Annotation of rpl/lapack/lapack/dlarrb.f, revision 1.20

1.11      bertrand    1: *> \brief \b DLARRB provides limited bisection to locate eigenvalues for more accuracy.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DLARRB + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrb.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrb.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrb.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1,
                     22: *                          RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK,
                     23: *                          PIVMIN, SPDIAM, TWIST, INFO )
1.15      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       INTEGER            IFIRST, ILAST, INFO, N, OFFSET, TWIST
                     27: *       DOUBLE PRECISION   PIVMIN, RTOL1, RTOL2, SPDIAM
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       INTEGER            IWORK( * )
                     31: *       DOUBLE PRECISION   D( * ), LLD( * ), W( * ),
                     32: *      $                   WERR( * ), WGAP( * ), WORK( * )
                     33: *       ..
1.15      bertrand   34: *
1.8       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> Given the relatively robust representation(RRR) L D L^T, DLARRB
                     42: *> does "limited" bisection to refine the eigenvalues of L D L^T,
                     43: *> W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
                     44: *> guesses for these eigenvalues are input in W, the corresponding estimate
                     45: *> of the error in these guesses and their gaps are input in WERR
                     46: *> and WGAP, respectively. During bisection, intervals
                     47: *> [left, right] are maintained by storing their mid-points and
                     48: *> semi-widths in the arrays W and WERR respectively.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] N
                     55: *> \verbatim
                     56: *>          N is INTEGER
                     57: *>          The order of the matrix.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] D
                     61: *> \verbatim
                     62: *>          D is DOUBLE PRECISION array, dimension (N)
                     63: *>          The N diagonal elements of the diagonal matrix D.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] LLD
                     67: *> \verbatim
                     68: *>          LLD is DOUBLE PRECISION array, dimension (N-1)
                     69: *>          The (N-1) elements L(i)*L(i)*D(i).
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] IFIRST
                     73: *> \verbatim
                     74: *>          IFIRST is INTEGER
                     75: *>          The index of the first eigenvalue to be computed.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in] ILAST
                     79: *> \verbatim
                     80: *>          ILAST is INTEGER
                     81: *>          The index of the last eigenvalue to be computed.
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] RTOL1
                     85: *> \verbatim
                     86: *>          RTOL1 is DOUBLE PRECISION
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] RTOL2
                     90: *> \verbatim
                     91: *>          RTOL2 is DOUBLE PRECISION
                     92: *>          Tolerance for the convergence of the bisection intervals.
                     93: *>          An interval [LEFT,RIGHT] has converged if
1.19      bertrand   94: *>          RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
1.8       bertrand   95: *>          where GAP is the (estimated) distance to the nearest
                     96: *>          eigenvalue.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] OFFSET
                    100: *> \verbatim
                    101: *>          OFFSET is INTEGER
                    102: *>          Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET
                    103: *>          through ILAST-OFFSET elements of these arrays are to be used.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in,out] W
                    107: *> \verbatim
                    108: *>          W is DOUBLE PRECISION array, dimension (N)
                    109: *>          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
1.17      bertrand  110: *>          estimates of the eigenvalues of L D L^T indexed IFIRST through
1.8       bertrand  111: *>          ILAST.
                    112: *>          On output, these estimates are refined.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in,out] WGAP
                    116: *> \verbatim
                    117: *>          WGAP is DOUBLE PRECISION array, dimension (N-1)
                    118: *>          On input, the (estimated) gaps between consecutive
                    119: *>          eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between
1.19      bertrand  120: *>          eigenvalues I and I+1. Note that if IFIRST = ILAST
1.8       bertrand  121: *>          then WGAP(IFIRST-OFFSET) must be set to ZERO.
                    122: *>          On output, these gaps are refined.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in,out] WERR
                    126: *> \verbatim
                    127: *>          WERR is DOUBLE PRECISION array, dimension (N)
                    128: *>          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
                    129: *>          the errors in the estimates of the corresponding elements in W.
                    130: *>          On output, these errors are refined.
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[out] WORK
                    134: *> \verbatim
                    135: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
                    136: *>          Workspace.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[out] IWORK
                    140: *> \verbatim
                    141: *>          IWORK is INTEGER array, dimension (2*N)
                    142: *>          Workspace.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] PIVMIN
                    146: *> \verbatim
                    147: *>          PIVMIN is DOUBLE PRECISION
                    148: *>          The minimum pivot in the Sturm sequence.
                    149: *> \endverbatim
                    150: *>
                    151: *> \param[in] SPDIAM
                    152: *> \verbatim
                    153: *>          SPDIAM is DOUBLE PRECISION
                    154: *>          The spectral diameter of the matrix.
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[in] TWIST
                    158: *> \verbatim
                    159: *>          TWIST is INTEGER
                    160: *>          The twist index for the twisted factorization that is used
                    161: *>          for the negcount.
                    162: *>          TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T
                    163: *>          TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T
                    164: *>          TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r)
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[out] INFO
                    168: *> \verbatim
                    169: *>          INFO is INTEGER
                    170: *>          Error flag.
                    171: *> \endverbatim
                    172: *
                    173: *  Authors:
                    174: *  ========
                    175: *
1.15      bertrand  176: *> \author Univ. of Tennessee
                    177: *> \author Univ. of California Berkeley
                    178: *> \author Univ. of Colorado Denver
                    179: *> \author NAG Ltd.
1.8       bertrand  180: *
1.15      bertrand  181: *> \ingroup OTHERauxiliary
1.8       bertrand  182: *
                    183: *> \par Contributors:
                    184: *  ==================
                    185: *>
                    186: *> Beresford Parlett, University of California, Berkeley, USA \n
                    187: *> Jim Demmel, University of California, Berkeley, USA \n
                    188: *> Inderjit Dhillon, University of Texas, Austin, USA \n
                    189: *> Osni Marques, LBNL/NERSC, USA \n
                    190: *> Christof Voemel, University of California, Berkeley, USA
                    191: *
                    192: *  =====================================================================
1.1       bertrand  193:       SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1,
                    194:      $                   RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK,
                    195:      $                   PIVMIN, SPDIAM, TWIST, INFO )
                    196: *
1.20    ! bertrand  197: *  -- LAPACK auxiliary routine --
1.1       bertrand  198: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    199: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    200: *
                    201: *     .. Scalar Arguments ..
                    202:       INTEGER            IFIRST, ILAST, INFO, N, OFFSET, TWIST
                    203:       DOUBLE PRECISION   PIVMIN, RTOL1, RTOL2, SPDIAM
                    204: *     ..
                    205: *     .. Array Arguments ..
                    206:       INTEGER            IWORK( * )
                    207:       DOUBLE PRECISION   D( * ), LLD( * ), W( * ),
                    208:      $                   WERR( * ), WGAP( * ), WORK( * )
                    209: *     ..
                    210: *
                    211: *  =====================================================================
                    212: *
                    213: *     .. Parameters ..
                    214:       DOUBLE PRECISION   ZERO, TWO, HALF
                    215:       PARAMETER        ( ZERO = 0.0D0, TWO = 2.0D0,
                    216:      $                   HALF = 0.5D0 )
                    217:       INTEGER   MAXITR
                    218: *     ..
                    219: *     .. Local Scalars ..
                    220:       INTEGER            I, I1, II, IP, ITER, K, NEGCNT, NEXT, NINT,
                    221:      $                   OLNINT, PREV, R
                    222:       DOUBLE PRECISION   BACK, CVRGD, GAP, LEFT, LGAP, MID, MNWDTH,
                    223:      $                   RGAP, RIGHT, TMP, WIDTH
                    224: *     ..
                    225: *     .. External Functions ..
                    226:       INTEGER            DLANEG
                    227:       EXTERNAL           DLANEG
                    228: *
                    229: *     ..
                    230: *     .. Intrinsic Functions ..
                    231:       INTRINSIC          ABS, MAX, MIN
                    232: *     ..
                    233: *     .. Executable Statements ..
                    234: *
                    235:       INFO = 0
                    236: *
1.17      bertrand  237: *     Quick return if possible
                    238: *
                    239:       IF( N.LE.0 ) THEN
                    240:          RETURN
                    241:       END IF
                    242: *
1.1       bertrand  243:       MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
                    244:      $           LOG( TWO ) ) + 2
                    245:       MNWDTH = TWO * PIVMIN
                    246: *
                    247:       R = TWIST
                    248:       IF((R.LT.1).OR.(R.GT.N)) R = N
                    249: *
                    250: *     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
                    251: *     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
                    252: *     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
                    253: *     for an unconverged interval is set to the index of the next unconverged
                    254: *     interval, and is -1 or 0 for a converged interval. Thus a linked
                    255: *     list of unconverged intervals is set up.
                    256: *
                    257:       I1 = IFIRST
                    258: *     The number of unconverged intervals
                    259:       NINT = 0
                    260: *     The last unconverged interval found
                    261:       PREV = 0
                    262: 
                    263:       RGAP = WGAP( I1-OFFSET )
                    264:       DO 75 I = I1, ILAST
                    265:          K = 2*I
                    266:          II = I - OFFSET
                    267:          LEFT = W( II ) - WERR( II )
                    268:          RIGHT = W( II ) + WERR( II )
                    269:          LGAP = RGAP
                    270:          RGAP = WGAP( II )
                    271:          GAP = MIN( LGAP, RGAP )
                    272: 
                    273: *        Make sure that [LEFT,RIGHT] contains the desired eigenvalue
                    274: *        Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT
                    275: *
                    276: *        Do while( NEGCNT(LEFT).GT.I-1 )
                    277: *
                    278:          BACK = WERR( II )
                    279:  20      CONTINUE
                    280:          NEGCNT = DLANEG( N, D, LLD, LEFT, PIVMIN, R )
                    281:          IF( NEGCNT.GT.I-1 ) THEN
                    282:             LEFT = LEFT - BACK
                    283:             BACK = TWO*BACK
                    284:             GO TO 20
                    285:          END IF
                    286: *
                    287: *        Do while( NEGCNT(RIGHT).LT.I )
                    288: *        Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT
                    289: *
                    290:          BACK = WERR( II )
                    291:  50      CONTINUE
                    292: 
                    293:          NEGCNT = DLANEG( N, D, LLD, RIGHT, PIVMIN, R )
                    294:           IF( NEGCNT.LT.I ) THEN
                    295:              RIGHT = RIGHT + BACK
                    296:              BACK = TWO*BACK
                    297:              GO TO 50
                    298:           END IF
                    299:          WIDTH = HALF*ABS( LEFT - RIGHT )
                    300:          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
                    301:          CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
                    302:          IF( WIDTH.LE.CVRGD .OR. WIDTH.LE.MNWDTH ) THEN
                    303: *           This interval has already converged and does not need refinement.
                    304: *           (Note that the gaps might change through refining the
                    305: *            eigenvalues, however, they can only get bigger.)
                    306: *           Remove it from the list.
                    307:             IWORK( K-1 ) = -1
                    308: *           Make sure that I1 always points to the first unconverged interval
                    309:             IF((I.EQ.I1).AND.(I.LT.ILAST)) I1 = I + 1
                    310:             IF((PREV.GE.I1).AND.(I.LE.ILAST)) IWORK( 2*PREV-1 ) = I + 1
                    311:          ELSE
                    312: *           unconverged interval found
                    313:             PREV = I
                    314:             NINT = NINT + 1
                    315:             IWORK( K-1 ) = I + 1
                    316:             IWORK( K ) = NEGCNT
                    317:          END IF
                    318:          WORK( K-1 ) = LEFT
                    319:          WORK( K ) = RIGHT
                    320:  75   CONTINUE
                    321: 
                    322: *
                    323: *     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
                    324: *     and while (ITER.LT.MAXITR)
                    325: *
                    326:       ITER = 0
                    327:  80   CONTINUE
                    328:       PREV = I1 - 1
                    329:       I = I1
                    330:       OLNINT = NINT
                    331: 
                    332:       DO 100 IP = 1, OLNINT
                    333:          K = 2*I
                    334:          II = I - OFFSET
                    335:          RGAP = WGAP( II )
                    336:          LGAP = RGAP
                    337:          IF(II.GT.1) LGAP = WGAP( II-1 )
                    338:          GAP = MIN( LGAP, RGAP )
                    339:          NEXT = IWORK( K-1 )
                    340:          LEFT = WORK( K-1 )
                    341:          RIGHT = WORK( K )
                    342:          MID = HALF*( LEFT + RIGHT )
                    343: 
                    344: *        semiwidth of interval
                    345:          WIDTH = RIGHT - MID
                    346:          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
                    347:          CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
                    348:          IF( ( WIDTH.LE.CVRGD ) .OR. ( WIDTH.LE.MNWDTH ).OR.
                    349:      $       ( ITER.EQ.MAXITR ) )THEN
                    350: *           reduce number of unconverged intervals
                    351:             NINT = NINT - 1
                    352: *           Mark interval as converged.
                    353:             IWORK( K-1 ) = 0
                    354:             IF( I1.EQ.I ) THEN
                    355:                I1 = NEXT
                    356:             ELSE
                    357: *              Prev holds the last unconverged interval previously examined
                    358:                IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
                    359:             END IF
                    360:             I = NEXT
                    361:             GO TO 100
                    362:          END IF
                    363:          PREV = I
                    364: *
                    365: *        Perform one bisection step
                    366: *
                    367:          NEGCNT = DLANEG( N, D, LLD, MID, PIVMIN, R )
                    368:          IF( NEGCNT.LE.I-1 ) THEN
                    369:             WORK( K-1 ) = MID
                    370:          ELSE
                    371:             WORK( K ) = MID
                    372:          END IF
                    373:          I = NEXT
                    374:  100  CONTINUE
                    375:       ITER = ITER + 1
                    376: *     do another loop if there are still unconverged intervals
                    377: *     However, in the last iteration, all intervals are accepted
                    378: *     since this is the best we can do.
                    379:       IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
                    380: *
                    381: *
                    382: *     At this point, all the intervals have converged
                    383:       DO 110 I = IFIRST, ILAST
                    384:          K = 2*I
                    385:          II = I - OFFSET
                    386: *        All intervals marked by '0' have been refined.
                    387:          IF( IWORK( K-1 ).EQ.0 ) THEN
                    388:             W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
                    389:             WERR( II ) = WORK( K ) - W( II )
                    390:          END IF
                    391:  110  CONTINUE
                    392: *
                    393:       DO 111 I = IFIRST+1, ILAST
                    394:          K = 2*I
                    395:          II = I - OFFSET
                    396:          WGAP( II-1 ) = MAX( ZERO,
                    397:      $                     W(II) - WERR (II) - W( II-1 ) - WERR( II-1 ))
                    398:  111  CONTINUE
                    399: 
                    400:       RETURN
                    401: *
                    402: *     End of DLARRB
                    403: *
                    404:       END

CVSweb interface <joel.bertrand@systella.fr>