File:  [local] / rpl / lapack / lapack / dlarrv.f
Revision 1.24: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:58 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLARRV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
   22: *                          ISPLIT, M, DOL, DOU, MINRGP,
   23: *                          RTOL1, RTOL2, W, WERR, WGAP,
   24: *                          IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
   25: *                          WORK, IWORK, INFO )
   26: *
   27: *       .. Scalar Arguments ..
   28: *       INTEGER            DOL, DOU, INFO, LDZ, M, N
   29: *       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
   33: *      $                   ISUPPZ( * ), IWORK( * )
   34: *       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
   35: *      $                   WGAP( * ), WORK( * )
   36: *       DOUBLE PRECISION  Z( LDZ, * )
   37: *       ..
   38: *
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> DLARRV computes the eigenvectors of the tridiagonal matrix
   46: *> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
   47: *> The input eigenvalues should have been computed by DLARRE.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>          The order of the matrix.  N >= 0.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] VL
   60: *> \verbatim
   61: *>          VL is DOUBLE PRECISION
   62: *>          Lower bound of the interval that contains the desired
   63: *>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
   64: *>          end of the extremal eigenvalues in the desired RANGE.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] VU
   68: *> \verbatim
   69: *>          VU is DOUBLE PRECISION
   70: *>          Upper bound of the interval that contains the desired
   71: *>          eigenvalues. VL < VU. 
   72: *>          Note: VU is currently not used by this implementation of DLARRV, VU is
   73: *>          passed to DLARRV because it could be used compute gaps on the right end
   74: *>          of the extremal eigenvalues. However, with not much initial accuracy in
   75: *>          LAMBDA and VU, the formula can lead to an overestimation of the right gap
   76: *>          and thus to inadequately early RQI 'convergence'. This is currently
   77: *>          prevented this by forcing a small right gap. And so it turns out that VU
   78: *>          is currently not used by this implementation of DLARRV.
   79: *> \endverbatim
   80: *>
   81: *> \param[in,out] D
   82: *> \verbatim
   83: *>          D is DOUBLE PRECISION array, dimension (N)
   84: *>          On entry, the N diagonal elements of the diagonal matrix D.
   85: *>          On exit, D may be overwritten.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] L
   89: *> \verbatim
   90: *>          L is DOUBLE PRECISION array, dimension (N)
   91: *>          On entry, the (N-1) subdiagonal elements of the unit
   92: *>          bidiagonal matrix L are in elements 1 to N-1 of L
   93: *>          (if the matrix is not split.) At the end of each block
   94: *>          is stored the corresponding shift as given by DLARRE.
   95: *>          On exit, L is overwritten.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] PIVMIN
   99: *> \verbatim
  100: *>          PIVMIN is DOUBLE PRECISION
  101: *>          The minimum pivot allowed in the Sturm sequence.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] ISPLIT
  105: *> \verbatim
  106: *>          ISPLIT is INTEGER array, dimension (N)
  107: *>          The splitting points, at which T breaks up into blocks.
  108: *>          The first block consists of rows/columns 1 to
  109: *>          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
  110: *>          through ISPLIT( 2 ), etc.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] M
  114: *> \verbatim
  115: *>          M is INTEGER
  116: *>          The total number of input eigenvalues.  0 <= M <= N.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] DOL
  120: *> \verbatim
  121: *>          DOL is INTEGER
  122: *> \endverbatim
  123: *>
  124: *> \param[in] DOU
  125: *> \verbatim
  126: *>          DOU is INTEGER
  127: *>          If the user wants to compute only selected eigenvectors from all
  128: *>          the eigenvalues supplied, he can specify an index range DOL:DOU.
  129: *>          Or else the setting DOL=1, DOU=M should be applied.
  130: *>          Note that DOL and DOU refer to the order in which the eigenvalues
  131: *>          are stored in W.
  132: *>          If the user wants to compute only selected eigenpairs, then
  133: *>          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
  134: *>          computed eigenvectors. All other columns of Z are set to zero.
  135: *> \endverbatim
  136: *>
  137: *> \param[in] MINRGP
  138: *> \verbatim
  139: *>          MINRGP is DOUBLE PRECISION
  140: *> \endverbatim
  141: *>
  142: *> \param[in] RTOL1
  143: *> \verbatim
  144: *>          RTOL1 is DOUBLE PRECISION
  145: *> \endverbatim
  146: *>
  147: *> \param[in] RTOL2
  148: *> \verbatim
  149: *>          RTOL2 is DOUBLE PRECISION
  150: *>           Parameters for bisection.
  151: *>           An interval [LEFT,RIGHT] has converged if
  152: *>           RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
  153: *> \endverbatim
  154: *>
  155: *> \param[in,out] W
  156: *> \verbatim
  157: *>          W is DOUBLE PRECISION array, dimension (N)
  158: *>          The first M elements of W contain the APPROXIMATE eigenvalues for
  159: *>          which eigenvectors are to be computed.  The eigenvalues
  160: *>          should be grouped by split-off block and ordered from
  161: *>          smallest to largest within the block ( The output array
  162: *>          W from DLARRE is expected here ). Furthermore, they are with
  163: *>          respect to the shift of the corresponding root representation
  164: *>          for their block. On exit, W holds the eigenvalues of the
  165: *>          UNshifted matrix.
  166: *> \endverbatim
  167: *>
  168: *> \param[in,out] WERR
  169: *> \verbatim
  170: *>          WERR is DOUBLE PRECISION array, dimension (N)
  171: *>          The first M elements contain the semiwidth of the uncertainty
  172: *>          interval of the corresponding eigenvalue in W
  173: *> \endverbatim
  174: *>
  175: *> \param[in,out] WGAP
  176: *> \verbatim
  177: *>          WGAP is DOUBLE PRECISION array, dimension (N)
  178: *>          The separation from the right neighbor eigenvalue in W.
  179: *> \endverbatim
  180: *>
  181: *> \param[in] IBLOCK
  182: *> \verbatim
  183: *>          IBLOCK is INTEGER array, dimension (N)
  184: *>          The indices of the blocks (submatrices) associated with the
  185: *>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
  186: *>          W(i) belongs to the first block from the top, =2 if W(i)
  187: *>          belongs to the second block, etc.
  188: *> \endverbatim
  189: *>
  190: *> \param[in] INDEXW
  191: *> \verbatim
  192: *>          INDEXW is INTEGER array, dimension (N)
  193: *>          The indices of the eigenvalues within each block (submatrix);
  194: *>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
  195: *>          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
  196: *> \endverbatim
  197: *>
  198: *> \param[in] GERS
  199: *> \verbatim
  200: *>          GERS is DOUBLE PRECISION array, dimension (2*N)
  201: *>          The N Gerschgorin intervals (the i-th Gerschgorin interval
  202: *>          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
  203: *>          be computed from the original UNshifted matrix.
  204: *> \endverbatim
  205: *>
  206: *> \param[out] Z
  207: *> \verbatim
  208: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
  209: *>          If INFO = 0, the first M columns of Z contain the
  210: *>          orthonormal eigenvectors of the matrix T
  211: *>          corresponding to the input eigenvalues, with the i-th
  212: *>          column of Z holding the eigenvector associated with W(i).
  213: *>          Note: the user must ensure that at least max(1,M) columns are
  214: *>          supplied in the array Z.
  215: *> \endverbatim
  216: *>
  217: *> \param[in] LDZ
  218: *> \verbatim
  219: *>          LDZ is INTEGER
  220: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  221: *>          JOBZ = 'V', LDZ >= max(1,N).
  222: *> \endverbatim
  223: *>
  224: *> \param[out] ISUPPZ
  225: *> \verbatim
  226: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  227: *>          The support of the eigenvectors in Z, i.e., the indices
  228: *>          indicating the nonzero elements in Z. The I-th eigenvector
  229: *>          is nonzero only in elements ISUPPZ( 2*I-1 ) through
  230: *>          ISUPPZ( 2*I ).
  231: *> \endverbatim
  232: *>
  233: *> \param[out] WORK
  234: *> \verbatim
  235: *>          WORK is DOUBLE PRECISION array, dimension (12*N)
  236: *> \endverbatim
  237: *>
  238: *> \param[out] IWORK
  239: *> \verbatim
  240: *>          IWORK is INTEGER array, dimension (7*N)
  241: *> \endverbatim
  242: *>
  243: *> \param[out] INFO
  244: *> \verbatim
  245: *>          INFO is INTEGER
  246: *>          = 0:  successful exit
  247: *>
  248: *>          > 0:  A problem occurred in DLARRV.
  249: *>          < 0:  One of the called subroutines signaled an internal problem.
  250: *>                Needs inspection of the corresponding parameter IINFO
  251: *>                for further information.
  252: *>
  253: *>          =-1:  Problem in DLARRB when refining a child's eigenvalues.
  254: *>          =-2:  Problem in DLARRF when computing the RRR of a child.
  255: *>                When a child is inside a tight cluster, it can be difficult
  256: *>                to find an RRR. A partial remedy from the user's point of
  257: *>                view is to make the parameter MINRGP smaller and recompile.
  258: *>                However, as the orthogonality of the computed vectors is
  259: *>                proportional to 1/MINRGP, the user should be aware that
  260: *>                he might be trading in precision when he decreases MINRGP.
  261: *>          =-3:  Problem in DLARRB when refining a single eigenvalue
  262: *>                after the Rayleigh correction was rejected.
  263: *>          = 5:  The Rayleigh Quotient Iteration failed to converge to
  264: *>                full accuracy in MAXITR steps.
  265: *> \endverbatim
  266: *
  267: *  Authors:
  268: *  ========
  269: *
  270: *> \author Univ. of Tennessee
  271: *> \author Univ. of California Berkeley
  272: *> \author Univ. of Colorado Denver
  273: *> \author NAG Ltd.
  274: *
  275: *> \ingroup doubleOTHERauxiliary
  276: *
  277: *> \par Contributors:
  278: *  ==================
  279: *>
  280: *> Beresford Parlett, University of California, Berkeley, USA \n
  281: *> Jim Demmel, University of California, Berkeley, USA \n
  282: *> Inderjit Dhillon, University of Texas, Austin, USA \n
  283: *> Osni Marques, LBNL/NERSC, USA \n
  284: *> Christof Voemel, University of California, Berkeley, USA
  285: *
  286: *  =====================================================================
  287:       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
  288:      $                   ISPLIT, M, DOL, DOU, MINRGP,
  289:      $                   RTOL1, RTOL2, W, WERR, WGAP,
  290:      $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
  291:      $                   WORK, IWORK, INFO )
  292: *
  293: *  -- LAPACK auxiliary routine --
  294: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  295: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  296: *
  297: *     .. Scalar Arguments ..
  298:       INTEGER            DOL, DOU, INFO, LDZ, M, N
  299:       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
  300: *     ..
  301: *     .. Array Arguments ..
  302:       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
  303:      $                   ISUPPZ( * ), IWORK( * )
  304:       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
  305:      $                   WGAP( * ), WORK( * )
  306:       DOUBLE PRECISION  Z( LDZ, * )
  307: *     ..
  308: *
  309: *  =====================================================================
  310: *
  311: *     .. Parameters ..
  312:       INTEGER            MAXITR
  313:       PARAMETER          ( MAXITR = 10 )
  314:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, HALF
  315:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
  316:      $                     TWO = 2.0D0, THREE = 3.0D0,
  317:      $                     FOUR = 4.0D0, HALF = 0.5D0)
  318: *     ..
  319: *     .. Local Scalars ..
  320:       LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
  321:       INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
  322:      $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
  323:      $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
  324:      $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
  325:      $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
  326:      $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
  327:      $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
  328:      $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
  329:      $                   ZUSEDW
  330:       DOUBLE PRECISION   BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
  331:      $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
  332:      $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
  333:      $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
  334: *     ..
  335: *     .. External Functions ..
  336:       DOUBLE PRECISION   DLAMCH
  337:       EXTERNAL           DLAMCH
  338: *     ..
  339: *     .. External Subroutines ..
  340:       EXTERNAL           DCOPY, DLAR1V, DLARRB, DLARRF, DLASET,
  341:      $                   DSCAL
  342: *     ..
  343: *     .. Intrinsic Functions ..
  344:       INTRINSIC ABS, DBLE, MAX, MIN
  345: *     ..
  346: *     .. Executable Statements ..
  347: *     ..
  348: 
  349:       INFO = 0
  350: *
  351: *     Quick return if possible
  352: *
  353:       IF( (N.LE.0).OR.(M.LE.0) ) THEN
  354:          RETURN
  355:       END IF
  356: *
  357: *     The first N entries of WORK are reserved for the eigenvalues
  358:       INDLD = N+1
  359:       INDLLD= 2*N+1
  360:       INDWRK= 3*N+1
  361:       MINWSIZE = 12 * N
  362: 
  363:       DO 5 I= 1,MINWSIZE
  364:          WORK( I ) = ZERO
  365:  5    CONTINUE
  366: 
  367: *     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
  368: *     factorization used to compute the FP vector
  369:       IINDR = 0
  370: *     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
  371: *     layer and the one above.
  372:       IINDC1 = N
  373:       IINDC2 = 2*N
  374:       IINDWK = 3*N + 1
  375: 
  376:       MINIWSIZE = 7 * N
  377:       DO 10 I= 1,MINIWSIZE
  378:          IWORK( I ) = 0
  379:  10   CONTINUE
  380: 
  381:       ZUSEDL = 1
  382:       IF(DOL.GT.1) THEN
  383: *        Set lower bound for use of Z
  384:          ZUSEDL = DOL-1
  385:       ENDIF
  386:       ZUSEDU = M
  387:       IF(DOU.LT.M) THEN
  388: *        Set lower bound for use of Z
  389:          ZUSEDU = DOU+1
  390:       ENDIF
  391: *     The width of the part of Z that is used
  392:       ZUSEDW = ZUSEDU - ZUSEDL + 1
  393: 
  394: 
  395:       CALL DLASET( 'Full', N, ZUSEDW, ZERO, ZERO,
  396:      $                    Z(1,ZUSEDL), LDZ )
  397: 
  398:       EPS = DLAMCH( 'Precision' )
  399:       RQTOL = TWO * EPS
  400: *
  401: *     Set expert flags for standard code.
  402:       TRYRQC = .TRUE.
  403: 
  404:       IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  405:       ELSE
  406: *        Only selected eigenpairs are computed. Since the other evalues
  407: *        are not refined by RQ iteration, bisection has to compute to full
  408: *        accuracy.
  409:          RTOL1 = FOUR * EPS
  410:          RTOL2 = FOUR * EPS
  411:       ENDIF
  412: 
  413: *     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
  414: *     desired eigenvalues. The support of the nonzero eigenvector
  415: *     entries is contained in the interval IBEGIN:IEND.
  416: *     Remark that if k eigenpairs are desired, then the eigenvectors
  417: *     are stored in k contiguous columns of Z.
  418: 
  419: *     DONE is the number of eigenvectors already computed
  420:       DONE = 0
  421:       IBEGIN = 1
  422:       WBEGIN = 1
  423:       DO 170 JBLK = 1, IBLOCK( M )
  424:          IEND = ISPLIT( JBLK )
  425:          SIGMA = L( IEND )
  426: *        Find the eigenvectors of the submatrix indexed IBEGIN
  427: *        through IEND.
  428:          WEND = WBEGIN - 1
  429:  15      CONTINUE
  430:          IF( WEND.LT.M ) THEN
  431:             IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
  432:                WEND = WEND + 1
  433:                GO TO 15
  434:             END IF
  435:          END IF
  436:          IF( WEND.LT.WBEGIN ) THEN
  437:             IBEGIN = IEND + 1
  438:             GO TO 170
  439:          ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
  440:             IBEGIN = IEND + 1
  441:             WBEGIN = WEND + 1
  442:             GO TO 170
  443:          END IF
  444: 
  445: *        Find local spectral diameter of the block
  446:          GL = GERS( 2*IBEGIN-1 )
  447:          GU = GERS( 2*IBEGIN )
  448:          DO 20 I = IBEGIN+1 , IEND
  449:             GL = MIN( GERS( 2*I-1 ), GL )
  450:             GU = MAX( GERS( 2*I ), GU )
  451:  20      CONTINUE
  452:          SPDIAM = GU - GL
  453: 
  454: *        OLDIEN is the last index of the previous block
  455:          OLDIEN = IBEGIN - 1
  456: *        Calculate the size of the current block
  457:          IN = IEND - IBEGIN + 1
  458: *        The number of eigenvalues in the current block
  459:          IM = WEND - WBEGIN + 1
  460: 
  461: *        This is for a 1x1 block
  462:          IF( IBEGIN.EQ.IEND ) THEN
  463:             DONE = DONE+1
  464:             Z( IBEGIN, WBEGIN ) = ONE
  465:             ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
  466:             ISUPPZ( 2*WBEGIN ) = IBEGIN
  467:             W( WBEGIN ) = W( WBEGIN ) + SIGMA
  468:             WORK( WBEGIN ) = W( WBEGIN )
  469:             IBEGIN = IEND + 1
  470:             WBEGIN = WBEGIN + 1
  471:             GO TO 170
  472:          END IF
  473: 
  474: *        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
  475: *        Note that these can be approximations, in this case, the corresp.
  476: *        entries of WERR give the size of the uncertainty interval.
  477: *        The eigenvalue approximations will be refined when necessary as
  478: *        high relative accuracy is required for the computation of the
  479: *        corresponding eigenvectors.
  480:          CALL DCOPY( IM, W( WBEGIN ), 1,
  481:      $                   WORK( WBEGIN ), 1 )
  482: 
  483: *        We store in W the eigenvalue approximations w.r.t. the original
  484: *        matrix T.
  485:          DO 30 I=1,IM
  486:             W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
  487:  30      CONTINUE
  488: 
  489: 
  490: *        NDEPTH is the current depth of the representation tree
  491:          NDEPTH = 0
  492: *        PARITY is either 1 or 0
  493:          PARITY = 1
  494: *        NCLUS is the number of clusters for the next level of the
  495: *        representation tree, we start with NCLUS = 1 for the root
  496:          NCLUS = 1
  497:          IWORK( IINDC1+1 ) = 1
  498:          IWORK( IINDC1+2 ) = IM
  499: 
  500: *        IDONE is the number of eigenvectors already computed in the current
  501: *        block
  502:          IDONE = 0
  503: *        loop while( IDONE.LT.IM )
  504: *        generate the representation tree for the current block and
  505: *        compute the eigenvectors
  506:    40    CONTINUE
  507:          IF( IDONE.LT.IM ) THEN
  508: *           This is a crude protection against infinitely deep trees
  509:             IF( NDEPTH.GT.M ) THEN
  510:                INFO = -2
  511:                RETURN
  512:             ENDIF
  513: *           breadth first processing of the current level of the representation
  514: *           tree: OLDNCL = number of clusters on current level
  515:             OLDNCL = NCLUS
  516: *           reset NCLUS to count the number of child clusters
  517:             NCLUS = 0
  518: *
  519:             PARITY = 1 - PARITY
  520:             IF( PARITY.EQ.0 ) THEN
  521:                OLDCLS = IINDC1
  522:                NEWCLS = IINDC2
  523:             ELSE
  524:                OLDCLS = IINDC2
  525:                NEWCLS = IINDC1
  526:             END IF
  527: *           Process the clusters on the current level
  528:             DO 150 I = 1, OLDNCL
  529:                J = OLDCLS + 2*I
  530: *              OLDFST, OLDLST = first, last index of current cluster.
  531: *                               cluster indices start with 1 and are relative
  532: *                               to WBEGIN when accessing W, WGAP, WERR, Z
  533:                OLDFST = IWORK( J-1 )
  534:                OLDLST = IWORK( J )
  535:                IF( NDEPTH.GT.0 ) THEN
  536: *                 Retrieve relatively robust representation (RRR) of cluster
  537: *                 that has been computed at the previous level
  538: *                 The RRR is stored in Z and overwritten once the eigenvectors
  539: *                 have been computed or when the cluster is refined
  540: 
  541:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  542: *                    Get representation from location of the leftmost evalue
  543: *                    of the cluster
  544:                      J = WBEGIN + OLDFST - 1
  545:                   ELSE
  546:                      IF(WBEGIN+OLDFST-1.LT.DOL) THEN
  547: *                       Get representation from the left end of Z array
  548:                         J = DOL - 1
  549:                      ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
  550: *                       Get representation from the right end of Z array
  551:                         J = DOU
  552:                      ELSE
  553:                         J = WBEGIN + OLDFST - 1
  554:                      ENDIF
  555:                   ENDIF
  556:                   CALL DCOPY( IN, Z( IBEGIN, J ), 1, D( IBEGIN ), 1 )
  557:                   CALL DCOPY( IN-1, Z( IBEGIN, J+1 ), 1, L( IBEGIN ),
  558:      $               1 )
  559:                   SIGMA = Z( IEND, J+1 )
  560: 
  561: *                 Set the corresponding entries in Z to zero
  562:                   CALL DLASET( 'Full', IN, 2, ZERO, ZERO,
  563:      $                         Z( IBEGIN, J), LDZ )
  564:                END IF
  565: 
  566: *              Compute DL and DLL of current RRR
  567:                DO 50 J = IBEGIN, IEND-1
  568:                   TMP = D( J )*L( J )
  569:                   WORK( INDLD-1+J ) = TMP
  570:                   WORK( INDLLD-1+J ) = TMP*L( J )
  571:    50          CONTINUE
  572: 
  573:                IF( NDEPTH.GT.0 ) THEN
  574: *                 P and Q are index of the first and last eigenvalue to compute
  575: *                 within the current block
  576:                   P = INDEXW( WBEGIN-1+OLDFST )
  577:                   Q = INDEXW( WBEGIN-1+OLDLST )
  578: *                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
  579: *                 through the Q-OFFSET elements of these arrays are to be used.
  580: *                  OFFSET = P-OLDFST
  581:                   OFFSET = INDEXW( WBEGIN ) - 1
  582: *                 perform limited bisection (if necessary) to get approximate
  583: *                 eigenvalues to the precision needed.
  584:                   CALL DLARRB( IN, D( IBEGIN ),
  585:      $                         WORK(INDLLD+IBEGIN-1),
  586:      $                         P, Q, RTOL1, RTOL2, OFFSET,
  587:      $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
  588:      $                         WORK( INDWRK ), IWORK( IINDWK ),
  589:      $                         PIVMIN, SPDIAM, IN, IINFO )
  590:                   IF( IINFO.NE.0 ) THEN
  591:                      INFO = -1
  592:                      RETURN
  593:                   ENDIF
  594: *                 We also recompute the extremal gaps. W holds all eigenvalues
  595: *                 of the unshifted matrix and must be used for computation
  596: *                 of WGAP, the entries of WORK might stem from RRRs with
  597: *                 different shifts. The gaps from WBEGIN-1+OLDFST to
  598: *                 WBEGIN-1+OLDLST are correctly computed in DLARRB.
  599: *                 However, we only allow the gaps to become greater since
  600: *                 this is what should happen when we decrease WERR
  601:                   IF( OLDFST.GT.1) THEN
  602:                      WGAP( WBEGIN+OLDFST-2 ) =
  603:      $             MAX(WGAP(WBEGIN+OLDFST-2),
  604:      $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
  605:      $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
  606:                   ENDIF
  607:                   IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
  608:                      WGAP( WBEGIN+OLDLST-1 ) =
  609:      $               MAX(WGAP(WBEGIN+OLDLST-1),
  610:      $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
  611:      $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
  612:                   ENDIF
  613: *                 Each time the eigenvalues in WORK get refined, we store
  614: *                 the newly found approximation with all shifts applied in W
  615:                   DO 53 J=OLDFST,OLDLST
  616:                      W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
  617:  53               CONTINUE
  618:                END IF
  619: 
  620: *              Process the current node.
  621:                NEWFST = OLDFST
  622:                DO 140 J = OLDFST, OLDLST
  623:                   IF( J.EQ.OLDLST ) THEN
  624: *                    we are at the right end of the cluster, this is also the
  625: *                    boundary of the child cluster
  626:                      NEWLST = J
  627:                   ELSE IF ( WGAP( WBEGIN + J -1).GE.
  628:      $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
  629: *                    the right relative gap is big enough, the child cluster
  630: *                    (NEWFST,..,NEWLST) is well separated from the following
  631:                      NEWLST = J
  632:                    ELSE
  633: *                    inside a child cluster, the relative gap is not
  634: *                    big enough.
  635:                      GOTO 140
  636:                   END IF
  637: 
  638: *                 Compute size of child cluster found
  639:                   NEWSIZ = NEWLST - NEWFST + 1
  640: 
  641: *                 NEWFTT is the place in Z where the new RRR or the computed
  642: *                 eigenvector is to be stored
  643:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  644: *                    Store representation at location of the leftmost evalue
  645: *                    of the cluster
  646:                      NEWFTT = WBEGIN + NEWFST - 1
  647:                   ELSE
  648:                      IF(WBEGIN+NEWFST-1.LT.DOL) THEN
  649: *                       Store representation at the left end of Z array
  650:                         NEWFTT = DOL - 1
  651:                      ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
  652: *                       Store representation at the right end of Z array
  653:                         NEWFTT = DOU
  654:                      ELSE
  655:                         NEWFTT = WBEGIN + NEWFST - 1
  656:                      ENDIF
  657:                   ENDIF
  658: 
  659:                   IF( NEWSIZ.GT.1) THEN
  660: *
  661: *                    Current child is not a singleton but a cluster.
  662: *                    Compute and store new representation of child.
  663: *
  664: *
  665: *                    Compute left and right cluster gap.
  666: *
  667: *                    LGAP and RGAP are not computed from WORK because
  668: *                    the eigenvalue approximations may stem from RRRs
  669: *                    different shifts. However, W hold all eigenvalues
  670: *                    of the unshifted matrix. Still, the entries in WGAP
  671: *                    have to be computed from WORK since the entries
  672: *                    in W might be of the same order so that gaps are not
  673: *                    exhibited correctly for very close eigenvalues.
  674:                      IF( NEWFST.EQ.1 ) THEN
  675:                         LGAP = MAX( ZERO,
  676:      $                       W(WBEGIN)-WERR(WBEGIN) - VL )
  677:                     ELSE
  678:                         LGAP = WGAP( WBEGIN+NEWFST-2 )
  679:                      ENDIF
  680:                      RGAP = WGAP( WBEGIN+NEWLST-1 )
  681: *
  682: *                    Compute left- and rightmost eigenvalue of child
  683: *                    to high precision in order to shift as close
  684: *                    as possible and obtain as large relative gaps
  685: *                    as possible
  686: *
  687:                      DO 55 K =1,2
  688:                         IF(K.EQ.1) THEN
  689:                            P = INDEXW( WBEGIN-1+NEWFST )
  690:                         ELSE
  691:                            P = INDEXW( WBEGIN-1+NEWLST )
  692:                         ENDIF
  693:                         OFFSET = INDEXW( WBEGIN ) - 1
  694:                         CALL DLARRB( IN, D(IBEGIN),
  695:      $                       WORK( INDLLD+IBEGIN-1 ),P,P,
  696:      $                       RQTOL, RQTOL, OFFSET,
  697:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  698:      $                       WERR(WBEGIN),WORK( INDWRK ),
  699:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  700:      $                       IN, IINFO )
  701:  55                  CONTINUE
  702: *
  703:                      IF((WBEGIN+NEWLST-1.LT.DOL).OR.
  704:      $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
  705: *                       if the cluster contains no desired eigenvalues
  706: *                       skip the computation of that branch of the rep. tree
  707: *
  708: *                       We could skip before the refinement of the extremal
  709: *                       eigenvalues of the child, but then the representation
  710: *                       tree could be different from the one when nothing is
  711: *                       skipped. For this reason we skip at this place.
  712:                         IDONE = IDONE + NEWLST - NEWFST + 1
  713:                         GOTO 139
  714:                      ENDIF
  715: *
  716: *                    Compute RRR of child cluster.
  717: *                    Note that the new RRR is stored in Z
  718: *
  719: *                    DLARRF needs LWORK = 2*N
  720:                      CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
  721:      $                         WORK(INDLD+IBEGIN-1),
  722:      $                         NEWFST, NEWLST, WORK(WBEGIN),
  723:      $                         WGAP(WBEGIN), WERR(WBEGIN),
  724:      $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
  725:      $                         Z(IBEGIN, NEWFTT),Z(IBEGIN, NEWFTT+1),
  726:      $                         WORK( INDWRK ), IINFO )
  727:                      IF( IINFO.EQ.0 ) THEN
  728: *                       a new RRR for the cluster was found by DLARRF
  729: *                       update shift and store it
  730:                         SSIGMA = SIGMA + TAU
  731:                         Z( IEND, NEWFTT+1 ) = SSIGMA
  732: *                       WORK() are the midpoints and WERR() the semi-width
  733: *                       Note that the entries in W are unchanged.
  734:                         DO 116 K = NEWFST, NEWLST
  735:                            FUDGE =
  736:      $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
  737:                            WORK( WBEGIN + K - 1 ) =
  738:      $                          WORK( WBEGIN + K - 1) - TAU
  739:                            FUDGE = FUDGE +
  740:      $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
  741: *                          Fudge errors
  742:                            WERR( WBEGIN + K - 1 ) =
  743:      $                          WERR( WBEGIN + K - 1 ) + FUDGE
  744: *                          Gaps are not fudged. Provided that WERR is small
  745: *                          when eigenvalues are close, a zero gap indicates
  746: *                          that a new representation is needed for resolving
  747: *                          the cluster. A fudge could lead to a wrong decision
  748: *                          of judging eigenvalues 'separated' which in
  749: *                          reality are not. This could have a negative impact
  750: *                          on the orthogonality of the computed eigenvectors.
  751:  116                    CONTINUE
  752: 
  753:                         NCLUS = NCLUS + 1
  754:                         K = NEWCLS + 2*NCLUS
  755:                         IWORK( K-1 ) = NEWFST
  756:                         IWORK( K ) = NEWLST
  757:                      ELSE
  758:                         INFO = -2
  759:                         RETURN
  760:                      ENDIF
  761:                   ELSE
  762: *
  763: *                    Compute eigenvector of singleton
  764: *
  765:                      ITER = 0
  766: *
  767:                      TOL = FOUR * LOG(DBLE(IN)) * EPS
  768: *
  769:                      K = NEWFST
  770:                      WINDEX = WBEGIN + K - 1
  771:                      WINDMN = MAX(WINDEX - 1,1)
  772:                      WINDPL = MIN(WINDEX + 1,M)
  773:                      LAMBDA = WORK( WINDEX )
  774:                      DONE = DONE + 1
  775: *                    Check if eigenvector computation is to be skipped
  776:                      IF((WINDEX.LT.DOL).OR.
  777:      $                  (WINDEX.GT.DOU)) THEN
  778:                         ESKIP = .TRUE.
  779:                         GOTO 125
  780:                      ELSE
  781:                         ESKIP = .FALSE.
  782:                      ENDIF
  783:                      LEFT = WORK( WINDEX ) - WERR( WINDEX )
  784:                      RIGHT = WORK( WINDEX ) + WERR( WINDEX )
  785:                      INDEIG = INDEXW( WINDEX )
  786: *                    Note that since we compute the eigenpairs for a child,
  787: *                    all eigenvalue approximations are w.r.t the same shift.
  788: *                    In this case, the entries in WORK should be used for
  789: *                    computing the gaps since they exhibit even very small
  790: *                    differences in the eigenvalues, as opposed to the
  791: *                    entries in W which might "look" the same.
  792: 
  793:                      IF( K .EQ. 1) THEN
  794: *                       In the case RANGE='I' and with not much initial
  795: *                       accuracy in LAMBDA and VL, the formula
  796: *                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
  797: *                       can lead to an overestimation of the left gap and
  798: *                       thus to inadequately early RQI 'convergence'.
  799: *                       Prevent this by forcing a small left gap.
  800:                         LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  801:                      ELSE
  802:                         LGAP = WGAP(WINDMN)
  803:                      ENDIF
  804:                      IF( K .EQ. IM) THEN
  805: *                       In the case RANGE='I' and with not much initial
  806: *                       accuracy in LAMBDA and VU, the formula
  807: *                       can lead to an overestimation of the right gap and
  808: *                       thus to inadequately early RQI 'convergence'.
  809: *                       Prevent this by forcing a small right gap.
  810:                         RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  811:                      ELSE
  812:                         RGAP = WGAP(WINDEX)
  813:                      ENDIF
  814:                      GAP = MIN( LGAP, RGAP )
  815:                      IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
  816: *                       The eigenvector support can become wrong
  817: *                       because significant entries could be cut off due to a
  818: *                       large GAPTOL parameter in LAR1V. Prevent this.
  819:                         GAPTOL = ZERO
  820:                      ELSE
  821:                         GAPTOL = GAP * EPS
  822:                      ENDIF
  823:                      ISUPMN = IN
  824:                      ISUPMX = 1
  825: *                    Update WGAP so that it holds the minimum gap
  826: *                    to the left or the right. This is crucial in the
  827: *                    case where bisection is used to ensure that the
  828: *                    eigenvalue is refined up to the required precision.
  829: *                    The correct value is restored afterwards.
  830:                      SAVGAP = WGAP(WINDEX)
  831:                      WGAP(WINDEX) = GAP
  832: *                    We want to use the Rayleigh Quotient Correction
  833: *                    as often as possible since it converges quadratically
  834: *                    when we are close enough to the desired eigenvalue.
  835: *                    However, the Rayleigh Quotient can have the wrong sign
  836: *                    and lead us away from the desired eigenvalue. In this
  837: *                    case, the best we can do is to use bisection.
  838:                      USEDBS = .FALSE.
  839:                      USEDRQ = .FALSE.
  840: *                    Bisection is initially turned off unless it is forced
  841:                      NEEDBS =  .NOT.TRYRQC
  842:  120                 CONTINUE
  843: *                    Check if bisection should be used to refine eigenvalue
  844:                      IF(NEEDBS) THEN
  845: *                       Take the bisection as new iterate
  846:                         USEDBS = .TRUE.
  847:                         ITMP1 = IWORK( IINDR+WINDEX )
  848:                         OFFSET = INDEXW( WBEGIN ) - 1
  849:                         CALL DLARRB( IN, D(IBEGIN),
  850:      $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
  851:      $                       ZERO, TWO*EPS, OFFSET,
  852:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  853:      $                       WERR(WBEGIN),WORK( INDWRK ),
  854:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  855:      $                       ITMP1, IINFO )
  856:                         IF( IINFO.NE.0 ) THEN
  857:                            INFO = -3
  858:                            RETURN
  859:                         ENDIF
  860:                         LAMBDA = WORK( WINDEX )
  861: *                       Reset twist index from inaccurate LAMBDA to
  862: *                       force computation of true MINGMA
  863:                         IWORK( IINDR+WINDEX ) = 0
  864:                      ENDIF
  865: *                    Given LAMBDA, compute the eigenvector.
  866:                      CALL DLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
  867:      $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
  868:      $                    WORK(INDLLD+IBEGIN-1),
  869:      $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  870:      $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  871:      $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
  872:      $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  873:                      IF(ITER .EQ. 0) THEN
  874:                         BSTRES = RESID
  875:                         BSTW = LAMBDA
  876:                      ELSEIF(RESID.LT.BSTRES) THEN
  877:                         BSTRES = RESID
  878:                         BSTW = LAMBDA
  879:                      ENDIF
  880:                      ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
  881:                      ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
  882:                      ITER = ITER + 1
  883: 
  884: *                    sin alpha <= |resid|/gap
  885: *                    Note that both the residual and the gap are
  886: *                    proportional to the matrix, so ||T|| doesn't play
  887: *                    a role in the quotient
  888: 
  889: *
  890: *                    Convergence test for Rayleigh-Quotient iteration
  891: *                    (omitted when Bisection has been used)
  892: *
  893:                      IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
  894:      $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
  895:      $                    THEN
  896: *                       We need to check that the RQCORR update doesn't
  897: *                       move the eigenvalue away from the desired one and
  898: *                       towards a neighbor. -> protection with bisection
  899:                         IF(INDEIG.LE.NEGCNT) THEN
  900: *                          The wanted eigenvalue lies to the left
  901:                            SGNDEF = -ONE
  902:                         ELSE
  903: *                          The wanted eigenvalue lies to the right
  904:                            SGNDEF = ONE
  905:                         ENDIF
  906: *                       We only use the RQCORR if it improves the
  907: *                       the iterate reasonably.
  908:                         IF( ( RQCORR*SGNDEF.GE.ZERO )
  909:      $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
  910:      $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
  911:      $                       ) THEN
  912:                            USEDRQ = .TRUE.
  913: *                          Store new midpoint of bisection interval in WORK
  914:                            IF(SGNDEF.EQ.ONE) THEN
  915: *                             The current LAMBDA is on the left of the true
  916: *                             eigenvalue
  917:                               LEFT = LAMBDA
  918: *                             We prefer to assume that the error estimate
  919: *                             is correct. We could make the interval not
  920: *                             as a bracket but to be modified if the RQCORR
  921: *                             chooses to. In this case, the RIGHT side should
  922: *                             be modified as follows:
  923: *                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
  924:                            ELSE
  925: *                             The current LAMBDA is on the right of the true
  926: *                             eigenvalue
  927:                               RIGHT = LAMBDA
  928: *                             See comment about assuming the error estimate is
  929: *                             correct above.
  930: *                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
  931:                            ENDIF
  932:                            WORK( WINDEX ) =
  933:      $                       HALF * (RIGHT + LEFT)
  934: *                          Take RQCORR since it has the correct sign and
  935: *                          improves the iterate reasonably
  936:                            LAMBDA = LAMBDA + RQCORR
  937: *                          Update width of error interval
  938:                            WERR( WINDEX ) =
  939:      $                             HALF * (RIGHT-LEFT)
  940:                         ELSE
  941:                            NEEDBS = .TRUE.
  942:                         ENDIF
  943:                         IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
  944: *                             The eigenvalue is computed to bisection accuracy
  945: *                             compute eigenvector and stop
  946:                            USEDBS = .TRUE.
  947:                            GOTO 120
  948:                         ELSEIF( ITER.LT.MAXITR ) THEN
  949:                            GOTO 120
  950:                         ELSEIF( ITER.EQ.MAXITR ) THEN
  951:                            NEEDBS = .TRUE.
  952:                            GOTO 120
  953:                         ELSE
  954:                            INFO = 5
  955:                            RETURN
  956:                         END IF
  957:                      ELSE
  958:                         STP2II = .FALSE.
  959:         IF(USEDRQ .AND. USEDBS .AND.
  960:      $                     BSTRES.LE.RESID) THEN
  961:                            LAMBDA = BSTW
  962:                            STP2II = .TRUE.
  963:                         ENDIF
  964:                         IF (STP2II) THEN
  965: *                          improve error angle by second step
  966:                            CALL DLAR1V( IN, 1, IN, LAMBDA,
  967:      $                          D( IBEGIN ), L( IBEGIN ),
  968:      $                          WORK(INDLD+IBEGIN-1),
  969:      $                          WORK(INDLLD+IBEGIN-1),
  970:      $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  971:      $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  972:      $                          IWORK( IINDR+WINDEX ),
  973:      $                          ISUPPZ( 2*WINDEX-1 ),
  974:      $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  975:                         ENDIF
  976:                         WORK( WINDEX ) = LAMBDA
  977:                      END IF
  978: *
  979: *                    Compute FP-vector support w.r.t. whole matrix
  980: *
  981:                      ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
  982:                      ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
  983:                      ZFROM = ISUPPZ( 2*WINDEX-1 )
  984:                      ZTO = ISUPPZ( 2*WINDEX )
  985:                      ISUPMN = ISUPMN + OLDIEN
  986:                      ISUPMX = ISUPMX + OLDIEN
  987: *                    Ensure vector is ok if support in the RQI has changed
  988:                      IF(ISUPMN.LT.ZFROM) THEN
  989:                         DO 122 II = ISUPMN,ZFROM-1
  990:                            Z( II, WINDEX ) = ZERO
  991:  122                    CONTINUE
  992:                      ENDIF
  993:                      IF(ISUPMX.GT.ZTO) THEN
  994:                         DO 123 II = ZTO+1,ISUPMX
  995:                            Z( II, WINDEX ) = ZERO
  996:  123                    CONTINUE
  997:                      ENDIF
  998:                      CALL DSCAL( ZTO-ZFROM+1, NRMINV,
  999:      $                       Z( ZFROM, WINDEX ), 1 )
 1000:  125                 CONTINUE
 1001: *                    Update W
 1002:                      W( WINDEX ) = LAMBDA+SIGMA
 1003: *                    Recompute the gaps on the left and right
 1004: *                    But only allow them to become larger and not
 1005: *                    smaller (which can only happen through "bad"
 1006: *                    cancellation and doesn't reflect the theory
 1007: *                    where the initial gaps are underestimated due
 1008: *                    to WERR being too crude.)
 1009:                      IF(.NOT.ESKIP) THEN
 1010:                         IF( K.GT.1) THEN
 1011:                            WGAP( WINDMN ) = MAX( WGAP(WINDMN),
 1012:      $                          W(WINDEX)-WERR(WINDEX)
 1013:      $                          - W(WINDMN)-WERR(WINDMN) )
 1014:                         ENDIF
 1015:                         IF( WINDEX.LT.WEND ) THEN
 1016:                            WGAP( WINDEX ) = MAX( SAVGAP,
 1017:      $                          W( WINDPL )-WERR( WINDPL )
 1018:      $                          - W( WINDEX )-WERR( WINDEX) )
 1019:                         ENDIF
 1020:                      ENDIF
 1021:                      IDONE = IDONE + 1
 1022:                   ENDIF
 1023: *                 here ends the code for the current child
 1024: *
 1025:  139              CONTINUE
 1026: *                 Proceed to any remaining child nodes
 1027:                   NEWFST = J + 1
 1028:  140           CONTINUE
 1029:  150        CONTINUE
 1030:             NDEPTH = NDEPTH + 1
 1031:             GO TO 40
 1032:          END IF
 1033:          IBEGIN = IEND + 1
 1034:          WBEGIN = WEND + 1
 1035:  170  CONTINUE
 1036: *
 1037: 
 1038:       RETURN
 1039: *
 1040: *     End of DLARRV
 1041: *
 1042:       END

CVSweb interface <joel.bertrand@systella.fr>