Annotation of rpl/lapack/lapack/dlarrv.f, revision 1.24

1.13      bertrand    1: *> \brief \b DLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.19      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.19      bertrand    9: *> Download DLARRV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrv.f">
1.10      bertrand   15: *> [TXT]</a>
1.19      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
                     22: *                          ISPLIT, M, DOL, DOU, MINRGP,
                     23: *                          RTOL1, RTOL2, W, WERR, WGAP,
                     24: *                          IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
                     25: *                          WORK, IWORK, INFO )
1.19      bertrand   26: *
1.10      bertrand   27: *       .. Scalar Arguments ..
                     28: *       INTEGER            DOL, DOU, INFO, LDZ, M, N
                     29: *       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
                     33: *      $                   ISUPPZ( * ), IWORK( * )
                     34: *       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
                     35: *      $                   WGAP( * ), WORK( * )
                     36: *       DOUBLE PRECISION  Z( LDZ, * )
                     37: *       ..
1.19      bertrand   38: *
1.10      bertrand   39: *
                     40: *> \par Purpose:
                     41: *  =============
                     42: *>
                     43: *> \verbatim
                     44: *>
                     45: *> DLARRV computes the eigenvectors of the tridiagonal matrix
                     46: *> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
                     47: *> The input eigenvalues should have been computed by DLARRE.
                     48: *> \endverbatim
                     49: *
                     50: *  Arguments:
                     51: *  ==========
                     52: *
                     53: *> \param[in] N
                     54: *> \verbatim
                     55: *>          N is INTEGER
                     56: *>          The order of the matrix.  N >= 0.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] VL
                     60: *> \verbatim
                     61: *>          VL is DOUBLE PRECISION
1.17      bertrand   62: *>          Lower bound of the interval that contains the desired
                     63: *>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
                     64: *>          end of the extremal eigenvalues in the desired RANGE.
1.10      bertrand   65: *> \endverbatim
                     66: *>
                     67: *> \param[in] VU
                     68: *> \verbatim
                     69: *>          VU is DOUBLE PRECISION
1.17      bertrand   70: *>          Upper bound of the interval that contains the desired
1.21      bertrand   71: *>          eigenvalues. VL < VU. 
                     72: *>          Note: VU is currently not used by this implementation of DLARRV, VU is
                     73: *>          passed to DLARRV because it could be used compute gaps on the right end
                     74: *>          of the extremal eigenvalues. However, with not much initial accuracy in
                     75: *>          LAMBDA and VU, the formula can lead to an overestimation of the right gap
                     76: *>          and thus to inadequately early RQI 'convergence'. This is currently
                     77: *>          prevented this by forcing a small right gap. And so it turns out that VU
                     78: *>          is currently not used by this implementation of DLARRV.
1.10      bertrand   79: *> \endverbatim
                     80: *>
                     81: *> \param[in,out] D
                     82: *> \verbatim
                     83: *>          D is DOUBLE PRECISION array, dimension (N)
                     84: *>          On entry, the N diagonal elements of the diagonal matrix D.
                     85: *>          On exit, D may be overwritten.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] L
                     89: *> \verbatim
                     90: *>          L is DOUBLE PRECISION array, dimension (N)
                     91: *>          On entry, the (N-1) subdiagonal elements of the unit
                     92: *>          bidiagonal matrix L are in elements 1 to N-1 of L
1.17      bertrand   93: *>          (if the matrix is not split.) At the end of each block
1.10      bertrand   94: *>          is stored the corresponding shift as given by DLARRE.
                     95: *>          On exit, L is overwritten.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] PIVMIN
                     99: *> \verbatim
                    100: *>          PIVMIN is DOUBLE PRECISION
                    101: *>          The minimum pivot allowed in the Sturm sequence.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] ISPLIT
                    105: *> \verbatim
                    106: *>          ISPLIT is INTEGER array, dimension (N)
                    107: *>          The splitting points, at which T breaks up into blocks.
                    108: *>          The first block consists of rows/columns 1 to
                    109: *>          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
                    110: *>          through ISPLIT( 2 ), etc.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] M
                    114: *> \verbatim
                    115: *>          M is INTEGER
                    116: *>          The total number of input eigenvalues.  0 <= M <= N.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] DOL
                    120: *> \verbatim
                    121: *>          DOL is INTEGER
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] DOU
                    125: *> \verbatim
                    126: *>          DOU is INTEGER
                    127: *>          If the user wants to compute only selected eigenvectors from all
                    128: *>          the eigenvalues supplied, he can specify an index range DOL:DOU.
                    129: *>          Or else the setting DOL=1, DOU=M should be applied.
                    130: *>          Note that DOL and DOU refer to the order in which the eigenvalues
                    131: *>          are stored in W.
                    132: *>          If the user wants to compute only selected eigenpairs, then
                    133: *>          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
                    134: *>          computed eigenvectors. All other columns of Z are set to zero.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] MINRGP
                    138: *> \verbatim
                    139: *>          MINRGP is DOUBLE PRECISION
                    140: *> \endverbatim
                    141: *>
                    142: *> \param[in] RTOL1
                    143: *> \verbatim
                    144: *>          RTOL1 is DOUBLE PRECISION
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[in] RTOL2
                    148: *> \verbatim
                    149: *>          RTOL2 is DOUBLE PRECISION
                    150: *>           Parameters for bisection.
                    151: *>           An interval [LEFT,RIGHT] has converged if
1.23      bertrand  152: *>           RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
1.10      bertrand  153: *> \endverbatim
                    154: *>
                    155: *> \param[in,out] W
                    156: *> \verbatim
                    157: *>          W is DOUBLE PRECISION array, dimension (N)
                    158: *>          The first M elements of W contain the APPROXIMATE eigenvalues for
                    159: *>          which eigenvectors are to be computed.  The eigenvalues
                    160: *>          should be grouped by split-off block and ordered from
                    161: *>          smallest to largest within the block ( The output array
                    162: *>          W from DLARRE is expected here ). Furthermore, they are with
                    163: *>          respect to the shift of the corresponding root representation
                    164: *>          for their block. On exit, W holds the eigenvalues of the
                    165: *>          UNshifted matrix.
                    166: *> \endverbatim
                    167: *>
                    168: *> \param[in,out] WERR
                    169: *> \verbatim
                    170: *>          WERR is DOUBLE PRECISION array, dimension (N)
                    171: *>          The first M elements contain the semiwidth of the uncertainty
                    172: *>          interval of the corresponding eigenvalue in W
                    173: *> \endverbatim
                    174: *>
                    175: *> \param[in,out] WGAP
                    176: *> \verbatim
                    177: *>          WGAP is DOUBLE PRECISION array, dimension (N)
                    178: *>          The separation from the right neighbor eigenvalue in W.
                    179: *> \endverbatim
                    180: *>
                    181: *> \param[in] IBLOCK
                    182: *> \verbatim
                    183: *>          IBLOCK is INTEGER array, dimension (N)
                    184: *>          The indices of the blocks (submatrices) associated with the
                    185: *>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
                    186: *>          W(i) belongs to the first block from the top, =2 if W(i)
                    187: *>          belongs to the second block, etc.
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[in] INDEXW
                    191: *> \verbatim
                    192: *>          INDEXW is INTEGER array, dimension (N)
                    193: *>          The indices of the eigenvalues within each block (submatrix);
                    194: *>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
                    195: *>          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
                    196: *> \endverbatim
                    197: *>
                    198: *> \param[in] GERS
                    199: *> \verbatim
                    200: *>          GERS is DOUBLE PRECISION array, dimension (2*N)
                    201: *>          The N Gerschgorin intervals (the i-th Gerschgorin interval
                    202: *>          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
                    203: *>          be computed from the original UNshifted matrix.
                    204: *> \endverbatim
                    205: *>
                    206: *> \param[out] Z
                    207: *> \verbatim
                    208: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
                    209: *>          If INFO = 0, the first M columns of Z contain the
                    210: *>          orthonormal eigenvectors of the matrix T
                    211: *>          corresponding to the input eigenvalues, with the i-th
                    212: *>          column of Z holding the eigenvector associated with W(i).
                    213: *>          Note: the user must ensure that at least max(1,M) columns are
                    214: *>          supplied in the array Z.
                    215: *> \endverbatim
                    216: *>
                    217: *> \param[in] LDZ
                    218: *> \verbatim
                    219: *>          LDZ is INTEGER
                    220: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    221: *>          JOBZ = 'V', LDZ >= max(1,N).
                    222: *> \endverbatim
                    223: *>
                    224: *> \param[out] ISUPPZ
                    225: *> \verbatim
                    226: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
                    227: *>          The support of the eigenvectors in Z, i.e., the indices
                    228: *>          indicating the nonzero elements in Z. The I-th eigenvector
                    229: *>          is nonzero only in elements ISUPPZ( 2*I-1 ) through
                    230: *>          ISUPPZ( 2*I ).
                    231: *> \endverbatim
                    232: *>
                    233: *> \param[out] WORK
                    234: *> \verbatim
                    235: *>          WORK is DOUBLE PRECISION array, dimension (12*N)
                    236: *> \endverbatim
                    237: *>
                    238: *> \param[out] IWORK
                    239: *> \verbatim
                    240: *>          IWORK is INTEGER array, dimension (7*N)
                    241: *> \endverbatim
                    242: *>
                    243: *> \param[out] INFO
                    244: *> \verbatim
                    245: *>          INFO is INTEGER
                    246: *>          = 0:  successful exit
                    247: *>
1.17      bertrand  248: *>          > 0:  A problem occurred in DLARRV.
1.10      bertrand  249: *>          < 0:  One of the called subroutines signaled an internal problem.
                    250: *>                Needs inspection of the corresponding parameter IINFO
                    251: *>                for further information.
                    252: *>
                    253: *>          =-1:  Problem in DLARRB when refining a child's eigenvalues.
                    254: *>          =-2:  Problem in DLARRF when computing the RRR of a child.
                    255: *>                When a child is inside a tight cluster, it can be difficult
                    256: *>                to find an RRR. A partial remedy from the user's point of
                    257: *>                view is to make the parameter MINRGP smaller and recompile.
                    258: *>                However, as the orthogonality of the computed vectors is
                    259: *>                proportional to 1/MINRGP, the user should be aware that
                    260: *>                he might be trading in precision when he decreases MINRGP.
                    261: *>          =-3:  Problem in DLARRB when refining a single eigenvalue
                    262: *>                after the Rayleigh correction was rejected.
                    263: *>          = 5:  The Rayleigh Quotient Iteration failed to converge to
                    264: *>                full accuracy in MAXITR steps.
                    265: *> \endverbatim
                    266: *
                    267: *  Authors:
                    268: *  ========
                    269: *
1.19      bertrand  270: *> \author Univ. of Tennessee
                    271: *> \author Univ. of California Berkeley
                    272: *> \author Univ. of Colorado Denver
                    273: *> \author NAG Ltd.
1.10      bertrand  274: *
                    275: *> \ingroup doubleOTHERauxiliary
                    276: *
                    277: *> \par Contributors:
                    278: *  ==================
                    279: *>
                    280: *> Beresford Parlett, University of California, Berkeley, USA \n
                    281: *> Jim Demmel, University of California, Berkeley, USA \n
                    282: *> Inderjit Dhillon, University of Texas, Austin, USA \n
                    283: *> Osni Marques, LBNL/NERSC, USA \n
                    284: *> Christof Voemel, University of California, Berkeley, USA
                    285: *
                    286: *  =====================================================================
1.1       bertrand  287:       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
                    288:      $                   ISPLIT, M, DOL, DOU, MINRGP,
                    289:      $                   RTOL1, RTOL2, W, WERR, WGAP,
                    290:      $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
                    291:      $                   WORK, IWORK, INFO )
                    292: *
1.24    ! bertrand  293: *  -- LAPACK auxiliary routine --
1.1       bertrand  294: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    295: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    296: *
                    297: *     .. Scalar Arguments ..
                    298:       INTEGER            DOL, DOU, INFO, LDZ, M, N
                    299:       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
                    300: *     ..
                    301: *     .. Array Arguments ..
                    302:       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
                    303:      $                   ISUPPZ( * ), IWORK( * )
                    304:       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
                    305:      $                   WGAP( * ), WORK( * )
                    306:       DOUBLE PRECISION  Z( LDZ, * )
                    307: *     ..
                    308: *
                    309: *  =====================================================================
                    310: *
                    311: *     .. Parameters ..
                    312:       INTEGER            MAXITR
                    313:       PARAMETER          ( MAXITR = 10 )
                    314:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, HALF
                    315:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
                    316:      $                     TWO = 2.0D0, THREE = 3.0D0,
                    317:      $                     FOUR = 4.0D0, HALF = 0.5D0)
                    318: *     ..
                    319: *     .. Local Scalars ..
                    320:       LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
                    321:       INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
                    322:      $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
                    323:      $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
                    324:      $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
                    325:      $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
                    326:      $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
                    327:      $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
                    328:      $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
                    329:      $                   ZUSEDW
                    330:       DOUBLE PRECISION   BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
                    331:      $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
                    332:      $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
                    333:      $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
                    334: *     ..
                    335: *     .. External Functions ..
                    336:       DOUBLE PRECISION   DLAMCH
                    337:       EXTERNAL           DLAMCH
                    338: *     ..
                    339: *     .. External Subroutines ..
                    340:       EXTERNAL           DCOPY, DLAR1V, DLARRB, DLARRF, DLASET,
                    341:      $                   DSCAL
                    342: *     ..
                    343: *     .. Intrinsic Functions ..
                    344:       INTRINSIC ABS, DBLE, MAX, MIN
                    345: *     ..
                    346: *     .. Executable Statements ..
                    347: *     ..
                    348: 
1.16      bertrand  349:       INFO = 0
1.21      bertrand  350: *
                    351: *     Quick return if possible
                    352: *
1.24    ! bertrand  353:       IF( (N.LE.0).OR.(M.LE.0) ) THEN
1.21      bertrand  354:          RETURN
                    355:       END IF
                    356: *
1.1       bertrand  357: *     The first N entries of WORK are reserved for the eigenvalues
                    358:       INDLD = N+1
                    359:       INDLLD= 2*N+1
                    360:       INDWRK= 3*N+1
                    361:       MINWSIZE = 12 * N
                    362: 
                    363:       DO 5 I= 1,MINWSIZE
                    364:          WORK( I ) = ZERO
                    365:  5    CONTINUE
                    366: 
                    367: *     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
                    368: *     factorization used to compute the FP vector
                    369:       IINDR = 0
                    370: *     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
                    371: *     layer and the one above.
                    372:       IINDC1 = N
                    373:       IINDC2 = 2*N
                    374:       IINDWK = 3*N + 1
                    375: 
                    376:       MINIWSIZE = 7 * N
                    377:       DO 10 I= 1,MINIWSIZE
                    378:          IWORK( I ) = 0
                    379:  10   CONTINUE
                    380: 
                    381:       ZUSEDL = 1
                    382:       IF(DOL.GT.1) THEN
                    383: *        Set lower bound for use of Z
                    384:          ZUSEDL = DOL-1
                    385:       ENDIF
                    386:       ZUSEDU = M
                    387:       IF(DOU.LT.M) THEN
                    388: *        Set lower bound for use of Z
                    389:          ZUSEDU = DOU+1
                    390:       ENDIF
                    391: *     The width of the part of Z that is used
                    392:       ZUSEDW = ZUSEDU - ZUSEDL + 1
                    393: 
                    394: 
                    395:       CALL DLASET( 'Full', N, ZUSEDW, ZERO, ZERO,
                    396:      $                    Z(1,ZUSEDL), LDZ )
                    397: 
                    398:       EPS = DLAMCH( 'Precision' )
                    399:       RQTOL = TWO * EPS
                    400: *
                    401: *     Set expert flags for standard code.
                    402:       TRYRQC = .TRUE.
                    403: 
                    404:       IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
                    405:       ELSE
                    406: *        Only selected eigenpairs are computed. Since the other evalues
                    407: *        are not refined by RQ iteration, bisection has to compute to full
                    408: *        accuracy.
                    409:          RTOL1 = FOUR * EPS
                    410:          RTOL2 = FOUR * EPS
                    411:       ENDIF
                    412: 
                    413: *     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
                    414: *     desired eigenvalues. The support of the nonzero eigenvector
                    415: *     entries is contained in the interval IBEGIN:IEND.
                    416: *     Remark that if k eigenpairs are desired, then the eigenvectors
                    417: *     are stored in k contiguous columns of Z.
                    418: 
                    419: *     DONE is the number of eigenvectors already computed
                    420:       DONE = 0
                    421:       IBEGIN = 1
                    422:       WBEGIN = 1
                    423:       DO 170 JBLK = 1, IBLOCK( M )
                    424:          IEND = ISPLIT( JBLK )
                    425:          SIGMA = L( IEND )
                    426: *        Find the eigenvectors of the submatrix indexed IBEGIN
                    427: *        through IEND.
                    428:          WEND = WBEGIN - 1
                    429:  15      CONTINUE
                    430:          IF( WEND.LT.M ) THEN
                    431:             IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
                    432:                WEND = WEND + 1
                    433:                GO TO 15
                    434:             END IF
                    435:          END IF
                    436:          IF( WEND.LT.WBEGIN ) THEN
                    437:             IBEGIN = IEND + 1
                    438:             GO TO 170
                    439:          ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
                    440:             IBEGIN = IEND + 1
                    441:             WBEGIN = WEND + 1
                    442:             GO TO 170
                    443:          END IF
                    444: 
                    445: *        Find local spectral diameter of the block
                    446:          GL = GERS( 2*IBEGIN-1 )
                    447:          GU = GERS( 2*IBEGIN )
                    448:          DO 20 I = IBEGIN+1 , IEND
                    449:             GL = MIN( GERS( 2*I-1 ), GL )
                    450:             GU = MAX( GERS( 2*I ), GU )
                    451:  20      CONTINUE
                    452:          SPDIAM = GU - GL
                    453: 
                    454: *        OLDIEN is the last index of the previous block
                    455:          OLDIEN = IBEGIN - 1
                    456: *        Calculate the size of the current block
                    457:          IN = IEND - IBEGIN + 1
                    458: *        The number of eigenvalues in the current block
                    459:          IM = WEND - WBEGIN + 1
                    460: 
                    461: *        This is for a 1x1 block
                    462:          IF( IBEGIN.EQ.IEND ) THEN
                    463:             DONE = DONE+1
                    464:             Z( IBEGIN, WBEGIN ) = ONE
                    465:             ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
                    466:             ISUPPZ( 2*WBEGIN ) = IBEGIN
                    467:             W( WBEGIN ) = W( WBEGIN ) + SIGMA
                    468:             WORK( WBEGIN ) = W( WBEGIN )
                    469:             IBEGIN = IEND + 1
                    470:             WBEGIN = WBEGIN + 1
                    471:             GO TO 170
                    472:          END IF
                    473: 
                    474: *        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
                    475: *        Note that these can be approximations, in this case, the corresp.
                    476: *        entries of WERR give the size of the uncertainty interval.
                    477: *        The eigenvalue approximations will be refined when necessary as
                    478: *        high relative accuracy is required for the computation of the
                    479: *        corresponding eigenvectors.
                    480:          CALL DCOPY( IM, W( WBEGIN ), 1,
1.9       bertrand  481:      $                   WORK( WBEGIN ), 1 )
1.1       bertrand  482: 
                    483: *        We store in W the eigenvalue approximations w.r.t. the original
                    484: *        matrix T.
                    485:          DO 30 I=1,IM
                    486:             W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
                    487:  30      CONTINUE
                    488: 
                    489: 
                    490: *        NDEPTH is the current depth of the representation tree
                    491:          NDEPTH = 0
                    492: *        PARITY is either 1 or 0
                    493:          PARITY = 1
                    494: *        NCLUS is the number of clusters for the next level of the
                    495: *        representation tree, we start with NCLUS = 1 for the root
                    496:          NCLUS = 1
                    497:          IWORK( IINDC1+1 ) = 1
                    498:          IWORK( IINDC1+2 ) = IM
                    499: 
                    500: *        IDONE is the number of eigenvectors already computed in the current
                    501: *        block
                    502:          IDONE = 0
                    503: *        loop while( IDONE.LT.IM )
                    504: *        generate the representation tree for the current block and
                    505: *        compute the eigenvectors
                    506:    40    CONTINUE
                    507:          IF( IDONE.LT.IM ) THEN
                    508: *           This is a crude protection against infinitely deep trees
                    509:             IF( NDEPTH.GT.M ) THEN
                    510:                INFO = -2
                    511:                RETURN
                    512:             ENDIF
                    513: *           breadth first processing of the current level of the representation
                    514: *           tree: OLDNCL = number of clusters on current level
                    515:             OLDNCL = NCLUS
                    516: *           reset NCLUS to count the number of child clusters
                    517:             NCLUS = 0
                    518: *
                    519:             PARITY = 1 - PARITY
                    520:             IF( PARITY.EQ.0 ) THEN
                    521:                OLDCLS = IINDC1
                    522:                NEWCLS = IINDC2
                    523:             ELSE
                    524:                OLDCLS = IINDC2
                    525:                NEWCLS = IINDC1
                    526:             END IF
                    527: *           Process the clusters on the current level
                    528:             DO 150 I = 1, OLDNCL
                    529:                J = OLDCLS + 2*I
                    530: *              OLDFST, OLDLST = first, last index of current cluster.
                    531: *                               cluster indices start with 1 and are relative
                    532: *                               to WBEGIN when accessing W, WGAP, WERR, Z
                    533:                OLDFST = IWORK( J-1 )
                    534:                OLDLST = IWORK( J )
                    535:                IF( NDEPTH.GT.0 ) THEN
                    536: *                 Retrieve relatively robust representation (RRR) of cluster
                    537: *                 that has been computed at the previous level
                    538: *                 The RRR is stored in Z and overwritten once the eigenvectors
                    539: *                 have been computed or when the cluster is refined
                    540: 
                    541:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
                    542: *                    Get representation from location of the leftmost evalue
                    543: *                    of the cluster
                    544:                      J = WBEGIN + OLDFST - 1
                    545:                   ELSE
                    546:                      IF(WBEGIN+OLDFST-1.LT.DOL) THEN
                    547: *                       Get representation from the left end of Z array
                    548:                         J = DOL - 1
                    549:                      ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
                    550: *                       Get representation from the right end of Z array
                    551:                         J = DOU
                    552:                      ELSE
                    553:                         J = WBEGIN + OLDFST - 1
                    554:                      ENDIF
                    555:                   ENDIF
                    556:                   CALL DCOPY( IN, Z( IBEGIN, J ), 1, D( IBEGIN ), 1 )
                    557:                   CALL DCOPY( IN-1, Z( IBEGIN, J+1 ), 1, L( IBEGIN ),
                    558:      $               1 )
                    559:                   SIGMA = Z( IEND, J+1 )
                    560: 
                    561: *                 Set the corresponding entries in Z to zero
                    562:                   CALL DLASET( 'Full', IN, 2, ZERO, ZERO,
                    563:      $                         Z( IBEGIN, J), LDZ )
                    564:                END IF
                    565: 
                    566: *              Compute DL and DLL of current RRR
                    567:                DO 50 J = IBEGIN, IEND-1
                    568:                   TMP = D( J )*L( J )
                    569:                   WORK( INDLD-1+J ) = TMP
                    570:                   WORK( INDLLD-1+J ) = TMP*L( J )
                    571:    50          CONTINUE
                    572: 
                    573:                IF( NDEPTH.GT.0 ) THEN
                    574: *                 P and Q are index of the first and last eigenvalue to compute
                    575: *                 within the current block
                    576:                   P = INDEXW( WBEGIN-1+OLDFST )
                    577:                   Q = INDEXW( WBEGIN-1+OLDLST )
1.5       bertrand  578: *                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
                    579: *                 through the Q-OFFSET elements of these arrays are to be used.
1.9       bertrand  580: *                  OFFSET = P-OLDFST
1.1       bertrand  581:                   OFFSET = INDEXW( WBEGIN ) - 1
                    582: *                 perform limited bisection (if necessary) to get approximate
                    583: *                 eigenvalues to the precision needed.
                    584:                   CALL DLARRB( IN, D( IBEGIN ),
                    585:      $                         WORK(INDLLD+IBEGIN-1),
                    586:      $                         P, Q, RTOL1, RTOL2, OFFSET,
                    587:      $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
                    588:      $                         WORK( INDWRK ), IWORK( IINDWK ),
                    589:      $                         PIVMIN, SPDIAM, IN, IINFO )
                    590:                   IF( IINFO.NE.0 ) THEN
                    591:                      INFO = -1
                    592:                      RETURN
                    593:                   ENDIF
                    594: *                 We also recompute the extremal gaps. W holds all eigenvalues
                    595: *                 of the unshifted matrix and must be used for computation
                    596: *                 of WGAP, the entries of WORK might stem from RRRs with
                    597: *                 different shifts. The gaps from WBEGIN-1+OLDFST to
                    598: *                 WBEGIN-1+OLDLST are correctly computed in DLARRB.
                    599: *                 However, we only allow the gaps to become greater since
                    600: *                 this is what should happen when we decrease WERR
                    601:                   IF( OLDFST.GT.1) THEN
                    602:                      WGAP( WBEGIN+OLDFST-2 ) =
                    603:      $             MAX(WGAP(WBEGIN+OLDFST-2),
                    604:      $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
                    605:      $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
                    606:                   ENDIF
                    607:                   IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
                    608:                      WGAP( WBEGIN+OLDLST-1 ) =
                    609:      $               MAX(WGAP(WBEGIN+OLDLST-1),
                    610:      $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
                    611:      $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
                    612:                   ENDIF
                    613: *                 Each time the eigenvalues in WORK get refined, we store
                    614: *                 the newly found approximation with all shifts applied in W
                    615:                   DO 53 J=OLDFST,OLDLST
                    616:                      W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
                    617:  53               CONTINUE
                    618:                END IF
                    619: 
                    620: *              Process the current node.
                    621:                NEWFST = OLDFST
                    622:                DO 140 J = OLDFST, OLDLST
                    623:                   IF( J.EQ.OLDLST ) THEN
                    624: *                    we are at the right end of the cluster, this is also the
                    625: *                    boundary of the child cluster
                    626:                      NEWLST = J
                    627:                   ELSE IF ( WGAP( WBEGIN + J -1).GE.
                    628:      $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
                    629: *                    the right relative gap is big enough, the child cluster
                    630: *                    (NEWFST,..,NEWLST) is well separated from the following
                    631:                      NEWLST = J
                    632:                    ELSE
                    633: *                    inside a child cluster, the relative gap is not
                    634: *                    big enough.
                    635:                      GOTO 140
                    636:                   END IF
                    637: 
                    638: *                 Compute size of child cluster found
                    639:                   NEWSIZ = NEWLST - NEWFST + 1
                    640: 
                    641: *                 NEWFTT is the place in Z where the new RRR or the computed
                    642: *                 eigenvector is to be stored
                    643:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
                    644: *                    Store representation at location of the leftmost evalue
                    645: *                    of the cluster
                    646:                      NEWFTT = WBEGIN + NEWFST - 1
                    647:                   ELSE
                    648:                      IF(WBEGIN+NEWFST-1.LT.DOL) THEN
                    649: *                       Store representation at the left end of Z array
                    650:                         NEWFTT = DOL - 1
                    651:                      ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
                    652: *                       Store representation at the right end of Z array
                    653:                         NEWFTT = DOU
                    654:                      ELSE
                    655:                         NEWFTT = WBEGIN + NEWFST - 1
                    656:                      ENDIF
                    657:                   ENDIF
                    658: 
                    659:                   IF( NEWSIZ.GT.1) THEN
                    660: *
                    661: *                    Current child is not a singleton but a cluster.
                    662: *                    Compute and store new representation of child.
                    663: *
                    664: *
                    665: *                    Compute left and right cluster gap.
                    666: *
                    667: *                    LGAP and RGAP are not computed from WORK because
                    668: *                    the eigenvalue approximations may stem from RRRs
                    669: *                    different shifts. However, W hold all eigenvalues
                    670: *                    of the unshifted matrix. Still, the entries in WGAP
                    671: *                    have to be computed from WORK since the entries
                    672: *                    in W might be of the same order so that gaps are not
                    673: *                    exhibited correctly for very close eigenvalues.
                    674:                      IF( NEWFST.EQ.1 ) THEN
                    675:                         LGAP = MAX( ZERO,
                    676:      $                       W(WBEGIN)-WERR(WBEGIN) - VL )
                    677:                     ELSE
                    678:                         LGAP = WGAP( WBEGIN+NEWFST-2 )
                    679:                      ENDIF
                    680:                      RGAP = WGAP( WBEGIN+NEWLST-1 )
                    681: *
                    682: *                    Compute left- and rightmost eigenvalue of child
                    683: *                    to high precision in order to shift as close
                    684: *                    as possible and obtain as large relative gaps
                    685: *                    as possible
                    686: *
                    687:                      DO 55 K =1,2
                    688:                         IF(K.EQ.1) THEN
                    689:                            P = INDEXW( WBEGIN-1+NEWFST )
                    690:                         ELSE
                    691:                            P = INDEXW( WBEGIN-1+NEWLST )
                    692:                         ENDIF
                    693:                         OFFSET = INDEXW( WBEGIN ) - 1
                    694:                         CALL DLARRB( IN, D(IBEGIN),
                    695:      $                       WORK( INDLLD+IBEGIN-1 ),P,P,
                    696:      $                       RQTOL, RQTOL, OFFSET,
                    697:      $                       WORK(WBEGIN),WGAP(WBEGIN),
                    698:      $                       WERR(WBEGIN),WORK( INDWRK ),
                    699:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
                    700:      $                       IN, IINFO )
                    701:  55                  CONTINUE
                    702: *
                    703:                      IF((WBEGIN+NEWLST-1.LT.DOL).OR.
                    704:      $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
                    705: *                       if the cluster contains no desired eigenvalues
                    706: *                       skip the computation of that branch of the rep. tree
                    707: *
                    708: *                       We could skip before the refinement of the extremal
                    709: *                       eigenvalues of the child, but then the representation
                    710: *                       tree could be different from the one when nothing is
                    711: *                       skipped. For this reason we skip at this place.
                    712:                         IDONE = IDONE + NEWLST - NEWFST + 1
                    713:                         GOTO 139
                    714:                      ENDIF
                    715: *
                    716: *                    Compute RRR of child cluster.
                    717: *                    Note that the new RRR is stored in Z
                    718: *
1.9       bertrand  719: *                    DLARRF needs LWORK = 2*N
1.1       bertrand  720:                      CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
                    721:      $                         WORK(INDLD+IBEGIN-1),
                    722:      $                         NEWFST, NEWLST, WORK(WBEGIN),
                    723:      $                         WGAP(WBEGIN), WERR(WBEGIN),
                    724:      $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
                    725:      $                         Z(IBEGIN, NEWFTT),Z(IBEGIN, NEWFTT+1),
                    726:      $                         WORK( INDWRK ), IINFO )
                    727:                      IF( IINFO.EQ.0 ) THEN
                    728: *                       a new RRR for the cluster was found by DLARRF
                    729: *                       update shift and store it
                    730:                         SSIGMA = SIGMA + TAU
                    731:                         Z( IEND, NEWFTT+1 ) = SSIGMA
                    732: *                       WORK() are the midpoints and WERR() the semi-width
                    733: *                       Note that the entries in W are unchanged.
                    734:                         DO 116 K = NEWFST, NEWLST
                    735:                            FUDGE =
                    736:      $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
                    737:                            WORK( WBEGIN + K - 1 ) =
                    738:      $                          WORK( WBEGIN + K - 1) - TAU
                    739:                            FUDGE = FUDGE +
                    740:      $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
                    741: *                          Fudge errors
                    742:                            WERR( WBEGIN + K - 1 ) =
                    743:      $                          WERR( WBEGIN + K - 1 ) + FUDGE
                    744: *                          Gaps are not fudged. Provided that WERR is small
                    745: *                          when eigenvalues are close, a zero gap indicates
                    746: *                          that a new representation is needed for resolving
                    747: *                          the cluster. A fudge could lead to a wrong decision
                    748: *                          of judging eigenvalues 'separated' which in
                    749: *                          reality are not. This could have a negative impact
                    750: *                          on the orthogonality of the computed eigenvectors.
                    751:  116                    CONTINUE
                    752: 
                    753:                         NCLUS = NCLUS + 1
                    754:                         K = NEWCLS + 2*NCLUS
                    755:                         IWORK( K-1 ) = NEWFST
                    756:                         IWORK( K ) = NEWLST
                    757:                      ELSE
                    758:                         INFO = -2
                    759:                         RETURN
                    760:                      ENDIF
                    761:                   ELSE
                    762: *
                    763: *                    Compute eigenvector of singleton
                    764: *
                    765:                      ITER = 0
                    766: *
                    767:                      TOL = FOUR * LOG(DBLE(IN)) * EPS
                    768: *
                    769:                      K = NEWFST
                    770:                      WINDEX = WBEGIN + K - 1
                    771:                      WINDMN = MAX(WINDEX - 1,1)
                    772:                      WINDPL = MIN(WINDEX + 1,M)
                    773:                      LAMBDA = WORK( WINDEX )
                    774:                      DONE = DONE + 1
                    775: *                    Check if eigenvector computation is to be skipped
                    776:                      IF((WINDEX.LT.DOL).OR.
                    777:      $                  (WINDEX.GT.DOU)) THEN
                    778:                         ESKIP = .TRUE.
                    779:                         GOTO 125
                    780:                      ELSE
                    781:                         ESKIP = .FALSE.
                    782:                      ENDIF
                    783:                      LEFT = WORK( WINDEX ) - WERR( WINDEX )
                    784:                      RIGHT = WORK( WINDEX ) + WERR( WINDEX )
                    785:                      INDEIG = INDEXW( WINDEX )
                    786: *                    Note that since we compute the eigenpairs for a child,
                    787: *                    all eigenvalue approximations are w.r.t the same shift.
                    788: *                    In this case, the entries in WORK should be used for
                    789: *                    computing the gaps since they exhibit even very small
                    790: *                    differences in the eigenvalues, as opposed to the
                    791: *                    entries in W which might "look" the same.
                    792: 
                    793:                      IF( K .EQ. 1) THEN
                    794: *                       In the case RANGE='I' and with not much initial
                    795: *                       accuracy in LAMBDA and VL, the formula
                    796: *                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
                    797: *                       can lead to an overestimation of the left gap and
                    798: *                       thus to inadequately early RQI 'convergence'.
                    799: *                       Prevent this by forcing a small left gap.
                    800:                         LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
                    801:                      ELSE
                    802:                         LGAP = WGAP(WINDMN)
                    803:                      ENDIF
                    804:                      IF( K .EQ. IM) THEN
                    805: *                       In the case RANGE='I' and with not much initial
                    806: *                       accuracy in LAMBDA and VU, the formula
                    807: *                       can lead to an overestimation of the right gap and
                    808: *                       thus to inadequately early RQI 'convergence'.
                    809: *                       Prevent this by forcing a small right gap.
                    810:                         RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
                    811:                      ELSE
                    812:                         RGAP = WGAP(WINDEX)
                    813:                      ENDIF
                    814:                      GAP = MIN( LGAP, RGAP )
                    815:                      IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
                    816: *                       The eigenvector support can become wrong
                    817: *                       because significant entries could be cut off due to a
                    818: *                       large GAPTOL parameter in LAR1V. Prevent this.
                    819:                         GAPTOL = ZERO
                    820:                      ELSE
                    821:                         GAPTOL = GAP * EPS
                    822:                      ENDIF
                    823:                      ISUPMN = IN
                    824:                      ISUPMX = 1
                    825: *                    Update WGAP so that it holds the minimum gap
                    826: *                    to the left or the right. This is crucial in the
                    827: *                    case where bisection is used to ensure that the
                    828: *                    eigenvalue is refined up to the required precision.
                    829: *                    The correct value is restored afterwards.
                    830:                      SAVGAP = WGAP(WINDEX)
                    831:                      WGAP(WINDEX) = GAP
                    832: *                    We want to use the Rayleigh Quotient Correction
                    833: *                    as often as possible since it converges quadratically
                    834: *                    when we are close enough to the desired eigenvalue.
                    835: *                    However, the Rayleigh Quotient can have the wrong sign
                    836: *                    and lead us away from the desired eigenvalue. In this
                    837: *                    case, the best we can do is to use bisection.
                    838:                      USEDBS = .FALSE.
                    839:                      USEDRQ = .FALSE.
                    840: *                    Bisection is initially turned off unless it is forced
                    841:                      NEEDBS =  .NOT.TRYRQC
                    842:  120                 CONTINUE
                    843: *                    Check if bisection should be used to refine eigenvalue
                    844:                      IF(NEEDBS) THEN
                    845: *                       Take the bisection as new iterate
                    846:                         USEDBS = .TRUE.
                    847:                         ITMP1 = IWORK( IINDR+WINDEX )
                    848:                         OFFSET = INDEXW( WBEGIN ) - 1
                    849:                         CALL DLARRB( IN, D(IBEGIN),
                    850:      $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
                    851:      $                       ZERO, TWO*EPS, OFFSET,
                    852:      $                       WORK(WBEGIN),WGAP(WBEGIN),
                    853:      $                       WERR(WBEGIN),WORK( INDWRK ),
                    854:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
                    855:      $                       ITMP1, IINFO )
                    856:                         IF( IINFO.NE.0 ) THEN
                    857:                            INFO = -3
                    858:                            RETURN
                    859:                         ENDIF
                    860:                         LAMBDA = WORK( WINDEX )
                    861: *                       Reset twist index from inaccurate LAMBDA to
                    862: *                       force computation of true MINGMA
                    863:                         IWORK( IINDR+WINDEX ) = 0
                    864:                      ENDIF
                    865: *                    Given LAMBDA, compute the eigenvector.
                    866:                      CALL DLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
                    867:      $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
                    868:      $                    WORK(INDLLD+IBEGIN-1),
                    869:      $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
                    870:      $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
                    871:      $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
                    872:      $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
                    873:                      IF(ITER .EQ. 0) THEN
                    874:                         BSTRES = RESID
                    875:                         BSTW = LAMBDA
                    876:                      ELSEIF(RESID.LT.BSTRES) THEN
                    877:                         BSTRES = RESID
                    878:                         BSTW = LAMBDA
                    879:                      ENDIF
                    880:                      ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
                    881:                      ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
                    882:                      ITER = ITER + 1
                    883: 
                    884: *                    sin alpha <= |resid|/gap
                    885: *                    Note that both the residual and the gap are
                    886: *                    proportional to the matrix, so ||T|| doesn't play
                    887: *                    a role in the quotient
                    888: 
                    889: *
                    890: *                    Convergence test for Rayleigh-Quotient iteration
                    891: *                    (omitted when Bisection has been used)
                    892: *
                    893:                      IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
                    894:      $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
                    895:      $                    THEN
                    896: *                       We need to check that the RQCORR update doesn't
                    897: *                       move the eigenvalue away from the desired one and
                    898: *                       towards a neighbor. -> protection with bisection
                    899:                         IF(INDEIG.LE.NEGCNT) THEN
                    900: *                          The wanted eigenvalue lies to the left
                    901:                            SGNDEF = -ONE
                    902:                         ELSE
                    903: *                          The wanted eigenvalue lies to the right
                    904:                            SGNDEF = ONE
                    905:                         ENDIF
                    906: *                       We only use the RQCORR if it improves the
                    907: *                       the iterate reasonably.
                    908:                         IF( ( RQCORR*SGNDEF.GE.ZERO )
                    909:      $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
                    910:      $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
                    911:      $                       ) THEN
                    912:                            USEDRQ = .TRUE.
                    913: *                          Store new midpoint of bisection interval in WORK
                    914:                            IF(SGNDEF.EQ.ONE) THEN
                    915: *                             The current LAMBDA is on the left of the true
                    916: *                             eigenvalue
                    917:                               LEFT = LAMBDA
                    918: *                             We prefer to assume that the error estimate
                    919: *                             is correct. We could make the interval not
                    920: *                             as a bracket but to be modified if the RQCORR
                    921: *                             chooses to. In this case, the RIGHT side should
                    922: *                             be modified as follows:
                    923: *                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
                    924:                            ELSE
                    925: *                             The current LAMBDA is on the right of the true
                    926: *                             eigenvalue
                    927:                               RIGHT = LAMBDA
                    928: *                             See comment about assuming the error estimate is
                    929: *                             correct above.
                    930: *                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
                    931:                            ENDIF
                    932:                            WORK( WINDEX ) =
                    933:      $                       HALF * (RIGHT + LEFT)
                    934: *                          Take RQCORR since it has the correct sign and
                    935: *                          improves the iterate reasonably
                    936:                            LAMBDA = LAMBDA + RQCORR
                    937: *                          Update width of error interval
                    938:                            WERR( WINDEX ) =
                    939:      $                             HALF * (RIGHT-LEFT)
                    940:                         ELSE
                    941:                            NEEDBS = .TRUE.
                    942:                         ENDIF
                    943:                         IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
                    944: *                             The eigenvalue is computed to bisection accuracy
                    945: *                             compute eigenvector and stop
                    946:                            USEDBS = .TRUE.
                    947:                            GOTO 120
                    948:                         ELSEIF( ITER.LT.MAXITR ) THEN
                    949:                            GOTO 120
                    950:                         ELSEIF( ITER.EQ.MAXITR ) THEN
                    951:                            NEEDBS = .TRUE.
                    952:                            GOTO 120
                    953:                         ELSE
                    954:                            INFO = 5
                    955:                            RETURN
                    956:                         END IF
                    957:                      ELSE
                    958:                         STP2II = .FALSE.
                    959:         IF(USEDRQ .AND. USEDBS .AND.
                    960:      $                     BSTRES.LE.RESID) THEN
                    961:                            LAMBDA = BSTW
                    962:                            STP2II = .TRUE.
                    963:                         ENDIF
                    964:                         IF (STP2II) THEN
                    965: *                          improve error angle by second step
                    966:                            CALL DLAR1V( IN, 1, IN, LAMBDA,
                    967:      $                          D( IBEGIN ), L( IBEGIN ),
                    968:      $                          WORK(INDLD+IBEGIN-1),
                    969:      $                          WORK(INDLLD+IBEGIN-1),
                    970:      $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
                    971:      $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
                    972:      $                          IWORK( IINDR+WINDEX ),
                    973:      $                          ISUPPZ( 2*WINDEX-1 ),
                    974:      $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
                    975:                         ENDIF
                    976:                         WORK( WINDEX ) = LAMBDA
                    977:                      END IF
                    978: *
                    979: *                    Compute FP-vector support w.r.t. whole matrix
                    980: *
                    981:                      ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
                    982:                      ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
                    983:                      ZFROM = ISUPPZ( 2*WINDEX-1 )
                    984:                      ZTO = ISUPPZ( 2*WINDEX )
                    985:                      ISUPMN = ISUPMN + OLDIEN
                    986:                      ISUPMX = ISUPMX + OLDIEN
                    987: *                    Ensure vector is ok if support in the RQI has changed
                    988:                      IF(ISUPMN.LT.ZFROM) THEN
                    989:                         DO 122 II = ISUPMN,ZFROM-1
                    990:                            Z( II, WINDEX ) = ZERO
                    991:  122                    CONTINUE
                    992:                      ENDIF
                    993:                      IF(ISUPMX.GT.ZTO) THEN
                    994:                         DO 123 II = ZTO+1,ISUPMX
                    995:                            Z( II, WINDEX ) = ZERO
                    996:  123                    CONTINUE
                    997:                      ENDIF
                    998:                      CALL DSCAL( ZTO-ZFROM+1, NRMINV,
                    999:      $                       Z( ZFROM, WINDEX ), 1 )
                   1000:  125                 CONTINUE
                   1001: *                    Update W
                   1002:                      W( WINDEX ) = LAMBDA+SIGMA
                   1003: *                    Recompute the gaps on the left and right
                   1004: *                    But only allow them to become larger and not
                   1005: *                    smaller (which can only happen through "bad"
                   1006: *                    cancellation and doesn't reflect the theory
                   1007: *                    where the initial gaps are underestimated due
                   1008: *                    to WERR being too crude.)
                   1009:                      IF(.NOT.ESKIP) THEN
                   1010:                         IF( K.GT.1) THEN
                   1011:                            WGAP( WINDMN ) = MAX( WGAP(WINDMN),
                   1012:      $                          W(WINDEX)-WERR(WINDEX)
                   1013:      $                          - W(WINDMN)-WERR(WINDMN) )
                   1014:                         ENDIF
                   1015:                         IF( WINDEX.LT.WEND ) THEN
                   1016:                            WGAP( WINDEX ) = MAX( SAVGAP,
                   1017:      $                          W( WINDPL )-WERR( WINDPL )
                   1018:      $                          - W( WINDEX )-WERR( WINDEX) )
                   1019:                         ENDIF
                   1020:                      ENDIF
                   1021:                      IDONE = IDONE + 1
                   1022:                   ENDIF
                   1023: *                 here ends the code for the current child
                   1024: *
                   1025:  139              CONTINUE
                   1026: *                 Proceed to any remaining child nodes
                   1027:                   NEWFST = J + 1
                   1028:  140           CONTINUE
                   1029:  150        CONTINUE
                   1030:             NDEPTH = NDEPTH + 1
                   1031:             GO TO 40
                   1032:          END IF
                   1033:          IBEGIN = IEND + 1
                   1034:          WBEGIN = WEND + 1
                   1035:  170  CONTINUE
                   1036: *
                   1037: 
                   1038:       RETURN
                   1039: *
                   1040: *     End of DLARRV
                   1041: *
                   1042:       END

CVSweb interface <joel.bertrand@systella.fr>