File:  [local] / rpl / lapack / lapack / dlaqr3.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
    2:      $                   IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
    3:      $                   LDT, NV, WV, LDWV, WORK, LWORK )
    4: *
    5: *  -- LAPACK auxiliary routine (version 3.2.1)                        --
    6: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
    7: *  -- April 2009                                                      --
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
   11:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
   12:       LOGICAL            WANTT, WANTZ
   13: *     ..
   14: *     .. Array Arguments ..
   15:       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
   16:      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
   17:      $                   Z( LDZ, * )
   18: *     ..
   19: *
   20: *     ******************************************************************
   21: *     Aggressive early deflation:
   22: *
   23: *     This subroutine accepts as input an upper Hessenberg matrix
   24: *     H and performs an orthogonal similarity transformation
   25: *     designed to detect and deflate fully converged eigenvalues from
   26: *     a trailing principal submatrix.  On output H has been over-
   27: *     written by a new Hessenberg matrix that is a perturbation of
   28: *     an orthogonal similarity transformation of H.  It is to be
   29: *     hoped that the final version of H has many zero subdiagonal
   30: *     entries.
   31: *
   32: *     ******************************************************************
   33: *     WANTT   (input) LOGICAL
   34: *          If .TRUE., then the Hessenberg matrix H is fully updated
   35: *          so that the quasi-triangular Schur factor may be
   36: *          computed (in cooperation with the calling subroutine).
   37: *          If .FALSE., then only enough of H is updated to preserve
   38: *          the eigenvalues.
   39: *
   40: *     WANTZ   (input) LOGICAL
   41: *          If .TRUE., then the orthogonal matrix Z is updated so
   42: *          so that the orthogonal Schur factor may be computed
   43: *          (in cooperation with the calling subroutine).
   44: *          If .FALSE., then Z is not referenced.
   45: *
   46: *     N       (input) INTEGER
   47: *          The order of the matrix H and (if WANTZ is .TRUE.) the
   48: *          order of the orthogonal matrix Z.
   49: *
   50: *     KTOP    (input) INTEGER
   51: *          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
   52: *          KBOT and KTOP together determine an isolated block
   53: *          along the diagonal of the Hessenberg matrix.
   54: *
   55: *     KBOT    (input) INTEGER
   56: *          It is assumed without a check that either
   57: *          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
   58: *          determine an isolated block along the diagonal of the
   59: *          Hessenberg matrix.
   60: *
   61: *     NW      (input) INTEGER
   62: *          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
   63: *
   64: *     H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)
   65: *          On input the initial N-by-N section of H stores the
   66: *          Hessenberg matrix undergoing aggressive early deflation.
   67: *          On output H has been transformed by an orthogonal
   68: *          similarity transformation, perturbed, and the returned
   69: *          to Hessenberg form that (it is to be hoped) has some
   70: *          zero subdiagonal entries.
   71: *
   72: *     LDH     (input) integer
   73: *          Leading dimension of H just as declared in the calling
   74: *          subroutine.  N .LE. LDH
   75: *
   76: *     ILOZ    (input) INTEGER
   77: *     IHIZ    (input) INTEGER
   78: *          Specify the rows of Z to which transformations must be
   79: *          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
   80: *
   81: *     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
   82: *          IF WANTZ is .TRUE., then on output, the orthogonal
   83: *          similarity transformation mentioned above has been
   84: *          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
   85: *          If WANTZ is .FALSE., then Z is unreferenced.
   86: *
   87: *     LDZ     (input) integer
   88: *          The leading dimension of Z just as declared in the
   89: *          calling subroutine.  1 .LE. LDZ.
   90: *
   91: *     NS      (output) integer
   92: *          The number of unconverged (ie approximate) eigenvalues
   93: *          returned in SR and SI that may be used as shifts by the
   94: *          calling subroutine.
   95: *
   96: *     ND      (output) integer
   97: *          The number of converged eigenvalues uncovered by this
   98: *          subroutine.
   99: *
  100: *     SR      (output) DOUBLE PRECISION array, dimension KBOT
  101: *     SI      (output) DOUBLE PRECISION array, dimension KBOT
  102: *          On output, the real and imaginary parts of approximate
  103: *          eigenvalues that may be used for shifts are stored in
  104: *          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
  105: *          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
  106: *          The real and imaginary parts of converged eigenvalues
  107: *          are stored in SR(KBOT-ND+1) through SR(KBOT) and
  108: *          SI(KBOT-ND+1) through SI(KBOT), respectively.
  109: *
  110: *     V       (workspace) DOUBLE PRECISION array, dimension (LDV,NW)
  111: *          An NW-by-NW work array.
  112: *
  113: *     LDV     (input) integer scalar
  114: *          The leading dimension of V just as declared in the
  115: *          calling subroutine.  NW .LE. LDV
  116: *
  117: *     NH      (input) integer scalar
  118: *          The number of columns of T.  NH.GE.NW.
  119: *
  120: *     T       (workspace) DOUBLE PRECISION array, dimension (LDT,NW)
  121: *
  122: *     LDT     (input) integer
  123: *          The leading dimension of T just as declared in the
  124: *          calling subroutine.  NW .LE. LDT
  125: *
  126: *     NV      (input) integer
  127: *          The number of rows of work array WV available for
  128: *          workspace.  NV.GE.NW.
  129: *
  130: *     WV      (workspace) DOUBLE PRECISION array, dimension (LDWV,NW)
  131: *
  132: *     LDWV    (input) integer
  133: *          The leading dimension of W just as declared in the
  134: *          calling subroutine.  NW .LE. LDV
  135: *
  136: *     WORK    (workspace) DOUBLE PRECISION array, dimension LWORK.
  137: *          On exit, WORK(1) is set to an estimate of the optimal value
  138: *          of LWORK for the given values of N, NW, KTOP and KBOT.
  139: *
  140: *     LWORK   (input) integer
  141: *          The dimension of the work array WORK.  LWORK = 2*NW
  142: *          suffices, but greater efficiency may result from larger
  143: *          values of LWORK.
  144: *
  145: *          If LWORK = -1, then a workspace query is assumed; DLAQR3
  146: *          only estimates the optimal workspace size for the given
  147: *          values of N, NW, KTOP and KBOT.  The estimate is returned
  148: *          in WORK(1).  No error message related to LWORK is issued
  149: *          by XERBLA.  Neither H nor Z are accessed.
  150: *
  151: *     ================================================================
  152: *     Based on contributions by
  153: *        Karen Braman and Ralph Byers, Department of Mathematics,
  154: *        University of Kansas, USA
  155: *
  156: *     ================================================================
  157: *     .. Parameters ..
  158:       DOUBLE PRECISION   ZERO, ONE
  159:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
  160: *     ..
  161: *     .. Local Scalars ..
  162:       DOUBLE PRECISION   AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
  163:      $                   SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
  164:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
  165:      $                   KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
  166:      $                   LWKOPT, NMIN
  167:       LOGICAL            BULGE, SORTED
  168: *     ..
  169: *     .. External Functions ..
  170:       DOUBLE PRECISION   DLAMCH
  171:       INTEGER            ILAENV
  172:       EXTERNAL           DLAMCH, ILAENV
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL           DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR,
  176:      $                   DLANV2, DLAQR4, DLARF, DLARFG, DLASET, DORMHR,
  177:      $                   DTREXC
  178: *     ..
  179: *     .. Intrinsic Functions ..
  180:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, SQRT
  181: *     ..
  182: *     .. Executable Statements ..
  183: *
  184: *     ==== Estimate optimal workspace. ====
  185: *
  186:       JW = MIN( NW, KBOT-KTOP+1 )
  187:       IF( JW.LE.2 ) THEN
  188:          LWKOPT = 1
  189:       ELSE
  190: *
  191: *        ==== Workspace query call to DGEHRD ====
  192: *
  193:          CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
  194:          LWK1 = INT( WORK( 1 ) )
  195: *
  196: *        ==== Workspace query call to DORMHR ====
  197: *
  198:          CALL DORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
  199:      $                WORK, -1, INFO )
  200:          LWK2 = INT( WORK( 1 ) )
  201: *
  202: *        ==== Workspace query call to DLAQR4 ====
  203: *
  204:          CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR, SI, 1, JW,
  205:      $                V, LDV, WORK, -1, INFQR )
  206:          LWK3 = INT( WORK( 1 ) )
  207: *
  208: *        ==== Optimal workspace ====
  209: *
  210:          LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
  211:       END IF
  212: *
  213: *     ==== Quick return in case of workspace query. ====
  214: *
  215:       IF( LWORK.EQ.-1 ) THEN
  216:          WORK( 1 ) = DBLE( LWKOPT )
  217:          RETURN
  218:       END IF
  219: *
  220: *     ==== Nothing to do ...
  221: *     ... for an empty active block ... ====
  222:       NS = 0
  223:       ND = 0
  224:       WORK( 1 ) = ONE
  225:       IF( KTOP.GT.KBOT )
  226:      $   RETURN
  227: *     ... nor for an empty deflation window. ====
  228:       IF( NW.LT.1 )
  229:      $   RETURN
  230: *
  231: *     ==== Machine constants ====
  232: *
  233:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  234:       SAFMAX = ONE / SAFMIN
  235:       CALL DLABAD( SAFMIN, SAFMAX )
  236:       ULP = DLAMCH( 'PRECISION' )
  237:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
  238: *
  239: *     ==== Setup deflation window ====
  240: *
  241:       JW = MIN( NW, KBOT-KTOP+1 )
  242:       KWTOP = KBOT - JW + 1
  243:       IF( KWTOP.EQ.KTOP ) THEN
  244:          S = ZERO
  245:       ELSE
  246:          S = H( KWTOP, KWTOP-1 )
  247:       END IF
  248: *
  249:       IF( KBOT.EQ.KWTOP ) THEN
  250: *
  251: *        ==== 1-by-1 deflation window: not much to do ====
  252: *
  253:          SR( KWTOP ) = H( KWTOP, KWTOP )
  254:          SI( KWTOP ) = ZERO
  255:          NS = 1
  256:          ND = 0
  257:          IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
  258:      $        THEN
  259:             NS = 0
  260:             ND = 1
  261:             IF( KWTOP.GT.KTOP )
  262:      $         H( KWTOP, KWTOP-1 ) = ZERO
  263:          END IF
  264:          WORK( 1 ) = ONE
  265:          RETURN
  266:       END IF
  267: *
  268: *     ==== Convert to spike-triangular form.  (In case of a
  269: *     .    rare QR failure, this routine continues to do
  270: *     .    aggressive early deflation using that part of
  271: *     .    the deflation window that converged using INFQR
  272: *     .    here and there to keep track.) ====
  273: *
  274:       CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
  275:       CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
  276: *
  277:       CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
  278:       NMIN = ILAENV( 12, 'DLAQR3', 'SV', JW, 1, JW, LWORK )
  279:       IF( JW.GT.NMIN ) THEN
  280:          CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
  281:      $                SI( KWTOP ), 1, JW, V, LDV, WORK, LWORK, INFQR )
  282:       ELSE
  283:          CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
  284:      $                SI( KWTOP ), 1, JW, V, LDV, INFQR )
  285:       END IF
  286: *
  287: *     ==== DTREXC needs a clean margin near the diagonal ====
  288: *
  289:       DO 10 J = 1, JW - 3
  290:          T( J+2, J ) = ZERO
  291:          T( J+3, J ) = ZERO
  292:    10 CONTINUE
  293:       IF( JW.GT.2 )
  294:      $   T( JW, JW-2 ) = ZERO
  295: *
  296: *     ==== Deflation detection loop ====
  297: *
  298:       NS = JW
  299:       ILST = INFQR + 1
  300:    20 CONTINUE
  301:       IF( ILST.LE.NS ) THEN
  302:          IF( NS.EQ.1 ) THEN
  303:             BULGE = .FALSE.
  304:          ELSE
  305:             BULGE = T( NS, NS-1 ).NE.ZERO
  306:          END IF
  307: *
  308: *        ==== Small spike tip test for deflation ====
  309: *
  310:          IF( .NOT.BULGE ) THEN
  311: *
  312: *           ==== Real eigenvalue ====
  313: *
  314:             FOO = ABS( T( NS, NS ) )
  315:             IF( FOO.EQ.ZERO )
  316:      $         FOO = ABS( S )
  317:             IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
  318: *
  319: *              ==== Deflatable ====
  320: *
  321:                NS = NS - 1
  322:             ELSE
  323: *
  324: *              ==== Undeflatable.   Move it up out of the way.
  325: *              .    (DTREXC can not fail in this case.) ====
  326: *
  327:                IFST = NS
  328:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
  329:      $                      INFO )
  330:                ILST = ILST + 1
  331:             END IF
  332:          ELSE
  333: *
  334: *           ==== Complex conjugate pair ====
  335: *
  336:             FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )*
  337:      $            SQRT( ABS( T( NS-1, NS ) ) )
  338:             IF( FOO.EQ.ZERO )
  339:      $         FOO = ABS( S )
  340:             IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
  341:      $          MAX( SMLNUM, ULP*FOO ) ) THEN
  342: *
  343: *              ==== Deflatable ====
  344: *
  345:                NS = NS - 2
  346:             ELSE
  347: *
  348: *              ==== Undeflatable. Move them up out of the way.
  349: *              .    Fortunately, DTREXC does the right thing with
  350: *              .    ILST in case of a rare exchange failure. ====
  351: *
  352:                IFST = NS
  353:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
  354:      $                      INFO )
  355:                ILST = ILST + 2
  356:             END IF
  357:          END IF
  358: *
  359: *        ==== End deflation detection loop ====
  360: *
  361:          GO TO 20
  362:       END IF
  363: *
  364: *        ==== Return to Hessenberg form ====
  365: *
  366:       IF( NS.EQ.0 )
  367:      $   S = ZERO
  368: *
  369:       IF( NS.LT.JW ) THEN
  370: *
  371: *        ==== sorting diagonal blocks of T improves accuracy for
  372: *        .    graded matrices.  Bubble sort deals well with
  373: *        .    exchange failures. ====
  374: *
  375:          SORTED = .false.
  376:          I = NS + 1
  377:    30    CONTINUE
  378:          IF( SORTED )
  379:      $      GO TO 50
  380:          SORTED = .true.
  381: *
  382:          KEND = I - 1
  383:          I = INFQR + 1
  384:          IF( I.EQ.NS ) THEN
  385:             K = I + 1
  386:          ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
  387:             K = I + 1
  388:          ELSE
  389:             K = I + 2
  390:          END IF
  391:    40    CONTINUE
  392:          IF( K.LE.KEND ) THEN
  393:             IF( K.EQ.I+1 ) THEN
  394:                EVI = ABS( T( I, I ) )
  395:             ELSE
  396:                EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )*
  397:      $               SQRT( ABS( T( I, I+1 ) ) )
  398:             END IF
  399: *
  400:             IF( K.EQ.KEND ) THEN
  401:                EVK = ABS( T( K, K ) )
  402:             ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
  403:                EVK = ABS( T( K, K ) )
  404:             ELSE
  405:                EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )*
  406:      $               SQRT( ABS( T( K, K+1 ) ) )
  407:             END IF
  408: *
  409:             IF( EVI.GE.EVK ) THEN
  410:                I = K
  411:             ELSE
  412:                SORTED = .false.
  413:                IFST = I
  414:                ILST = K
  415:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
  416:      $                      INFO )
  417:                IF( INFO.EQ.0 ) THEN
  418:                   I = ILST
  419:                ELSE
  420:                   I = K
  421:                END IF
  422:             END IF
  423:             IF( I.EQ.KEND ) THEN
  424:                K = I + 1
  425:             ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
  426:                K = I + 1
  427:             ELSE
  428:                K = I + 2
  429:             END IF
  430:             GO TO 40
  431:          END IF
  432:          GO TO 30
  433:    50    CONTINUE
  434:       END IF
  435: *
  436: *     ==== Restore shift/eigenvalue array from T ====
  437: *
  438:       I = JW
  439:    60 CONTINUE
  440:       IF( I.GE.INFQR+1 ) THEN
  441:          IF( I.EQ.INFQR+1 ) THEN
  442:             SR( KWTOP+I-1 ) = T( I, I )
  443:             SI( KWTOP+I-1 ) = ZERO
  444:             I = I - 1
  445:          ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
  446:             SR( KWTOP+I-1 ) = T( I, I )
  447:             SI( KWTOP+I-1 ) = ZERO
  448:             I = I - 1
  449:          ELSE
  450:             AA = T( I-1, I-1 )
  451:             CC = T( I, I-1 )
  452:             BB = T( I-1, I )
  453:             DD = T( I, I )
  454:             CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
  455:      $                   SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
  456:      $                   SI( KWTOP+I-1 ), CS, SN )
  457:             I = I - 2
  458:          END IF
  459:          GO TO 60
  460:       END IF
  461: *
  462:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
  463:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
  464: *
  465: *           ==== Reflect spike back into lower triangle ====
  466: *
  467:             CALL DCOPY( NS, V, LDV, WORK, 1 )
  468:             BETA = WORK( 1 )
  469:             CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
  470:             WORK( 1 ) = ONE
  471: *
  472:             CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
  473: *
  474:             CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
  475:      $                  WORK( JW+1 ) )
  476:             CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
  477:      $                  WORK( JW+1 ) )
  478:             CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
  479:      $                  WORK( JW+1 ) )
  480: *
  481:             CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
  482:      $                   LWORK-JW, INFO )
  483:          END IF
  484: *
  485: *        ==== Copy updated reduced window into place ====
  486: *
  487:          IF( KWTOP.GT.1 )
  488:      $      H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
  489:          CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
  490:          CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
  491:      $               LDH+1 )
  492: *
  493: *        ==== Accumulate orthogonal matrix in order update
  494: *        .    H and Z, if requested.  ====
  495: *
  496:          IF( NS.GT.1 .AND. S.NE.ZERO )
  497:      $      CALL DORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
  498:      $                   WORK( JW+1 ), LWORK-JW, INFO )
  499: *
  500: *        ==== Update vertical slab in H ====
  501: *
  502:          IF( WANTT ) THEN
  503:             LTOP = 1
  504:          ELSE
  505:             LTOP = KTOP
  506:          END IF
  507:          DO 70 KROW = LTOP, KWTOP - 1, NV
  508:             KLN = MIN( NV, KWTOP-KROW )
  509:             CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
  510:      $                  LDH, V, LDV, ZERO, WV, LDWV )
  511:             CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
  512:    70    CONTINUE
  513: *
  514: *        ==== Update horizontal slab in H ====
  515: *
  516:          IF( WANTT ) THEN
  517:             DO 80 KCOL = KBOT + 1, N, NH
  518:                KLN = MIN( NH, N-KCOL+1 )
  519:                CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
  520:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
  521:                CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
  522:      $                      LDH )
  523:    80       CONTINUE
  524:          END IF
  525: *
  526: *        ==== Update vertical slab in Z ====
  527: *
  528:          IF( WANTZ ) THEN
  529:             DO 90 KROW = ILOZ, IHIZ, NV
  530:                KLN = MIN( NV, IHIZ-KROW+1 )
  531:                CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
  532:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
  533:                CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
  534:      $                      LDZ )
  535:    90       CONTINUE
  536:          END IF
  537:       END IF
  538: *
  539: *     ==== Return the number of deflations ... ====
  540: *
  541:       ND = JW - NS
  542: *
  543: *     ==== ... and the number of shifts. (Subtracting
  544: *     .    INFQR from the spike length takes care
  545: *     .    of the case of a rare QR failure while
  546: *     .    calculating eigenvalues of the deflation
  547: *     .    window.)  ====
  548: *
  549:       NS = NS - INFQR
  550: *
  551: *      ==== Return optimal workspace. ====
  552: *
  553:       WORK( 1 ) = DBLE( LWKOPT )
  554: *
  555: *     ==== End of DLAQR3 ====
  556: *
  557:       END

CVSweb interface <joel.bertrand@systella.fr>