File:  [local] / rpl / lapack / lapack / dlarrb.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:57 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLARRB provides limited bisection to locate eigenvalues for more accuracy.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLARRB + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrb.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrb.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrb.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1,
   22: *                          RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK,
   23: *                          PIVMIN, SPDIAM, TWIST, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       INTEGER            IFIRST, ILAST, INFO, N, OFFSET, TWIST
   27: *       DOUBLE PRECISION   PIVMIN, RTOL1, RTOL2, SPDIAM
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IWORK( * )
   31: *       DOUBLE PRECISION   D( * ), LLD( * ), W( * ),
   32: *      $                   WERR( * ), WGAP( * ), WORK( * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> Given the relatively robust representation(RRR) L D L^T, DLARRB
   42: *> does "limited" bisection to refine the eigenvalues of L D L^T,
   43: *> W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
   44: *> guesses for these eigenvalues are input in W, the corresponding estimate
   45: *> of the error in these guesses and their gaps are input in WERR
   46: *> and WGAP, respectively. During bisection, intervals
   47: *> [left, right] are maintained by storing their mid-points and
   48: *> semi-widths in the arrays W and WERR respectively.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] N
   55: *> \verbatim
   56: *>          N is INTEGER
   57: *>          The order of the matrix.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] D
   61: *> \verbatim
   62: *>          D is DOUBLE PRECISION array, dimension (N)
   63: *>          The N diagonal elements of the diagonal matrix D.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] LLD
   67: *> \verbatim
   68: *>          LLD is DOUBLE PRECISION array, dimension (N-1)
   69: *>          The (N-1) elements L(i)*L(i)*D(i).
   70: *> \endverbatim
   71: *>
   72: *> \param[in] IFIRST
   73: *> \verbatim
   74: *>          IFIRST is INTEGER
   75: *>          The index of the first eigenvalue to be computed.
   76: *> \endverbatim
   77: *>
   78: *> \param[in] ILAST
   79: *> \verbatim
   80: *>          ILAST is INTEGER
   81: *>          The index of the last eigenvalue to be computed.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] RTOL1
   85: *> \verbatim
   86: *>          RTOL1 is DOUBLE PRECISION
   87: *> \endverbatim
   88: *>
   89: *> \param[in] RTOL2
   90: *> \verbatim
   91: *>          RTOL2 is DOUBLE PRECISION
   92: *>          Tolerance for the convergence of the bisection intervals.
   93: *>          An interval [LEFT,RIGHT] has converged if
   94: *>          RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
   95: *>          where GAP is the (estimated) distance to the nearest
   96: *>          eigenvalue.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] OFFSET
  100: *> \verbatim
  101: *>          OFFSET is INTEGER
  102: *>          Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET
  103: *>          through ILAST-OFFSET elements of these arrays are to be used.
  104: *> \endverbatim
  105: *>
  106: *> \param[in,out] W
  107: *> \verbatim
  108: *>          W is DOUBLE PRECISION array, dimension (N)
  109: *>          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
  110: *>          estimates of the eigenvalues of L D L^T indexed IFIRST through
  111: *>          ILAST.
  112: *>          On output, these estimates are refined.
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] WGAP
  116: *> \verbatim
  117: *>          WGAP is DOUBLE PRECISION array, dimension (N-1)
  118: *>          On input, the (estimated) gaps between consecutive
  119: *>          eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between
  120: *>          eigenvalues I and I+1. Note that if IFIRST = ILAST
  121: *>          then WGAP(IFIRST-OFFSET) must be set to ZERO.
  122: *>          On output, these gaps are refined.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] WERR
  126: *> \verbatim
  127: *>          WERR is DOUBLE PRECISION array, dimension (N)
  128: *>          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
  129: *>          the errors in the estimates of the corresponding elements in W.
  130: *>          On output, these errors are refined.
  131: *> \endverbatim
  132: *>
  133: *> \param[out] WORK
  134: *> \verbatim
  135: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
  136: *>          Workspace.
  137: *> \endverbatim
  138: *>
  139: *> \param[out] IWORK
  140: *> \verbatim
  141: *>          IWORK is INTEGER array, dimension (2*N)
  142: *>          Workspace.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] PIVMIN
  146: *> \verbatim
  147: *>          PIVMIN is DOUBLE PRECISION
  148: *>          The minimum pivot in the Sturm sequence.
  149: *> \endverbatim
  150: *>
  151: *> \param[in] SPDIAM
  152: *> \verbatim
  153: *>          SPDIAM is DOUBLE PRECISION
  154: *>          The spectral diameter of the matrix.
  155: *> \endverbatim
  156: *>
  157: *> \param[in] TWIST
  158: *> \verbatim
  159: *>          TWIST is INTEGER
  160: *>          The twist index for the twisted factorization that is used
  161: *>          for the negcount.
  162: *>          TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T
  163: *>          TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T
  164: *>          TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r)
  165: *> \endverbatim
  166: *>
  167: *> \param[out] INFO
  168: *> \verbatim
  169: *>          INFO is INTEGER
  170: *>          Error flag.
  171: *> \endverbatim
  172: *
  173: *  Authors:
  174: *  ========
  175: *
  176: *> \author Univ. of Tennessee
  177: *> \author Univ. of California Berkeley
  178: *> \author Univ. of Colorado Denver
  179: *> \author NAG Ltd.
  180: *
  181: *> \ingroup OTHERauxiliary
  182: *
  183: *> \par Contributors:
  184: *  ==================
  185: *>
  186: *> Beresford Parlett, University of California, Berkeley, USA \n
  187: *> Jim Demmel, University of California, Berkeley, USA \n
  188: *> Inderjit Dhillon, University of Texas, Austin, USA \n
  189: *> Osni Marques, LBNL/NERSC, USA \n
  190: *> Christof Voemel, University of California, Berkeley, USA
  191: *
  192: *  =====================================================================
  193:       SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1,
  194:      $                   RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK,
  195:      $                   PIVMIN, SPDIAM, TWIST, INFO )
  196: *
  197: *  -- LAPACK auxiliary routine --
  198: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  199: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  200: *
  201: *     .. Scalar Arguments ..
  202:       INTEGER            IFIRST, ILAST, INFO, N, OFFSET, TWIST
  203:       DOUBLE PRECISION   PIVMIN, RTOL1, RTOL2, SPDIAM
  204: *     ..
  205: *     .. Array Arguments ..
  206:       INTEGER            IWORK( * )
  207:       DOUBLE PRECISION   D( * ), LLD( * ), W( * ),
  208:      $                   WERR( * ), WGAP( * ), WORK( * )
  209: *     ..
  210: *
  211: *  =====================================================================
  212: *
  213: *     .. Parameters ..
  214:       DOUBLE PRECISION   ZERO, TWO, HALF
  215:       PARAMETER        ( ZERO = 0.0D0, TWO = 2.0D0,
  216:      $                   HALF = 0.5D0 )
  217:       INTEGER   MAXITR
  218: *     ..
  219: *     .. Local Scalars ..
  220:       INTEGER            I, I1, II, IP, ITER, K, NEGCNT, NEXT, NINT,
  221:      $                   OLNINT, PREV, R
  222:       DOUBLE PRECISION   BACK, CVRGD, GAP, LEFT, LGAP, MID, MNWDTH,
  223:      $                   RGAP, RIGHT, TMP, WIDTH
  224: *     ..
  225: *     .. External Functions ..
  226:       INTEGER            DLANEG
  227:       EXTERNAL           DLANEG
  228: *
  229: *     ..
  230: *     .. Intrinsic Functions ..
  231:       INTRINSIC          ABS, MAX, MIN
  232: *     ..
  233: *     .. Executable Statements ..
  234: *
  235:       INFO = 0
  236: *
  237: *     Quick return if possible
  238: *
  239:       IF( N.LE.0 ) THEN
  240:          RETURN
  241:       END IF
  242: *
  243:       MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
  244:      $           LOG( TWO ) ) + 2
  245:       MNWDTH = TWO * PIVMIN
  246: *
  247:       R = TWIST
  248:       IF((R.LT.1).OR.(R.GT.N)) R = N
  249: *
  250: *     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
  251: *     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
  252: *     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
  253: *     for an unconverged interval is set to the index of the next unconverged
  254: *     interval, and is -1 or 0 for a converged interval. Thus a linked
  255: *     list of unconverged intervals is set up.
  256: *
  257:       I1 = IFIRST
  258: *     The number of unconverged intervals
  259:       NINT = 0
  260: *     The last unconverged interval found
  261:       PREV = 0
  262: 
  263:       RGAP = WGAP( I1-OFFSET )
  264:       DO 75 I = I1, ILAST
  265:          K = 2*I
  266:          II = I - OFFSET
  267:          LEFT = W( II ) - WERR( II )
  268:          RIGHT = W( II ) + WERR( II )
  269:          LGAP = RGAP
  270:          RGAP = WGAP( II )
  271:          GAP = MIN( LGAP, RGAP )
  272: 
  273: *        Make sure that [LEFT,RIGHT] contains the desired eigenvalue
  274: *        Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT
  275: *
  276: *        Do while( NEGCNT(LEFT).GT.I-1 )
  277: *
  278:          BACK = WERR( II )
  279:  20      CONTINUE
  280:          NEGCNT = DLANEG( N, D, LLD, LEFT, PIVMIN, R )
  281:          IF( NEGCNT.GT.I-1 ) THEN
  282:             LEFT = LEFT - BACK
  283:             BACK = TWO*BACK
  284:             GO TO 20
  285:          END IF
  286: *
  287: *        Do while( NEGCNT(RIGHT).LT.I )
  288: *        Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT
  289: *
  290:          BACK = WERR( II )
  291:  50      CONTINUE
  292: 
  293:          NEGCNT = DLANEG( N, D, LLD, RIGHT, PIVMIN, R )
  294:           IF( NEGCNT.LT.I ) THEN
  295:              RIGHT = RIGHT + BACK
  296:              BACK = TWO*BACK
  297:              GO TO 50
  298:           END IF
  299:          WIDTH = HALF*ABS( LEFT - RIGHT )
  300:          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
  301:          CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
  302:          IF( WIDTH.LE.CVRGD .OR. WIDTH.LE.MNWDTH ) THEN
  303: *           This interval has already converged and does not need refinement.
  304: *           (Note that the gaps might change through refining the
  305: *            eigenvalues, however, they can only get bigger.)
  306: *           Remove it from the list.
  307:             IWORK( K-1 ) = -1
  308: *           Make sure that I1 always points to the first unconverged interval
  309:             IF((I.EQ.I1).AND.(I.LT.ILAST)) I1 = I + 1
  310:             IF((PREV.GE.I1).AND.(I.LE.ILAST)) IWORK( 2*PREV-1 ) = I + 1
  311:          ELSE
  312: *           unconverged interval found
  313:             PREV = I
  314:             NINT = NINT + 1
  315:             IWORK( K-1 ) = I + 1
  316:             IWORK( K ) = NEGCNT
  317:          END IF
  318:          WORK( K-1 ) = LEFT
  319:          WORK( K ) = RIGHT
  320:  75   CONTINUE
  321: 
  322: *
  323: *     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
  324: *     and while (ITER.LT.MAXITR)
  325: *
  326:       ITER = 0
  327:  80   CONTINUE
  328:       PREV = I1 - 1
  329:       I = I1
  330:       OLNINT = NINT
  331: 
  332:       DO 100 IP = 1, OLNINT
  333:          K = 2*I
  334:          II = I - OFFSET
  335:          RGAP = WGAP( II )
  336:          LGAP = RGAP
  337:          IF(II.GT.1) LGAP = WGAP( II-1 )
  338:          GAP = MIN( LGAP, RGAP )
  339:          NEXT = IWORK( K-1 )
  340:          LEFT = WORK( K-1 )
  341:          RIGHT = WORK( K )
  342:          MID = HALF*( LEFT + RIGHT )
  343: 
  344: *        semiwidth of interval
  345:          WIDTH = RIGHT - MID
  346:          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
  347:          CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
  348:          IF( ( WIDTH.LE.CVRGD ) .OR. ( WIDTH.LE.MNWDTH ).OR.
  349:      $       ( ITER.EQ.MAXITR ) )THEN
  350: *           reduce number of unconverged intervals
  351:             NINT = NINT - 1
  352: *           Mark interval as converged.
  353:             IWORK( K-1 ) = 0
  354:             IF( I1.EQ.I ) THEN
  355:                I1 = NEXT
  356:             ELSE
  357: *              Prev holds the last unconverged interval previously examined
  358:                IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
  359:             END IF
  360:             I = NEXT
  361:             GO TO 100
  362:          END IF
  363:          PREV = I
  364: *
  365: *        Perform one bisection step
  366: *
  367:          NEGCNT = DLANEG( N, D, LLD, MID, PIVMIN, R )
  368:          IF( NEGCNT.LE.I-1 ) THEN
  369:             WORK( K-1 ) = MID
  370:          ELSE
  371:             WORK( K ) = MID
  372:          END IF
  373:          I = NEXT
  374:  100  CONTINUE
  375:       ITER = ITER + 1
  376: *     do another loop if there are still unconverged intervals
  377: *     However, in the last iteration, all intervals are accepted
  378: *     since this is the best we can do.
  379:       IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
  380: *
  381: *
  382: *     At this point, all the intervals have converged
  383:       DO 110 I = IFIRST, ILAST
  384:          K = 2*I
  385:          II = I - OFFSET
  386: *        All intervals marked by '0' have been refined.
  387:          IF( IWORK( K-1 ).EQ.0 ) THEN
  388:             W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
  389:             WERR( II ) = WORK( K ) - W( II )
  390:          END IF
  391:  110  CONTINUE
  392: *
  393:       DO 111 I = IFIRST+1, ILAST
  394:          K = 2*I
  395:          II = I - OFFSET
  396:          WGAP( II-1 ) = MAX( ZERO,
  397:      $                     W(II) - WERR (II) - W( II-1 ) - WERR( II-1 ))
  398:  111  CONTINUE
  399: 
  400:       RETURN
  401: *
  402: *     End of DLARRB
  403: *
  404:       END

CVSweb interface <joel.bertrand@systella.fr>