Annotation of rpl/lapack/lapack/dlaqr3.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
        !             2:      $                   IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
        !             3:      $                   LDT, NV, WV, LDWV, WORK, LWORK )
        !             4: *
        !             5: *  -- LAPACK auxiliary routine (version 3.2.1)                        --
        !             6: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
        !             7: *  -- April 2009                                                      --
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
        !            11:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
        !            12:       LOGICAL            WANTT, WANTZ
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
        !            16:      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
        !            17:      $                   Z( LDZ, * )
        !            18: *     ..
        !            19: *
        !            20: *     ******************************************************************
        !            21: *     Aggressive early deflation:
        !            22: *
        !            23: *     This subroutine accepts as input an upper Hessenberg matrix
        !            24: *     H and performs an orthogonal similarity transformation
        !            25: *     designed to detect and deflate fully converged eigenvalues from
        !            26: *     a trailing principal submatrix.  On output H has been over-
        !            27: *     written by a new Hessenberg matrix that is a perturbation of
        !            28: *     an orthogonal similarity transformation of H.  It is to be
        !            29: *     hoped that the final version of H has many zero subdiagonal
        !            30: *     entries.
        !            31: *
        !            32: *     ******************************************************************
        !            33: *     WANTT   (input) LOGICAL
        !            34: *          If .TRUE., then the Hessenberg matrix H is fully updated
        !            35: *          so that the quasi-triangular Schur factor may be
        !            36: *          computed (in cooperation with the calling subroutine).
        !            37: *          If .FALSE., then only enough of H is updated to preserve
        !            38: *          the eigenvalues.
        !            39: *
        !            40: *     WANTZ   (input) LOGICAL
        !            41: *          If .TRUE., then the orthogonal matrix Z is updated so
        !            42: *          so that the orthogonal Schur factor may be computed
        !            43: *          (in cooperation with the calling subroutine).
        !            44: *          If .FALSE., then Z is not referenced.
        !            45: *
        !            46: *     N       (input) INTEGER
        !            47: *          The order of the matrix H and (if WANTZ is .TRUE.) the
        !            48: *          order of the orthogonal matrix Z.
        !            49: *
        !            50: *     KTOP    (input) INTEGER
        !            51: *          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
        !            52: *          KBOT and KTOP together determine an isolated block
        !            53: *          along the diagonal of the Hessenberg matrix.
        !            54: *
        !            55: *     KBOT    (input) INTEGER
        !            56: *          It is assumed without a check that either
        !            57: *          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
        !            58: *          determine an isolated block along the diagonal of the
        !            59: *          Hessenberg matrix.
        !            60: *
        !            61: *     NW      (input) INTEGER
        !            62: *          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
        !            63: *
        !            64: *     H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)
        !            65: *          On input the initial N-by-N section of H stores the
        !            66: *          Hessenberg matrix undergoing aggressive early deflation.
        !            67: *          On output H has been transformed by an orthogonal
        !            68: *          similarity transformation, perturbed, and the returned
        !            69: *          to Hessenberg form that (it is to be hoped) has some
        !            70: *          zero subdiagonal entries.
        !            71: *
        !            72: *     LDH     (input) integer
        !            73: *          Leading dimension of H just as declared in the calling
        !            74: *          subroutine.  N .LE. LDH
        !            75: *
        !            76: *     ILOZ    (input) INTEGER
        !            77: *     IHIZ    (input) INTEGER
        !            78: *          Specify the rows of Z to which transformations must be
        !            79: *          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
        !            80: *
        !            81: *     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
        !            82: *          IF WANTZ is .TRUE., then on output, the orthogonal
        !            83: *          similarity transformation mentioned above has been
        !            84: *          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
        !            85: *          If WANTZ is .FALSE., then Z is unreferenced.
        !            86: *
        !            87: *     LDZ     (input) integer
        !            88: *          The leading dimension of Z just as declared in the
        !            89: *          calling subroutine.  1 .LE. LDZ.
        !            90: *
        !            91: *     NS      (output) integer
        !            92: *          The number of unconverged (ie approximate) eigenvalues
        !            93: *          returned in SR and SI that may be used as shifts by the
        !            94: *          calling subroutine.
        !            95: *
        !            96: *     ND      (output) integer
        !            97: *          The number of converged eigenvalues uncovered by this
        !            98: *          subroutine.
        !            99: *
        !           100: *     SR      (output) DOUBLE PRECISION array, dimension KBOT
        !           101: *     SI      (output) DOUBLE PRECISION array, dimension KBOT
        !           102: *          On output, the real and imaginary parts of approximate
        !           103: *          eigenvalues that may be used for shifts are stored in
        !           104: *          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
        !           105: *          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
        !           106: *          The real and imaginary parts of converged eigenvalues
        !           107: *          are stored in SR(KBOT-ND+1) through SR(KBOT) and
        !           108: *          SI(KBOT-ND+1) through SI(KBOT), respectively.
        !           109: *
        !           110: *     V       (workspace) DOUBLE PRECISION array, dimension (LDV,NW)
        !           111: *          An NW-by-NW work array.
        !           112: *
        !           113: *     LDV     (input) integer scalar
        !           114: *          The leading dimension of V just as declared in the
        !           115: *          calling subroutine.  NW .LE. LDV
        !           116: *
        !           117: *     NH      (input) integer scalar
        !           118: *          The number of columns of T.  NH.GE.NW.
        !           119: *
        !           120: *     T       (workspace) DOUBLE PRECISION array, dimension (LDT,NW)
        !           121: *
        !           122: *     LDT     (input) integer
        !           123: *          The leading dimension of T just as declared in the
        !           124: *          calling subroutine.  NW .LE. LDT
        !           125: *
        !           126: *     NV      (input) integer
        !           127: *          The number of rows of work array WV available for
        !           128: *          workspace.  NV.GE.NW.
        !           129: *
        !           130: *     WV      (workspace) DOUBLE PRECISION array, dimension (LDWV,NW)
        !           131: *
        !           132: *     LDWV    (input) integer
        !           133: *          The leading dimension of W just as declared in the
        !           134: *          calling subroutine.  NW .LE. LDV
        !           135: *
        !           136: *     WORK    (workspace) DOUBLE PRECISION array, dimension LWORK.
        !           137: *          On exit, WORK(1) is set to an estimate of the optimal value
        !           138: *          of LWORK for the given values of N, NW, KTOP and KBOT.
        !           139: *
        !           140: *     LWORK   (input) integer
        !           141: *          The dimension of the work array WORK.  LWORK = 2*NW
        !           142: *          suffices, but greater efficiency may result from larger
        !           143: *          values of LWORK.
        !           144: *
        !           145: *          If LWORK = -1, then a workspace query is assumed; DLAQR3
        !           146: *          only estimates the optimal workspace size for the given
        !           147: *          values of N, NW, KTOP and KBOT.  The estimate is returned
        !           148: *          in WORK(1).  No error message related to LWORK is issued
        !           149: *          by XERBLA.  Neither H nor Z are accessed.
        !           150: *
        !           151: *     ================================================================
        !           152: *     Based on contributions by
        !           153: *        Karen Braman and Ralph Byers, Department of Mathematics,
        !           154: *        University of Kansas, USA
        !           155: *
        !           156: *     ================================================================
        !           157: *     .. Parameters ..
        !           158:       DOUBLE PRECISION   ZERO, ONE
        !           159:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
        !           160: *     ..
        !           161: *     .. Local Scalars ..
        !           162:       DOUBLE PRECISION   AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
        !           163:      $                   SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
        !           164:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
        !           165:      $                   KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
        !           166:      $                   LWKOPT, NMIN
        !           167:       LOGICAL            BULGE, SORTED
        !           168: *     ..
        !           169: *     .. External Functions ..
        !           170:       DOUBLE PRECISION   DLAMCH
        !           171:       INTEGER            ILAENV
        !           172:       EXTERNAL           DLAMCH, ILAENV
        !           173: *     ..
        !           174: *     .. External Subroutines ..
        !           175:       EXTERNAL           DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR,
        !           176:      $                   DLANV2, DLAQR4, DLARF, DLARFG, DLASET, DORMHR,
        !           177:      $                   DTREXC
        !           178: *     ..
        !           179: *     .. Intrinsic Functions ..
        !           180:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, SQRT
        !           181: *     ..
        !           182: *     .. Executable Statements ..
        !           183: *
        !           184: *     ==== Estimate optimal workspace. ====
        !           185: *
        !           186:       JW = MIN( NW, KBOT-KTOP+1 )
        !           187:       IF( JW.LE.2 ) THEN
        !           188:          LWKOPT = 1
        !           189:       ELSE
        !           190: *
        !           191: *        ==== Workspace query call to DGEHRD ====
        !           192: *
        !           193:          CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
        !           194:          LWK1 = INT( WORK( 1 ) )
        !           195: *
        !           196: *        ==== Workspace query call to DORMHR ====
        !           197: *
        !           198:          CALL DORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
        !           199:      $                WORK, -1, INFO )
        !           200:          LWK2 = INT( WORK( 1 ) )
        !           201: *
        !           202: *        ==== Workspace query call to DLAQR4 ====
        !           203: *
        !           204:          CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR, SI, 1, JW,
        !           205:      $                V, LDV, WORK, -1, INFQR )
        !           206:          LWK3 = INT( WORK( 1 ) )
        !           207: *
        !           208: *        ==== Optimal workspace ====
        !           209: *
        !           210:          LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
        !           211:       END IF
        !           212: *
        !           213: *     ==== Quick return in case of workspace query. ====
        !           214: *
        !           215:       IF( LWORK.EQ.-1 ) THEN
        !           216:          WORK( 1 ) = DBLE( LWKOPT )
        !           217:          RETURN
        !           218:       END IF
        !           219: *
        !           220: *     ==== Nothing to do ...
        !           221: *     ... for an empty active block ... ====
        !           222:       NS = 0
        !           223:       ND = 0
        !           224:       WORK( 1 ) = ONE
        !           225:       IF( KTOP.GT.KBOT )
        !           226:      $   RETURN
        !           227: *     ... nor for an empty deflation window. ====
        !           228:       IF( NW.LT.1 )
        !           229:      $   RETURN
        !           230: *
        !           231: *     ==== Machine constants ====
        !           232: *
        !           233:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
        !           234:       SAFMAX = ONE / SAFMIN
        !           235:       CALL DLABAD( SAFMIN, SAFMAX )
        !           236:       ULP = DLAMCH( 'PRECISION' )
        !           237:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
        !           238: *
        !           239: *     ==== Setup deflation window ====
        !           240: *
        !           241:       JW = MIN( NW, KBOT-KTOP+1 )
        !           242:       KWTOP = KBOT - JW + 1
        !           243:       IF( KWTOP.EQ.KTOP ) THEN
        !           244:          S = ZERO
        !           245:       ELSE
        !           246:          S = H( KWTOP, KWTOP-1 )
        !           247:       END IF
        !           248: *
        !           249:       IF( KBOT.EQ.KWTOP ) THEN
        !           250: *
        !           251: *        ==== 1-by-1 deflation window: not much to do ====
        !           252: *
        !           253:          SR( KWTOP ) = H( KWTOP, KWTOP )
        !           254:          SI( KWTOP ) = ZERO
        !           255:          NS = 1
        !           256:          ND = 0
        !           257:          IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
        !           258:      $        THEN
        !           259:             NS = 0
        !           260:             ND = 1
        !           261:             IF( KWTOP.GT.KTOP )
        !           262:      $         H( KWTOP, KWTOP-1 ) = ZERO
        !           263:          END IF
        !           264:          WORK( 1 ) = ONE
        !           265:          RETURN
        !           266:       END IF
        !           267: *
        !           268: *     ==== Convert to spike-triangular form.  (In case of a
        !           269: *     .    rare QR failure, this routine continues to do
        !           270: *     .    aggressive early deflation using that part of
        !           271: *     .    the deflation window that converged using INFQR
        !           272: *     .    here and there to keep track.) ====
        !           273: *
        !           274:       CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
        !           275:       CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
        !           276: *
        !           277:       CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
        !           278:       NMIN = ILAENV( 12, 'DLAQR3', 'SV', JW, 1, JW, LWORK )
        !           279:       IF( JW.GT.NMIN ) THEN
        !           280:          CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
        !           281:      $                SI( KWTOP ), 1, JW, V, LDV, WORK, LWORK, INFQR )
        !           282:       ELSE
        !           283:          CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
        !           284:      $                SI( KWTOP ), 1, JW, V, LDV, INFQR )
        !           285:       END IF
        !           286: *
        !           287: *     ==== DTREXC needs a clean margin near the diagonal ====
        !           288: *
        !           289:       DO 10 J = 1, JW - 3
        !           290:          T( J+2, J ) = ZERO
        !           291:          T( J+3, J ) = ZERO
        !           292:    10 CONTINUE
        !           293:       IF( JW.GT.2 )
        !           294:      $   T( JW, JW-2 ) = ZERO
        !           295: *
        !           296: *     ==== Deflation detection loop ====
        !           297: *
        !           298:       NS = JW
        !           299:       ILST = INFQR + 1
        !           300:    20 CONTINUE
        !           301:       IF( ILST.LE.NS ) THEN
        !           302:          IF( NS.EQ.1 ) THEN
        !           303:             BULGE = .FALSE.
        !           304:          ELSE
        !           305:             BULGE = T( NS, NS-1 ).NE.ZERO
        !           306:          END IF
        !           307: *
        !           308: *        ==== Small spike tip test for deflation ====
        !           309: *
        !           310:          IF( .NOT.BULGE ) THEN
        !           311: *
        !           312: *           ==== Real eigenvalue ====
        !           313: *
        !           314:             FOO = ABS( T( NS, NS ) )
        !           315:             IF( FOO.EQ.ZERO )
        !           316:      $         FOO = ABS( S )
        !           317:             IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
        !           318: *
        !           319: *              ==== Deflatable ====
        !           320: *
        !           321:                NS = NS - 1
        !           322:             ELSE
        !           323: *
        !           324: *              ==== Undeflatable.   Move it up out of the way.
        !           325: *              .    (DTREXC can not fail in this case.) ====
        !           326: *
        !           327:                IFST = NS
        !           328:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
        !           329:      $                      INFO )
        !           330:                ILST = ILST + 1
        !           331:             END IF
        !           332:          ELSE
        !           333: *
        !           334: *           ==== Complex conjugate pair ====
        !           335: *
        !           336:             FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )*
        !           337:      $            SQRT( ABS( T( NS-1, NS ) ) )
        !           338:             IF( FOO.EQ.ZERO )
        !           339:      $         FOO = ABS( S )
        !           340:             IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
        !           341:      $          MAX( SMLNUM, ULP*FOO ) ) THEN
        !           342: *
        !           343: *              ==== Deflatable ====
        !           344: *
        !           345:                NS = NS - 2
        !           346:             ELSE
        !           347: *
        !           348: *              ==== Undeflatable. Move them up out of the way.
        !           349: *              .    Fortunately, DTREXC does the right thing with
        !           350: *              .    ILST in case of a rare exchange failure. ====
        !           351: *
        !           352:                IFST = NS
        !           353:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
        !           354:      $                      INFO )
        !           355:                ILST = ILST + 2
        !           356:             END IF
        !           357:          END IF
        !           358: *
        !           359: *        ==== End deflation detection loop ====
        !           360: *
        !           361:          GO TO 20
        !           362:       END IF
        !           363: *
        !           364: *        ==== Return to Hessenberg form ====
        !           365: *
        !           366:       IF( NS.EQ.0 )
        !           367:      $   S = ZERO
        !           368: *
        !           369:       IF( NS.LT.JW ) THEN
        !           370: *
        !           371: *        ==== sorting diagonal blocks of T improves accuracy for
        !           372: *        .    graded matrices.  Bubble sort deals well with
        !           373: *        .    exchange failures. ====
        !           374: *
        !           375:          SORTED = .false.
        !           376:          I = NS + 1
        !           377:    30    CONTINUE
        !           378:          IF( SORTED )
        !           379:      $      GO TO 50
        !           380:          SORTED = .true.
        !           381: *
        !           382:          KEND = I - 1
        !           383:          I = INFQR + 1
        !           384:          IF( I.EQ.NS ) THEN
        !           385:             K = I + 1
        !           386:          ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
        !           387:             K = I + 1
        !           388:          ELSE
        !           389:             K = I + 2
        !           390:          END IF
        !           391:    40    CONTINUE
        !           392:          IF( K.LE.KEND ) THEN
        !           393:             IF( K.EQ.I+1 ) THEN
        !           394:                EVI = ABS( T( I, I ) )
        !           395:             ELSE
        !           396:                EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )*
        !           397:      $               SQRT( ABS( T( I, I+1 ) ) )
        !           398:             END IF
        !           399: *
        !           400:             IF( K.EQ.KEND ) THEN
        !           401:                EVK = ABS( T( K, K ) )
        !           402:             ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
        !           403:                EVK = ABS( T( K, K ) )
        !           404:             ELSE
        !           405:                EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )*
        !           406:      $               SQRT( ABS( T( K, K+1 ) ) )
        !           407:             END IF
        !           408: *
        !           409:             IF( EVI.GE.EVK ) THEN
        !           410:                I = K
        !           411:             ELSE
        !           412:                SORTED = .false.
        !           413:                IFST = I
        !           414:                ILST = K
        !           415:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
        !           416:      $                      INFO )
        !           417:                IF( INFO.EQ.0 ) THEN
        !           418:                   I = ILST
        !           419:                ELSE
        !           420:                   I = K
        !           421:                END IF
        !           422:             END IF
        !           423:             IF( I.EQ.KEND ) THEN
        !           424:                K = I + 1
        !           425:             ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
        !           426:                K = I + 1
        !           427:             ELSE
        !           428:                K = I + 2
        !           429:             END IF
        !           430:             GO TO 40
        !           431:          END IF
        !           432:          GO TO 30
        !           433:    50    CONTINUE
        !           434:       END IF
        !           435: *
        !           436: *     ==== Restore shift/eigenvalue array from T ====
        !           437: *
        !           438:       I = JW
        !           439:    60 CONTINUE
        !           440:       IF( I.GE.INFQR+1 ) THEN
        !           441:          IF( I.EQ.INFQR+1 ) THEN
        !           442:             SR( KWTOP+I-1 ) = T( I, I )
        !           443:             SI( KWTOP+I-1 ) = ZERO
        !           444:             I = I - 1
        !           445:          ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
        !           446:             SR( KWTOP+I-1 ) = T( I, I )
        !           447:             SI( KWTOP+I-1 ) = ZERO
        !           448:             I = I - 1
        !           449:          ELSE
        !           450:             AA = T( I-1, I-1 )
        !           451:             CC = T( I, I-1 )
        !           452:             BB = T( I-1, I )
        !           453:             DD = T( I, I )
        !           454:             CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
        !           455:      $                   SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
        !           456:      $                   SI( KWTOP+I-1 ), CS, SN )
        !           457:             I = I - 2
        !           458:          END IF
        !           459:          GO TO 60
        !           460:       END IF
        !           461: *
        !           462:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
        !           463:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
        !           464: *
        !           465: *           ==== Reflect spike back into lower triangle ====
        !           466: *
        !           467:             CALL DCOPY( NS, V, LDV, WORK, 1 )
        !           468:             BETA = WORK( 1 )
        !           469:             CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
        !           470:             WORK( 1 ) = ONE
        !           471: *
        !           472:             CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
        !           473: *
        !           474:             CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
        !           475:      $                  WORK( JW+1 ) )
        !           476:             CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
        !           477:      $                  WORK( JW+1 ) )
        !           478:             CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
        !           479:      $                  WORK( JW+1 ) )
        !           480: *
        !           481:             CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
        !           482:      $                   LWORK-JW, INFO )
        !           483:          END IF
        !           484: *
        !           485: *        ==== Copy updated reduced window into place ====
        !           486: *
        !           487:          IF( KWTOP.GT.1 )
        !           488:      $      H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
        !           489:          CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
        !           490:          CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
        !           491:      $               LDH+1 )
        !           492: *
        !           493: *        ==== Accumulate orthogonal matrix in order update
        !           494: *        .    H and Z, if requested.  ====
        !           495: *
        !           496:          IF( NS.GT.1 .AND. S.NE.ZERO )
        !           497:      $      CALL DORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
        !           498:      $                   WORK( JW+1 ), LWORK-JW, INFO )
        !           499: *
        !           500: *        ==== Update vertical slab in H ====
        !           501: *
        !           502:          IF( WANTT ) THEN
        !           503:             LTOP = 1
        !           504:          ELSE
        !           505:             LTOP = KTOP
        !           506:          END IF
        !           507:          DO 70 KROW = LTOP, KWTOP - 1, NV
        !           508:             KLN = MIN( NV, KWTOP-KROW )
        !           509:             CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
        !           510:      $                  LDH, V, LDV, ZERO, WV, LDWV )
        !           511:             CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
        !           512:    70    CONTINUE
        !           513: *
        !           514: *        ==== Update horizontal slab in H ====
        !           515: *
        !           516:          IF( WANTT ) THEN
        !           517:             DO 80 KCOL = KBOT + 1, N, NH
        !           518:                KLN = MIN( NH, N-KCOL+1 )
        !           519:                CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
        !           520:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
        !           521:                CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
        !           522:      $                      LDH )
        !           523:    80       CONTINUE
        !           524:          END IF
        !           525: *
        !           526: *        ==== Update vertical slab in Z ====
        !           527: *
        !           528:          IF( WANTZ ) THEN
        !           529:             DO 90 KROW = ILOZ, IHIZ, NV
        !           530:                KLN = MIN( NV, IHIZ-KROW+1 )
        !           531:                CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
        !           532:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
        !           533:                CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
        !           534:      $                      LDZ )
        !           535:    90       CONTINUE
        !           536:          END IF
        !           537:       END IF
        !           538: *
        !           539: *     ==== Return the number of deflations ... ====
        !           540: *
        !           541:       ND = JW - NS
        !           542: *
        !           543: *     ==== ... and the number of shifts. (Subtracting
        !           544: *     .    INFQR from the spike length takes care
        !           545: *     .    of the case of a rare QR failure while
        !           546: *     .    calculating eigenvalues of the deflation
        !           547: *     .    window.)  ====
        !           548: *
        !           549:       NS = NS - INFQR
        !           550: *
        !           551: *      ==== Return optimal workspace. ====
        !           552: *
        !           553:       WORK( 1 ) = DBLE( LWKOPT )
        !           554: *
        !           555: *     ==== End of DLAQR3 ====
        !           556: *
        !           557:       END

CVSweb interface <joel.bertrand@systella.fr>