Annotation of rpl/lapack/lapack/dlasyf.f, revision 1.19

1.14      bertrand    1: *> \brief \b DLASYF computes a partial factorization of a real symmetric matrix using the Bunch-Kaufman diagonal pivoting method.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download DLASYF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf.f">
1.9       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
1.14      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       DOUBLE PRECISION   A( LDA, * ), W( LDW, * )
                     30: *       ..
1.14      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DLASYF computes a partial factorization of a real symmetric matrix A
                     39: *> using the Bunch-Kaufman diagonal pivoting method. The partial
                     40: *> factorization has the form:
                     41: *>
                     42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                     43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
                     44: *>
                     45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
                     46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
                     47: *>
                     48: *> where the order of D is at most NB. The actual order is returned in
                     49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
                     50: *>
                     51: *> DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code
                     52: *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
                     53: *> A22 (if UPLO = 'L').
                     54: *> \endverbatim
                     55: *
                     56: *  Arguments:
                     57: *  ==========
                     58: *
                     59: *> \param[in] UPLO
                     60: *> \verbatim
                     61: *>          UPLO is CHARACTER*1
                     62: *>          Specifies whether the upper or lower triangular part of the
                     63: *>          symmetric matrix A is stored:
                     64: *>          = 'U':  Upper triangular
                     65: *>          = 'L':  Lower triangular
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] N
                     69: *> \verbatim
                     70: *>          N is INTEGER
                     71: *>          The order of the matrix A.  N >= 0.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] NB
                     75: *> \verbatim
                     76: *>          NB is INTEGER
                     77: *>          The maximum number of columns of the matrix A that should be
                     78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     79: *>          blocks.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[out] KB
                     83: *> \verbatim
                     84: *>          KB is INTEGER
                     85: *>          The number of columns of A that were actually factored.
                     86: *>          KB is either NB-1 or NB, or N if N <= NB.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in,out] A
                     90: *> \verbatim
                     91: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     92: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     93: *>          n-by-n upper triangular part of A contains the upper
                     94: *>          triangular part of the matrix A, and the strictly lower
                     95: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     96: *>          leading n-by-n lower triangular part of A contains the lower
                     97: *>          triangular part of the matrix A, and the strictly upper
                     98: *>          triangular part of A is not referenced.
                     99: *>          On exit, A contains details of the partial factorization.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] LDA
                    103: *> \verbatim
                    104: *>          LDA is INTEGER
                    105: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[out] IPIV
                    109: *> \verbatim
                    110: *>          IPIV is INTEGER array, dimension (N)
                    111: *>          Details of the interchanges and the block structure of D.
                    112: *>
1.14      bertrand  113: *>          If UPLO = 'U':
                    114: *>             Only the last KB elements of IPIV are set.
                    115: *>
                    116: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                    117: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
                    118: *>
                    119: *>             If IPIV(k) = IPIV(k-1) < 0, then rows and columns
                    120: *>             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                    121: *>             is a 2-by-2 diagonal block.
                    122: *>
                    123: *>          If UPLO = 'L':
                    124: *>             Only the first KB elements of IPIV are set.
                    125: *>
                    126: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                    127: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
                    128: *>
                    129: *>             If IPIV(k) = IPIV(k+1) < 0, then rows and columns
                    130: *>             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
                    131: *>             is a 2-by-2 diagonal block.
1.9       bertrand  132: *> \endverbatim
                    133: *>
                    134: *> \param[out] W
                    135: *> \verbatim
                    136: *>          W is DOUBLE PRECISION array, dimension (LDW,NB)
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in] LDW
                    140: *> \verbatim
                    141: *>          LDW is INTEGER
                    142: *>          The leading dimension of the array W.  LDW >= max(1,N).
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[out] INFO
                    146: *> \verbatim
                    147: *>          INFO is INTEGER
                    148: *>          = 0: successful exit
                    149: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
                    150: *>               has been completed, but the block diagonal matrix D is
                    151: *>               exactly singular.
                    152: *> \endverbatim
                    153: *
                    154: *  Authors:
                    155: *  ========
                    156: *
1.14      bertrand  157: *> \author Univ. of Tennessee
                    158: *> \author Univ. of California Berkeley
                    159: *> \author Univ. of Colorado Denver
                    160: *> \author NAG Ltd.
1.9       bertrand  161: *
                    162: *> \ingroup doubleSYcomputational
                    163: *
1.14      bertrand  164: *> \par Contributors:
                    165: *  ==================
                    166: *>
                    167: *> \verbatim
                    168: *>
                    169: *>  November 2013,  Igor Kozachenko,
                    170: *>                  Computer Science Division,
                    171: *>                  University of California, Berkeley
                    172: *> \endverbatim
                    173: *
1.9       bertrand  174: *  =====================================================================
1.1       bertrand  175:       SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
                    176: *
1.19    ! bertrand  177: *  -- LAPACK computational routine --
1.1       bertrand  178: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    179: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    180: *
                    181: *     .. Scalar Arguments ..
                    182:       CHARACTER          UPLO
                    183:       INTEGER            INFO, KB, LDA, LDW, N, NB
                    184: *     ..
                    185: *     .. Array Arguments ..
                    186:       INTEGER            IPIV( * )
                    187:       DOUBLE PRECISION   A( LDA, * ), W( LDW, * )
                    188: *     ..
                    189: *
                    190: *  =====================================================================
                    191: *
                    192: *     .. Parameters ..
                    193:       DOUBLE PRECISION   ZERO, ONE
                    194:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    195:       DOUBLE PRECISION   EIGHT, SEVTEN
                    196:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
                    197: *     ..
                    198: *     .. Local Scalars ..
                    199:       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
                    200:      $                   KSTEP, KW
                    201:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D21, D22, R1,
                    202:      $                   ROWMAX, T
                    203: *     ..
                    204: *     .. External Functions ..
                    205:       LOGICAL            LSAME
                    206:       INTEGER            IDAMAX
                    207:       EXTERNAL           LSAME, IDAMAX
                    208: *     ..
                    209: *     .. External Subroutines ..
                    210:       EXTERNAL           DCOPY, DGEMM, DGEMV, DSCAL, DSWAP
                    211: *     ..
                    212: *     .. Intrinsic Functions ..
                    213:       INTRINSIC          ABS, MAX, MIN, SQRT
                    214: *     ..
                    215: *     .. Executable Statements ..
                    216: *
                    217:       INFO = 0
                    218: *
                    219: *     Initialize ALPHA for use in choosing pivot block size.
                    220: *
                    221:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
                    222: *
                    223:       IF( LSAME( UPLO, 'U' ) ) THEN
                    224: *
                    225: *        Factorize the trailing columns of A using the upper triangle
                    226: *        of A and working backwards, and compute the matrix W = U12*D
                    227: *        for use in updating A11
                    228: *
                    229: *        K is the main loop index, decreasing from N in steps of 1 or 2
                    230: *
                    231: *        KW is the column of W which corresponds to column K of A
                    232: *
                    233:          K = N
                    234:    10    CONTINUE
                    235:          KW = NB + K - N
                    236: *
                    237: *        Exit from loop
                    238: *
                    239:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
                    240:      $      GO TO 30
                    241: *
                    242: *        Copy column K of A to column KW of W and update it
                    243: *
                    244:          CALL DCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
                    245:          IF( K.LT.N )
                    246:      $      CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ), LDA,
                    247:      $                  W( K, KW+1 ), LDW, ONE, W( 1, KW ), 1 )
                    248: *
                    249:          KSTEP = 1
                    250: *
                    251: *        Determine rows and columns to be interchanged and whether
                    252: *        a 1-by-1 or 2-by-2 pivot block will be used
                    253: *
                    254:          ABSAKK = ABS( W( K, KW ) )
                    255: *
                    256: *        IMAX is the row-index of the largest off-diagonal element in
1.14      bertrand  257: *        column K, and COLMAX is its absolute value.
                    258: *        Determine both COLMAX and IMAX.
1.1       bertrand  259: *
                    260:          IF( K.GT.1 ) THEN
                    261:             IMAX = IDAMAX( K-1, W( 1, KW ), 1 )
                    262:             COLMAX = ABS( W( IMAX, KW ) )
                    263:          ELSE
                    264:             COLMAX = ZERO
                    265:          END IF
                    266: *
                    267:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    268: *
1.14      bertrand  269: *           Column K is zero or underflow: set INFO and continue
1.1       bertrand  270: *
                    271:             IF( INFO.EQ.0 )
                    272:      $         INFO = K
                    273:             KP = K
                    274:          ELSE
                    275:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    276: *
                    277: *              no interchange, use 1-by-1 pivot block
                    278: *
                    279:                KP = K
                    280:             ELSE
                    281: *
                    282: *              Copy column IMAX to column KW-1 of W and update it
                    283: *
                    284:                CALL DCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
                    285:                CALL DCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
                    286:      $                     W( IMAX+1, KW-1 ), 1 )
                    287:                IF( K.LT.N )
                    288:      $            CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ),
                    289:      $                        LDA, W( IMAX, KW+1 ), LDW, ONE,
                    290:      $                        W( 1, KW-1 ), 1 )
                    291: *
                    292: *              JMAX is the column-index of the largest off-diagonal
                    293: *              element in row IMAX, and ROWMAX is its absolute value
                    294: *
                    295:                JMAX = IMAX + IDAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
                    296:                ROWMAX = ABS( W( JMAX, KW-1 ) )
                    297:                IF( IMAX.GT.1 ) THEN
                    298:                   JMAX = IDAMAX( IMAX-1, W( 1, KW-1 ), 1 )
                    299:                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, KW-1 ) ) )
                    300:                END IF
                    301: *
                    302:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    303: *
                    304: *                 no interchange, use 1-by-1 pivot block
                    305: *
                    306:                   KP = K
                    307:                ELSE IF( ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN
                    308: *
                    309: *                 interchange rows and columns K and IMAX, use 1-by-1
                    310: *                 pivot block
                    311: *
                    312:                   KP = IMAX
                    313: *
1.14      bertrand  314: *                 copy column KW-1 of W to column KW of W
1.1       bertrand  315: *
                    316:                   CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
                    317:                ELSE
                    318: *
                    319: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
                    320: *                 pivot block
                    321: *
                    322:                   KP = IMAX
                    323:                   KSTEP = 2
                    324:                END IF
                    325:             END IF
                    326: *
1.14      bertrand  327: *           ============================================================
                    328: *
                    329: *           KK is the column of A where pivoting step stopped
                    330: *
1.1       bertrand  331:             KK = K - KSTEP + 1
1.14      bertrand  332: *
                    333: *           KKW is the column of W which corresponds to column KK of A
                    334: *
1.1       bertrand  335:             KKW = NB + KK - N
                    336: *
1.14      bertrand  337: *           Interchange rows and columns KP and KK.
                    338: *           Updated column KP is already stored in column KKW of W.
1.1       bertrand  339: *
                    340:             IF( KP.NE.KK ) THEN
                    341: *
1.14      bertrand  342: *              Copy non-updated column KK to column KP of submatrix A
                    343: *              at step K. No need to copy element into column K
                    344: *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
                    345: *              will be later overwritten.
1.1       bertrand  346: *
1.14      bertrand  347:                A( KP, KP ) = A( KK, KK )
                    348:                CALL DCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
1.1       bertrand  349:      $                     LDA )
1.14      bertrand  350:                IF( KP.GT.1 )
                    351:      $            CALL DCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
1.1       bertrand  352: *
1.14      bertrand  353: *              Interchange rows KK and KP in last K+1 to N columns of A
                    354: *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
                    355: *              later overwritten). Interchange rows KK and KP
                    356: *              in last KKW to NB columns of W.
1.1       bertrand  357: *
1.14      bertrand  358:                IF( K.LT.N )
                    359:      $            CALL DSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
                    360:      $                        LDA )
1.1       bertrand  361:                CALL DSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
                    362:      $                     LDW )
                    363:             END IF
                    364: *
                    365:             IF( KSTEP.EQ.1 ) THEN
                    366: *
1.14      bertrand  367: *              1-by-1 pivot block D(k): column kw of W now holds
1.1       bertrand  368: *
1.14      bertrand  369: *              W(kw) = U(k)*D(k),
1.1       bertrand  370: *
                    371: *              where U(k) is the k-th column of U
                    372: *
1.14      bertrand  373: *              Store subdiag. elements of column U(k)
                    374: *              and 1-by-1 block D(k) in column k of A.
                    375: *              NOTE: Diagonal element U(k,k) is a UNIT element
                    376: *              and not stored.
                    377: *                 A(k,k) := D(k,k) = W(k,kw)
                    378: *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
1.1       bertrand  379: *
                    380:                CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
                    381:                R1 = ONE / A( K, K )
                    382:                CALL DSCAL( K-1, R1, A( 1, K ), 1 )
1.14      bertrand  383: *
1.1       bertrand  384:             ELSE
                    385: *
1.14      bertrand  386: *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
1.1       bertrand  387: *
1.14      bertrand  388: *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
1.1       bertrand  389: *
                    390: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
                    391: *              of U
                    392: *
1.14      bertrand  393: *              Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
                    394: *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
                    395: *              NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
                    396: *              block and not stored.
                    397: *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
                    398: *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
                    399: *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
                    400: *
1.1       bertrand  401:                IF( K.GT.2 ) THEN
                    402: *
1.14      bertrand  403: *                 Compose the columns of the inverse of 2-by-2 pivot
                    404: *                 block D in the following way to reduce the number
                    405: *                 of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by
                    406: *                 this inverse
                    407: *
                    408: *                 D**(-1) = ( d11 d21 )**(-1) =
                    409: *                           ( d21 d22 )
                    410: *
                    411: *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
                    412: *                                        ( (-d21 ) ( d11 ) )
                    413: *
                    414: *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
                    415: *
                    416: *                   * ( ( d22/d21 ) (      -1 ) ) =
                    417: *                     ( (      -1 ) ( d11/d21 ) )
                    418: *
                    419: *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
                    420: *                                           ( ( -1  ) ( D22 ) )
                    421: *
                    422: *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
                    423: *                               ( (  -1 ) ( D22 ) )
                    424: *
                    425: *                 = D21 * ( ( D11 ) (  -1 ) )
                    426: *                         ( (  -1 ) ( D22 ) )
1.1       bertrand  427: *
                    428:                   D21 = W( K-1, KW )
                    429:                   D11 = W( K, KW ) / D21
                    430:                   D22 = W( K-1, KW-1 ) / D21
                    431:                   T = ONE / ( D11*D22-ONE )
                    432:                   D21 = T / D21
1.14      bertrand  433: *
                    434: *                 Update elements in columns A(k-1) and A(k) as
                    435: *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
                    436: *                 of D**(-1)
                    437: *
1.1       bertrand  438:                   DO 20 J = 1, K - 2
                    439:                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
                    440:                      A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) )
                    441:    20             CONTINUE
                    442:                END IF
                    443: *
                    444: *              Copy D(k) to A
                    445: *
                    446:                A( K-1, K-1 ) = W( K-1, KW-1 )
                    447:                A( K-1, K ) = W( K-1, KW )
                    448:                A( K, K ) = W( K, KW )
1.14      bertrand  449: *
1.1       bertrand  450:             END IF
1.14      bertrand  451: *
1.1       bertrand  452:          END IF
                    453: *
                    454: *        Store details of the interchanges in IPIV
                    455: *
                    456:          IF( KSTEP.EQ.1 ) THEN
                    457:             IPIV( K ) = KP
                    458:          ELSE
                    459:             IPIV( K ) = -KP
                    460:             IPIV( K-1 ) = -KP
                    461:          END IF
                    462: *
                    463: *        Decrease K and return to the start of the main loop
                    464: *
                    465:          K = K - KSTEP
                    466:          GO TO 10
                    467: *
                    468:    30    CONTINUE
                    469: *
                    470: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
                    471: *
1.8       bertrand  472: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
1.1       bertrand  473: *
                    474: *        computing blocks of NB columns at a time
                    475: *
                    476:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
                    477:             JB = MIN( NB, K-J+1 )
                    478: *
                    479: *           Update the upper triangle of the diagonal block
                    480: *
                    481:             DO 40 JJ = J, J + JB - 1
                    482:                CALL DGEMV( 'No transpose', JJ-J+1, N-K, -ONE,
                    483:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, ONE,
                    484:      $                     A( J, JJ ), 1 )
                    485:    40       CONTINUE
                    486: *
                    487: *           Update the rectangular superdiagonal block
                    488: *
                    489:             CALL DGEMM( 'No transpose', 'Transpose', J-1, JB, N-K, -ONE,
                    490:      $                  A( 1, K+1 ), LDA, W( J, KW+1 ), LDW, ONE,
                    491:      $                  A( 1, J ), LDA )
                    492:    50    CONTINUE
                    493: *
                    494: *        Put U12 in standard form by partially undoing the interchanges
1.14      bertrand  495: *        in columns k+1:n looping backwards from k+1 to n
1.1       bertrand  496: *
                    497:          J = K + 1
                    498:    60    CONTINUE
1.14      bertrand  499: *
                    500: *           Undo the interchanges (if any) of rows JJ and JP at each
                    501: *           step J
                    502: *
                    503: *           (Here, J is a diagonal index)
                    504:             JJ = J
                    505:             JP = IPIV( J )
                    506:             IF( JP.LT.0 ) THEN
                    507:                JP = -JP
                    508: *              (Here, J is a diagonal index)
                    509:                J = J + 1
                    510:             END IF
                    511: *           (NOTE: Here, J is used to determine row length. Length N-J+1
                    512: *           of the rows to swap back doesn't include diagonal element)
1.1       bertrand  513:             J = J + 1
1.14      bertrand  514:             IF( JP.NE.JJ .AND. J.LE.N )
                    515:      $         CALL DSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
                    516:          IF( J.LT.N )
1.1       bertrand  517:      $      GO TO 60
                    518: *
                    519: *        Set KB to the number of columns factorized
                    520: *
                    521:          KB = N - K
                    522: *
                    523:       ELSE
                    524: *
                    525: *        Factorize the leading columns of A using the lower triangle
                    526: *        of A and working forwards, and compute the matrix W = L21*D
                    527: *        for use in updating A22
                    528: *
                    529: *        K is the main loop index, increasing from 1 in steps of 1 or 2
                    530: *
                    531:          K = 1
                    532:    70    CONTINUE
                    533: *
                    534: *        Exit from loop
                    535: *
                    536:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
                    537:      $      GO TO 90
                    538: *
                    539: *        Copy column K of A to column K of W and update it
                    540: *
                    541:          CALL DCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
                    542:          CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ), LDA,
                    543:      $               W( K, 1 ), LDW, ONE, W( K, K ), 1 )
                    544: *
                    545:          KSTEP = 1
                    546: *
                    547: *        Determine rows and columns to be interchanged and whether
                    548: *        a 1-by-1 or 2-by-2 pivot block will be used
                    549: *
                    550:          ABSAKK = ABS( W( K, K ) )
                    551: *
                    552: *        IMAX is the row-index of the largest off-diagonal element in
1.14      bertrand  553: *        column K, and COLMAX is its absolute value.
                    554: *        Determine both COLMAX and IMAX.
1.1       bertrand  555: *
                    556:          IF( K.LT.N ) THEN
                    557:             IMAX = K + IDAMAX( N-K, W( K+1, K ), 1 )
                    558:             COLMAX = ABS( W( IMAX, K ) )
                    559:          ELSE
                    560:             COLMAX = ZERO
                    561:          END IF
                    562: *
                    563:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    564: *
1.14      bertrand  565: *           Column K is zero or underflow: set INFO and continue
1.1       bertrand  566: *
                    567:             IF( INFO.EQ.0 )
                    568:      $         INFO = K
                    569:             KP = K
                    570:          ELSE
                    571:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    572: *
                    573: *              no interchange, use 1-by-1 pivot block
                    574: *
                    575:                KP = K
                    576:             ELSE
                    577: *
                    578: *              Copy column IMAX to column K+1 of W and update it
                    579: *
                    580:                CALL DCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
                    581:                CALL DCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, K+1 ),
                    582:      $                     1 )
                    583:                CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ),
                    584:      $                     LDA, W( IMAX, 1 ), LDW, ONE, W( K, K+1 ), 1 )
                    585: *
                    586: *              JMAX is the column-index of the largest off-diagonal
                    587: *              element in row IMAX, and ROWMAX is its absolute value
                    588: *
                    589:                JMAX = K - 1 + IDAMAX( IMAX-K, W( K, K+1 ), 1 )
                    590:                ROWMAX = ABS( W( JMAX, K+1 ) )
                    591:                IF( IMAX.LT.N ) THEN
                    592:                   JMAX = IMAX + IDAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
                    593:                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, K+1 ) ) )
                    594:                END IF
                    595: *
                    596:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    597: *
                    598: *                 no interchange, use 1-by-1 pivot block
                    599: *
                    600:                   KP = K
                    601:                ELSE IF( ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN
                    602: *
                    603: *                 interchange rows and columns K and IMAX, use 1-by-1
                    604: *                 pivot block
                    605: *
                    606:                   KP = IMAX
                    607: *
1.14      bertrand  608: *                 copy column K+1 of W to column K of W
1.1       bertrand  609: *
                    610:                   CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
                    611:                ELSE
                    612: *
                    613: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
                    614: *                 pivot block
                    615: *
                    616:                   KP = IMAX
                    617:                   KSTEP = 2
                    618:                END IF
                    619:             END IF
                    620: *
1.14      bertrand  621: *           ============================================================
                    622: *
                    623: *           KK is the column of A where pivoting step stopped
                    624: *
1.1       bertrand  625:             KK = K + KSTEP - 1
                    626: *
1.14      bertrand  627: *           Interchange rows and columns KP and KK.
                    628: *           Updated column KP is already stored in column KK of W.
1.1       bertrand  629: *
                    630:             IF( KP.NE.KK ) THEN
                    631: *
1.14      bertrand  632: *              Copy non-updated column KK to column KP of submatrix A
                    633: *              at step K. No need to copy element into column K
                    634: *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
                    635: *              will be later overwritten.
1.1       bertrand  636: *
1.14      bertrand  637:                A( KP, KP ) = A( KK, KK )
                    638:                CALL DCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
                    639:      $                     LDA )
                    640:                IF( KP.LT.N )
                    641:      $            CALL DCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
1.1       bertrand  642: *
1.14      bertrand  643: *              Interchange rows KK and KP in first K-1 columns of A
                    644: *              (columns K (or K and K+1 for 2-by-2 pivot) of A will be
                    645: *              later overwritten). Interchange rows KK and KP
                    646: *              in first KK columns of W.
1.1       bertrand  647: *
1.14      bertrand  648:                IF( K.GT.1 )
                    649:      $            CALL DSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
1.1       bertrand  650:                CALL DSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
                    651:             END IF
                    652: *
                    653:             IF( KSTEP.EQ.1 ) THEN
                    654: *
                    655: *              1-by-1 pivot block D(k): column k of W now holds
                    656: *
1.14      bertrand  657: *              W(k) = L(k)*D(k),
1.1       bertrand  658: *
                    659: *              where L(k) is the k-th column of L
                    660: *
1.14      bertrand  661: *              Store subdiag. elements of column L(k)
                    662: *              and 1-by-1 block D(k) in column k of A.
                    663: *              (NOTE: Diagonal element L(k,k) is a UNIT element
                    664: *              and not stored)
                    665: *                 A(k,k) := D(k,k) = W(k,k)
                    666: *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
1.1       bertrand  667: *
                    668:                CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
                    669:                IF( K.LT.N ) THEN
                    670:                   R1 = ONE / A( K, K )
                    671:                   CALL DSCAL( N-K, R1, A( K+1, K ), 1 )
                    672:                END IF
1.14      bertrand  673: *
1.1       bertrand  674:             ELSE
                    675: *
                    676: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
                    677: *
                    678: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
                    679: *
                    680: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
                    681: *              of L
                    682: *
1.14      bertrand  683: *              Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
                    684: *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
                    685: *              (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
                    686: *              block and not stored)
                    687: *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
                    688: *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
                    689: *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
                    690: *
1.1       bertrand  691:                IF( K.LT.N-1 ) THEN
                    692: *
1.14      bertrand  693: *                 Compose the columns of the inverse of 2-by-2 pivot
                    694: *                 block D in the following way to reduce the number
                    695: *                 of FLOPS when we myltiply panel ( W(k) W(k+1) ) by
                    696: *                 this inverse
                    697: *
                    698: *                 D**(-1) = ( d11 d21 )**(-1) =
                    699: *                           ( d21 d22 )
                    700: *
                    701: *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
                    702: *                                        ( (-d21 ) ( d11 ) )
                    703: *
                    704: *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
                    705: *
                    706: *                   * ( ( d22/d21 ) (      -1 ) ) =
                    707: *                     ( (      -1 ) ( d11/d21 ) )
                    708: *
                    709: *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
                    710: *                                           ( ( -1  ) ( D22 ) )
                    711: *
                    712: *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
                    713: *                               ( (  -1 ) ( D22 ) )
                    714: *
                    715: *                 = D21 * ( ( D11 ) (  -1 ) )
                    716: *                         ( (  -1 ) ( D22 ) )
1.1       bertrand  717: *
                    718:                   D21 = W( K+1, K )
                    719:                   D11 = W( K+1, K+1 ) / D21
                    720:                   D22 = W( K, K ) / D21
                    721:                   T = ONE / ( D11*D22-ONE )
                    722:                   D21 = T / D21
1.14      bertrand  723: *
                    724: *                 Update elements in columns A(k) and A(k+1) as
                    725: *                 dot products of rows of ( W(k) W(k+1) ) and columns
                    726: *                 of D**(-1)
                    727: *
1.1       bertrand  728:                   DO 80 J = K + 2, N
                    729:                      A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) )
                    730:                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
                    731:    80             CONTINUE
                    732:                END IF
                    733: *
                    734: *              Copy D(k) to A
                    735: *
                    736:                A( K, K ) = W( K, K )
                    737:                A( K+1, K ) = W( K+1, K )
                    738:                A( K+1, K+1 ) = W( K+1, K+1 )
1.14      bertrand  739: *
1.1       bertrand  740:             END IF
1.14      bertrand  741: *
1.1       bertrand  742:          END IF
                    743: *
                    744: *        Store details of the interchanges in IPIV
                    745: *
                    746:          IF( KSTEP.EQ.1 ) THEN
                    747:             IPIV( K ) = KP
                    748:          ELSE
                    749:             IPIV( K ) = -KP
                    750:             IPIV( K+1 ) = -KP
                    751:          END IF
                    752: *
                    753: *        Increase K and return to the start of the main loop
                    754: *
                    755:          K = K + KSTEP
                    756:          GO TO 70
                    757: *
                    758:    90    CONTINUE
                    759: *
                    760: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
                    761: *
1.8       bertrand  762: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
1.1       bertrand  763: *
                    764: *        computing blocks of NB columns at a time
                    765: *
                    766:          DO 110 J = K, N, NB
                    767:             JB = MIN( NB, N-J+1 )
                    768: *
                    769: *           Update the lower triangle of the diagonal block
                    770: *
                    771:             DO 100 JJ = J, J + JB - 1
                    772:                CALL DGEMV( 'No transpose', J+JB-JJ, K-1, -ONE,
                    773:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, ONE,
                    774:      $                     A( JJ, JJ ), 1 )
                    775:   100       CONTINUE
                    776: *
                    777: *           Update the rectangular subdiagonal block
                    778: *
                    779:             IF( J+JB.LE.N )
                    780:      $         CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
                    781:      $                     K-1, -ONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
                    782:      $                     ONE, A( J+JB, J ), LDA )
                    783:   110    CONTINUE
                    784: *
                    785: *        Put L21 in standard form by partially undoing the interchanges
1.14      bertrand  786: *        of rows in columns 1:k-1 looping backwards from k-1 to 1
1.1       bertrand  787: *
                    788:          J = K - 1
                    789:   120    CONTINUE
1.14      bertrand  790: *
                    791: *           Undo the interchanges (if any) of rows JJ and JP at each
                    792: *           step J
                    793: *
                    794: *           (Here, J is a diagonal index)
                    795:             JJ = J
                    796:             JP = IPIV( J )
                    797:             IF( JP.LT.0 ) THEN
                    798:                JP = -JP
                    799: *              (Here, J is a diagonal index)
                    800:                J = J - 1
                    801:             END IF
                    802: *           (NOTE: Here, J is used to determine row length. Length J
                    803: *           of the rows to swap back doesn't include diagonal element)
1.1       bertrand  804:             J = J - 1
1.14      bertrand  805:             IF( JP.NE.JJ .AND. J.GE.1 )
                    806:      $         CALL DSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
                    807:          IF( J.GT.1 )
1.1       bertrand  808:      $      GO TO 120
                    809: *
                    810: *        Set KB to the number of columns factorized
                    811: *
                    812:          KB = K - 1
                    813: *
                    814:       END IF
                    815:       RETURN
                    816: *
                    817: *     End of DLASYF
                    818: *
                    819:       END

CVSweb interface <joel.bertrand@systella.fr>