IPIV(k) = IPIV(k+1) < 0, then rows and columns
  130: *>             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
  131: *>             is a 2-by-2 diagonal block.
  132: *> \endverbatim
  133: *>
  134: *> \param[out] W
  135: *> \verbatim
  136: *>          W is DOUBLE PRECISION array, dimension (LDW,NB)
  137: *> \endverbatim
  138: *>
  139: *> \param[in] LDW
  140: *> \verbatim
  141: *>          LDW is INTEGER
  142: *>          The leading dimension of the array W.  LDW >= max(1,N).
  143: *> \endverbatim
  144: *>
  145: *> \param[out] INFO
  146: *> \verbatim
  147: *>          INFO is INTEGER
  148: *>          = 0: successful exit
  149: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  150: *>               has been completed, but the block diagonal matrix D is
  151: *>               exactly singular.
  152: *> \endverbatim
  153: *
  154: *  Authors:
  155: *  ========
  156: *
  157: *> \author Univ. of Tennessee
  158: *> \author Univ. of California Berkeley
  159: *> \author Univ. of Colorado Denver
  160: *> \author NAG Ltd.
  161: *
  162: *> \ingroup doubleSYcomputational
  163: *
  164: *> \par Contributors:
  165: *  ==================
  166: *>
  167: *> \verbatim
  168: *>
  169: *>  November 2013,  Igor Kozachenko,
  170: *>                  Computer Science Division,
  171: *>                  University of California, Berkeley
  172: *> \endverbatim
  173: *
  174: *  =====================================================================
  175:       SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
  176: *
  177: *  -- LAPACK computational routine --
  178: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  179: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  180: *
  181: *     .. Scalar Arguments ..
  182:       CHARACTER          UPLO
  183:       INTEGER            INFO, KB, LDA, LDW, N, NB
  184: *     ..
  185: *     .. Array Arguments ..
  186:       INTEGER            IPIV( * )
  187:       DOUBLE PRECISION   A( LDA, * ), W( LDW, * )
  188: *     ..
  189: *
  190: *  =====================================================================
  191: *
  192: *     .. Parameters ..
  193:       DOUBLE PRECISION   ZERO, ONE
  194:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  195:       DOUBLE PRECISION   EIGHT, SEVTEN
  196:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  197: *     ..
  198: *     .. Local Scalars ..
  199:       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
  200:      $                   KSTEP, KW
  201:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D21, D22, R1,
  202:      $                   ROWMAX, T
  203: *     ..
  204: *     .. External Functions ..
  205:       LOGICAL            LSAME
  206:       INTEGER            IDAMAX
  207:       EXTERNAL           LSAME, IDAMAX
  208: *     ..
  209: *     .. External Subroutines ..
  210:       EXTERNAL           DCOPY, DGEMM, DGEMV, DSCAL, DSWAP
  211: *     ..
  212: *     .. Intrinsic Functions ..
  213:       INTRINSIC          ABS, MAX, MIN, SQRT
  214: *     ..
  215: *     .. Executable Statements ..
  216: *
  217:       INFO = 0
  218: *
  219: *     Initialize ALPHA for use in choosing pivot block size.
  220: *
  221:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  222: *
  223:       IF( LSAME( UPLO, 'U' ) ) THEN
  224: *
  225: *        Factorize the trailing columns of A using the upper triangle
  226: *        of A and working backwards, and compute the matrix W = U12*D
  227: *        for use in updating A11
  228: *
  229: *        K is the main loop index, decreasing from N in steps of 1 or 2
  230: *
  231: *        KW is the column of W which corresponds to column K of A
  232: *
  233:          K = N
  234:    10    CONTINUE
  235:          KW = NB + K - N
  236: *
  237: *        Exit from loop
  238: *
  239:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  240:      $      GO TO 30
  241: *
  242: *        Copy column K of A to column KW of W and update it
  243: *
  244:          CALL DCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  245:          IF( K.LT.N )
  246:      $      CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ), LDA,
  247:      $                  W( K, KW+1 ), LDW, ONE, W( 1, KW ), 1 )
  248: *
  249:          KSTEP = 1
  250: *
  251: *        Determine rows and columns to be interchanged and whether
  252: *        a 1-by-1 or 2-by-2 pivot block will be used
  253: *
  254:          ABSAKK = ABS( W( K, KW ) )
  255: *
  256: *        IMAX is the row-index of the largest off-diagonal element in
  257: *        column K, and COLMAX is its absolute value.
  258: *        Determine both COLMAX and IMAX.
  259: *
  260:          IF( K.GT.1 ) THEN
  261:             IMAX = IDAMAX( K-1, W( 1, KW ), 1 )
  262:             COLMAX = ABS( W( IMAX, KW ) )
  263:          ELSE
  264:             COLMAX = ZERO
  265:          END IF
  266: *
  267:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  268: *
  269: *           Column K is zero or underflow: set INFO and continue
  270: *
  271:             IF( INFO.EQ.0 )
  272:      $         INFO = K
  273:             KP = K
  274:          ELSE
  275:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  276: *
  277: *              no interchange, use 1-by-1 pivot block
  278: *
  279:                KP = K
  280:             ELSE
  281: *
  282: *              Copy column IMAX to column KW-1 of W and update it
  283: *
  284:                CALL DCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  285:                CALL DCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  286:      $                     W( IMAX+1, KW-1 ), 1 )
  287:                IF( K.LT.N )
  288:      $            CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ),
  289:      $                        LDA, W( IMAX, KW+1 ), LDW, ONE,
  290:      $                        W( 1, KW-1 ), 1 )
  291: *
  292: *              JMAX is the column-index of the largest off-diagonal
  293: *              element in row IMAX, and ROWMAX is its absolute value
  294: *
  295:                JMAX = IMAX + IDAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  296:                ROWMAX = ABS( W( JMAX, KW-1 ) )
  297:                IF( IMAX.GT.1 ) THEN
  298:                   JMAX = IDAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  299:                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, KW-1 ) ) )
  300:                END IF
  301: *
  302:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  303: *
  304: *                 no interchange, use 1-by-1 pivot block
  305: *
  306:                   KP = K
  307:                ELSE IF( ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN
  308: *
  309: *                 interchange rows and columns K and IMAX, use 1-by-1
  310: *                 pivot block
  311: *
  312:                   KP = IMAX
  313: *
  314: *                 copy column KW-1 of W to column KW of W
  315: *
  316:                   CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  317:                ELSE
  318: *
  319: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  320: *                 pivot block
  321: *
  322:                   KP = IMAX
  323:                   KSTEP = 2
  324:                END IF
  325:             END IF
  326: *
  327: *           ============================================================
  328: *
  329: *           KK is the column of A where pivoting step stopped
  330: *
  331:             KK = K - KSTEP + 1
  332: *
  333: *           KKW is the column of W which corresponds to column KK of A
  334: *
  335:             KKW = NB + KK - N
  336: *
  337: *           Interchange rows and columns KP and KK.
  338: *           Updated column KP is already stored in column KKW of W.
  339: *
  340:             IF( KP.NE.KK ) THEN
  341: *
  342: *              Copy non-updated column KK to column KP of submatrix A
  343: *              at step K. No need to copy element into column K
  344: *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
  345: *              will be later overwritten.
  346: *
  347:                A( KP, KP ) = A( KK, KK )
  348:                CALL DCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  349:      $                     LDA )
  350:                IF( KP.GT.1 )
  351:      $            CALL DCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  352: *
  353: *              Interchange rows KK and KP in last K+1 to N columns of A
  354: *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
  355: *              later overwritten). Interchange rows KK and KP
  356: *              in last KKW to NB columns of W.
  357: *
  358:                IF( K.LT.N )
  359:      $            CALL DSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
  360:      $                        LDA )
  361:                CALL DSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  362:      $                     LDW )
  363:             END IF
  364: *
  365:             IF( KSTEP.EQ.1 ) THEN
  366: *
  367: *              1-by-1 pivot block D(k): column kw of W now holds
  368: *
  369: *              W(kw) = U(k)*D(k),
  370: *
  371: *              where U(k) is the k-th column of U
  372: *
  373: *              Store subdiag. elements of column U(k)
  374: *              and 1-by-1 block D(k) in column k of A.
  375: *              NOTE: Diagonal element U(k,k) is a UNIT element
  376: *              and not stored.
  377: *                 A(k,k) := D(k,k) = W(k,kw)
  378: *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
  379: *
  380:                CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  381:                R1 = ONE / A( K, K )
  382:                CALL DSCAL( K-1, R1, A( 1, K ), 1 )
  383: *
  384:             ELSE
  385: *
  386: *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
  387: *
  388: *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
  389: *
  390: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  391: *              of U
  392: *
  393: *              Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
  394: *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
  395: *              NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
  396: *              block and not stored.
  397: *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
  398: *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
  399: *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
  400: *
  401:                IF( K.GT.2 ) THEN
  402: *
  403: *                 Compose the columns of the inverse of 2-by-2 pivot
  404: *                 block D in the following way to reduce the number
  405: *                 of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by
  406: *                 this inverse
  407: *
  408: *                 D**(-1) = ( d11 d21 )**(-1) =
  409: *                           ( d21 d22 )
  410: *
  411: *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
  412: *                                        ( (-d21 ) ( d11 ) )
  413: *
  414: *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
  415: *
  416: *                   * ( ( d22/d21 ) (      -1 ) ) =
  417: *                     ( (      -1 ) ( d11/d21 ) )
  418: *
  419: *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
  420: *                                           ( ( -1  ) ( D22 ) )
  421: *
  422: *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
  423: *                               ( (  -1 ) ( D22 ) )
  424: *
  425: *                 = D21 * ( ( D11 ) (  -1 ) )
  426: *                         ( (  -1 ) ( D22 ) )
  427: *
  428:                   D21 = W( K-1, KW )
  429:                   D11 = W( K, KW ) / D21
  430:                   D22 = W( K-1, KW-1 ) / D21
  431:                   T = ONE / ( D11*D22-ONE )
  432:                   D21 = T / D21
  433: *
  434: *                 Update elements in columns A(k-1) and A(k) as
  435: *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
  436: *                 of D**(-1)
  437: *
  438:                   DO 20 J = 1, K - 2
  439:                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
  440:                      A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) )
  441:    20             CONTINUE
  442:                END IF
  443: *
  444: *              Copy D(k) to A
  445: *
  446:                A( K-1, K-1 ) = W( K-1, KW-1 )
  447:                A( K-1, K ) = W( K-1, KW )
  448:                A( K, K ) = W( K, KW )
  449: *
  450:             END IF
  451: *
  452:          END IF
  453: *
  454: *        Store details of the interchanges in IPIV
  455: *
  456:          IF( KSTEP.EQ.1 ) THEN
  457:             IPIV( K ) = KP
  458:          ELSE
  459:             IPIV( K ) = -KP
  460:             IPIV( K-1 ) = -KP
  461:          END IF
  462: *
  463: *        Decrease K and return to the start of the main loop
  464: *
  465:          K = K - KSTEP
  466:          GO TO 10
  467: *
  468:    30    CONTINUE
  469: *
  470: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  471: *
  472: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
  473: *
  474: *        computing blocks of NB columns at a time
  475: *
  476:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  477:             JB = MIN( NB, K-J+1 )
  478: *
  479: *           Update the upper triangle of the diagonal block
  480: *
  481:             DO 40 JJ = J, J + JB - 1
  482:                CALL DGEMV( 'No transpose', JJ-J+1, N-K, -ONE,
  483:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, ONE,
  484:      $                     A( J, JJ ), 1 )
  485:    40       CONTINUE
  486: *
  487: *           Update the rectangular superdiagonal block
  488: *
  489:             CALL DGEMM( 'No transpose', 'Transpose', J-1, JB, N-K, -ONE,
  490:      $                  A( 1, K+1 ), LDA, W( J, KW+1 ), LDW, ONE,
  491:      $                  A( 1, J ), LDA )
  492:    50    CONTINUE
  493: *
  494: *        Put U12 in standard form by partially undoing the interchanges
  495: *        in columns k+1:n looping backwards from k+1 to n
  496: *
  497:          J = K + 1
  498:    60    CONTINUE
  499: *
  500: *           Undo the interchanges (if any) of rows JJ and JP at each
  501: *           step J
  502: *
  503: *           (Here, J is a diagonal index)
  504:             JJ = J
  505:             JP = IPIV( J )
  506:             IF( JP.LT.0 ) THEN
  507:                JP = -JP
  508: *              (Here, J is a diagonal index)
  509:                J = J + 1
  510:             END IF
  511: *           (NOTE: Here, J is used to determine row length. Length N-J+1
  512: *           of the rows to swap back doesn't include diagonal element)
  513:             J = J + 1
  514:             IF( JP.NE.JJ .AND. J.LE.N )
  515:      $         CALL DSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
  516:          IF( J.LT.N )
  517:      $      GO TO 60
  518: *
  519: *        Set KB to the number of columns factorized
  520: *
  521:          KB = N - K
  522: *
  523:       ELSE
  524: *
  525: *        Factorize the leading columns of A using the lower triangle
  526: *        of A and working forwards, and compute the matrix W = L21*D
  527: *        for use in updating A22
  528: *
  529: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  530: *
  531:          K = 1
  532:    70    CONTINUE
  533: *
  534: *        Exit from loop
  535: *
  536:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  537:      $      GO TO 90
  538: *
  539: *        Copy column K of A to column K of W and update it
  540: *
  541:          CALL DCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  542:          CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ), LDA,
  543:      $               W( K, 1 ), LDW, ONE, W( K, K ), 1 )
  544: *
  545:          KSTEP = 1
  546: *
  547: *        Determine rows and columns to be interchanged and whether
  548: *        a 1-by-1 or 2-by-2 pivot block will be used
  549: *
  550:          ABSAKK = ABS( W( K, K ) )
  551: *
  552: *        IMAX is the row-index of the largest off-diagonal element in
  553: *        column K, and COLMAX is its absolute value.
  554: *        Determine both COLMAX and IMAX.
  555: *
  556:          IF( K.LT.N ) THEN
  557:             IMAX = K + IDAMAX( N-K, W( K+1, K ), 1 )
  558:             COLMAX = ABS( W( IMAX, K ) )
  559:          ELSE
  560:             COLMAX = ZERO
  561:          END IF
  562: *
  563:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  564: *
  565: *           Column K is zero or underflow: set INFO and continue
  566: *
  567:             IF( INFO.EQ.0 )
  568:      $         INFO = K
  569:             KP = K
  570:          ELSE
  571:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  572: *
  573: *              no interchange, use 1-by-1 pivot block
  574: *
  575:                KP = K
  576:             ELSE
  577: *
  578: *              Copy column IMAX to column K+1 of W and update it
  579: *
  580:                CALL DCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
  581:                CALL DCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, K+1 ),
  582:      $                     1 )
  583:                CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ),
  584:      $                     LDA, W( IMAX, 1 ), LDW, ONE, W( K, K+1 ), 1 )
  585: *
  586: *              JMAX is the column-index of the largest off-diagonal
  587: *              element in row IMAX, and ROWMAX is its absolute value
  588: *
  589:                JMAX = K - 1 + IDAMAX( IMAX-K, W( K, K+1 ), 1 )
  590:                ROWMAX = ABS( W( JMAX, K+1 ) )
  591:                IF( IMAX.LT.N ) THEN
  592:                   JMAX = IMAX + IDAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
  593:                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, K+1 ) ) )
  594:                END IF
  595: *
  596:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  597: *
  598: *                 no interchange, use 1-by-1 pivot block
  599: *
  600:                   KP = K
  601:                ELSE IF( ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN
  602: *
  603: *                 interchange rows and columns K and IMAX, use 1-by-1
  604: *                 pivot block
  605: *
  606:                   KP = IMAX
  607: *
  608: *                 copy column K+1 of W to column K of W
  609: *
  610:                   CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  611:                ELSE
  612: *
  613: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  614: *                 pivot block
  615: *
  616:                   KP = IMAX
  617:                   KSTEP = 2
  618:                END IF
  619:             END IF
  620: *
  621: *           ============================================================
  622: *
  623: *           KK is the column of A where pivoting step stopped
  624: *
  625:             KK = K + KSTEP - 1
  626: *
  627: *           Interchange rows and columns KP and KK.
  628: *           Updated column KP is already stored in column KK of W.
  629: *
  630:             IF( KP.NE.KK ) THEN
  631: *
  632: *              Copy non-updated column KK to column KP of submatrix A
  633: *              at step K. No need to copy element into column K
  634: *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
  635: *              will be later overwritten.
  636: *
  637:                A( KP, KP ) = A( KK, KK )
  638:                CALL DCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  639:      $                     LDA )
  640:                IF( KP.LT.N )
  641:      $            CALL DCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  642: *
  643: *              Interchange rows KK and KP in first K-1 columns of A
  644: *              (columns K (or K and K+1 for 2-by-2 pivot) of A will be
  645: *              later overwritten). Interchange rows KK and KP
  646: *              in first KK columns of W.
  647: *
  648:                IF( K.GT.1 )
  649:      $            CALL DSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  650:                CALL DSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  651:             END IF
  652: *
  653:             IF( KSTEP.EQ.1 ) THEN
  654: *
  655: *              1-by-1 pivot block D(k): column k of W now holds
  656: *
  657: *              W(k) = L(k)*D(k),
  658: *
  659: *              where L(k) is the k-th column of L
  660: *
  661: *              Store subdiag. elements of column L(k)
  662: *              and 1-by-1 block D(k) in column k of A.
  663: *              (NOTE: Diagonal element L(k,k) is a UNIT element
  664: *              and not stored)
  665: *                 A(k,k) := D(k,k) = W(k,k)
  666: *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
  667: *
  668:                CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  669:                IF( K.LT.N ) THEN
  670:                   R1 = ONE / A( K, K )
  671:                   CALL DSCAL( N-K, R1, A( K+1, K ), 1 )
  672:                END IF
  673: *
  674:             ELSE
  675: *
  676: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  677: *
  678: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  679: *
  680: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  681: *              of L
  682: *
  683: *              Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
  684: *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
  685: *              (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
  686: *              block and not stored)
  687: *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
  688: *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
  689: *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
  690: *
  691:                IF( K.LT.N-1 ) THEN
  692: *
  693: *                 Compose the columns of the inverse of 2-by-2 pivot
  694: *                 block D in the following way to reduce the number
  695: *                 of FLOPS when we myltiply panel ( W(k) W(k+1) ) by
  696: *                 this inverse
  697: *
  698: *                 D**(-1) = ( d11 d21 )**(-1) =
  699: *                           ( d21 d22 )
  700: *
  701: *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
  702: *                                        ( (-d21 ) ( d11 ) )
  703: *
  704: *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
  705: *
  706: *                   * ( ( d22/d21 ) (      -1 ) ) =
  707: *                     ( (      -1 ) ( d11/d21 ) )
  708: *
  709: *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
  710: *                                           ( ( -1  ) ( D22 ) )
  711: *
  712: *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
  713: *                               ( (  -1 ) ( D22 ) )
  714: *
  715: *                 = D21 * ( ( D11 ) (  -1 ) )
  716: *                         ( (  -1 ) ( D22 ) )
  717: *
  718:                   D21 = W( K+1, K )
  719:                   D11 = W( K+1, K+1 ) / D21
  720:                   D22 = W( K, K ) / D21
  721:                   T = ONE / ( D11*D22-ONE )
  722:                   D21 = T / D21
  723: *
  724: *                 Update elements in columns A(k) and A(k+1) as
  725: *                 dot products of rows of ( W(k) W(k+1) ) and columns
  726: *                 of D**(-1)
  727: *
  728:                   DO 80 J = K + 2, N
  729:                      A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) )
  730:                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
  731:    80             CONTINUE
  732:                END IF
  733: *
  734: *              Copy D(k) to A
  735: *
  736:                A( K, K ) = W( K, K )
  737:                A( K+1, K ) = W( K+1, K )
  738:                A( K+1, K+1 ) = W( K+1, K+1 )
  739: *
  740:             END IF
  741: *
  742:          END IF
  743: *
  744: *        Store details of the interchanges in IPIV
  745: *
  746:          IF( KSTEP.EQ.1 ) THEN
  747:             IPIV( K ) = KP
  748:          ELSE
  749:             IPIV( K ) = -KP
  750:             IPIV( K+1 ) = -KP
  751:          END IF
  752: *
  753: *        Increase K and return to the start of the main loop
  754: *
  755:          K = K + KSTEP
  756:          GO TO 70
  757: *
  758:    90    CONTINUE
  759: *
  760: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
  761: *
  762: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
  763: *
  764: *        computing blocks of NB columns at a time
  765: *
  766:          DO 110 J = K, N, NB
  767:             JB = MIN( NB, N-J+1 )
  768: *
  769: *           Update the lower triangle of the diagonal block
  770: *
  771:             DO 100 JJ = J, J + JB - 1
  772:                CALL DGEMV( 'No transpose', J+JB-JJ, K-1, -ONE,
  773:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, ONE,
  774:      $                     A( JJ, JJ ), 1 )
  775:   100       CONTINUE
  776: *
  777: *           Update the rectangular subdiagonal block
  778: *
  779:             IF( J+JB.LE.N )
  780:      $         CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  781:      $                     K-1, -ONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
  782:      $                     ONE, A( J+JB, J ), LDA )
  783:   110    CONTINUE
  784: *
  785: *        Put L21 in standard form by partially undoing the interchanges
  786: *        of rows in columns 1:k-1 looping backwards from k-1 to 1
  787: *
  788:          J = K - 1
  789:   120    CONTINUE
  790: *
  791: *           Undo the interchanges (if any) of rows JJ and JP at each
  792: *           step J
  793: *
  794: *           (Here, J is a diagonal index)
  795:             JJ = J
  796:             JP = IPIV( J )
  797:             IF( JP.LT.0 ) THEN
  798:                JP = -JP
  799: *              (Here, J is a diagonal index)
  800:                J = J - 1
  801:             END IF
  802: *           (NOTE: Here, J is used to determine row length. Length J
  803: *           of the rows to swap back doesn't include diagonal element)
  804:             J = J - 1
  805:             IF( JP.NE.JJ .AND. J.GE.1 )
  806:      $         CALL DSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
  807:          IF( J.GT.1 )
  808:      $      GO TO 120
  809: *
  810: *        Set KB to the number of columns factorized
  811: *
  812:          KB = K - 1
  813: *
  814:       END IF
  815:       RETURN
  816: *
  817: *     End of DLASYF
  818: *
  819:       END

CVSweb interface <joel.bertrand@systella.fr>