File:  [local] / rpl / lapack / lapack / dlalsd.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:54 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLALSD uses the singular value decomposition of A to solve the least squares problem.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLALSD + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsd.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsd.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsd.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
   22: *                          RANK, WORK, IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
   27: *       DOUBLE PRECISION   RCOND
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IWORK( * )
   31: *       DOUBLE PRECISION   B( LDB, * ), D( * ), E( * ), WORK( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DLALSD uses the singular value decomposition of A to solve the least
   41: *> squares problem of finding X to minimize the Euclidean norm of each
   42: *> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
   43: *> are N-by-NRHS. The solution X overwrites B.
   44: *>
   45: *> The singular values of A smaller than RCOND times the largest
   46: *> singular value are treated as zero in solving the least squares
   47: *> problem; in this case a minimum norm solution is returned.
   48: *> The actual singular values are returned in D in ascending order.
   49: *>
   50: *> This code makes very mild assumptions about floating point
   51: *> arithmetic. It will work on machines with a guard digit in
   52: *> add/subtract, or on those binary machines without guard digits
   53: *> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
   54: *> It could conceivably fail on hexadecimal or decimal machines
   55: *> without guard digits, but we know of none.
   56: *> \endverbatim
   57: *
   58: *  Arguments:
   59: *  ==========
   60: *
   61: *> \param[in] UPLO
   62: *> \verbatim
   63: *>          UPLO is CHARACTER*1
   64: *>         = 'U': D and E define an upper bidiagonal matrix.
   65: *>         = 'L': D and E define a  lower bidiagonal matrix.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] SMLSIZ
   69: *> \verbatim
   70: *>          SMLSIZ is INTEGER
   71: *>         The maximum size of the subproblems at the bottom of the
   72: *>         computation tree.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] N
   76: *> \verbatim
   77: *>          N is INTEGER
   78: *>         The dimension of the  bidiagonal matrix.  N >= 0.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] NRHS
   82: *> \verbatim
   83: *>          NRHS is INTEGER
   84: *>         The number of columns of B. NRHS must be at least 1.
   85: *> \endverbatim
   86: *>
   87: *> \param[in,out] D
   88: *> \verbatim
   89: *>          D is DOUBLE PRECISION array, dimension (N)
   90: *>         On entry D contains the main diagonal of the bidiagonal
   91: *>         matrix. On exit, if INFO = 0, D contains its singular values.
   92: *> \endverbatim
   93: *>
   94: *> \param[in,out] E
   95: *> \verbatim
   96: *>          E is DOUBLE PRECISION array, dimension (N-1)
   97: *>         Contains the super-diagonal entries of the bidiagonal matrix.
   98: *>         On exit, E has been destroyed.
   99: *> \endverbatim
  100: *>
  101: *> \param[in,out] B
  102: *> \verbatim
  103: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  104: *>         On input, B contains the right hand sides of the least
  105: *>         squares problem. On output, B contains the solution X.
  106: *> \endverbatim
  107: *>
  108: *> \param[in] LDB
  109: *> \verbatim
  110: *>          LDB is INTEGER
  111: *>         The leading dimension of B in the calling subprogram.
  112: *>         LDB must be at least max(1,N).
  113: *> \endverbatim
  114: *>
  115: *> \param[in] RCOND
  116: *> \verbatim
  117: *>          RCOND is DOUBLE PRECISION
  118: *>         The singular values of A less than or equal to RCOND times
  119: *>         the largest singular value are treated as zero in solving
  120: *>         the least squares problem. If RCOND is negative,
  121: *>         machine precision is used instead.
  122: *>         For example, if diag(S)*X=B were the least squares problem,
  123: *>         where diag(S) is a diagonal matrix of singular values, the
  124: *>         solution would be X(i) = B(i) / S(i) if S(i) is greater than
  125: *>         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
  126: *>         RCOND*max(S).
  127: *> \endverbatim
  128: *>
  129: *> \param[out] RANK
  130: *> \verbatim
  131: *>          RANK is INTEGER
  132: *>         The number of singular values of A greater than RCOND times
  133: *>         the largest singular value.
  134: *> \endverbatim
  135: *>
  136: *> \param[out] WORK
  137: *> \verbatim
  138: *>          WORK is DOUBLE PRECISION array, dimension at least
  139: *>         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
  140: *>         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
  141: *> \endverbatim
  142: *>
  143: *> \param[out] IWORK
  144: *> \verbatim
  145: *>          IWORK is INTEGER array, dimension at least
  146: *>         (3*N*NLVL + 11*N)
  147: *> \endverbatim
  148: *>
  149: *> \param[out] INFO
  150: *> \verbatim
  151: *>          INFO is INTEGER
  152: *>         = 0:  successful exit.
  153: *>         < 0:  if INFO = -i, the i-th argument had an illegal value.
  154: *>         > 0:  The algorithm failed to compute a singular value while
  155: *>               working on the submatrix lying in rows and columns
  156: *>               INFO/(N+1) through MOD(INFO,N+1).
  157: *> \endverbatim
  158: *
  159: *  Authors:
  160: *  ========
  161: *
  162: *> \author Univ. of Tennessee
  163: *> \author Univ. of California Berkeley
  164: *> \author Univ. of Colorado Denver
  165: *> \author NAG Ltd.
  166: *
  167: *> \ingroup doubleOTHERcomputational
  168: *
  169: *> \par Contributors:
  170: *  ==================
  171: *>
  172: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
  173: *>       California at Berkeley, USA \n
  174: *>     Osni Marques, LBNL/NERSC, USA \n
  175: *
  176: *  =====================================================================
  177:       SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
  178:      $                   RANK, WORK, IWORK, INFO )
  179: *
  180: *  -- LAPACK computational routine --
  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  183: *
  184: *     .. Scalar Arguments ..
  185:       CHARACTER          UPLO
  186:       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
  187:       DOUBLE PRECISION   RCOND
  188: *     ..
  189: *     .. Array Arguments ..
  190:       INTEGER            IWORK( * )
  191:       DOUBLE PRECISION   B( LDB, * ), D( * ), E( * ), WORK( * )
  192: *     ..
  193: *
  194: *  =====================================================================
  195: *
  196: *     .. Parameters ..
  197:       DOUBLE PRECISION   ZERO, ONE, TWO
  198:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
  199: *     ..
  200: *     .. Local Scalars ..
  201:       INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
  202:      $                   GIVPTR, I, ICMPQ1, ICMPQ2, IWK, J, K, NLVL,
  203:      $                   NM1, NSIZE, NSUB, NWORK, PERM, POLES, S, SIZEI,
  204:      $                   SMLSZP, SQRE, ST, ST1, U, VT, Z
  205:       DOUBLE PRECISION   CS, EPS, ORGNRM, R, RCND, SN, TOL
  206: *     ..
  207: *     .. External Functions ..
  208:       INTEGER            IDAMAX
  209:       DOUBLE PRECISION   DLAMCH, DLANST
  210:       EXTERNAL           IDAMAX, DLAMCH, DLANST
  211: *     ..
  212: *     .. External Subroutines ..
  213:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLALSA, DLARTG, DLASCL,
  214:      $                   DLASDA, DLASDQ, DLASET, DLASRT, DROT, XERBLA
  215: *     ..
  216: *     .. Intrinsic Functions ..
  217:       INTRINSIC          ABS, DBLE, INT, LOG, SIGN
  218: *     ..
  219: *     .. Executable Statements ..
  220: *
  221: *     Test the input parameters.
  222: *
  223:       INFO = 0
  224: *
  225:       IF( N.LT.0 ) THEN
  226:          INFO = -3
  227:       ELSE IF( NRHS.LT.1 ) THEN
  228:          INFO = -4
  229:       ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
  230:          INFO = -8
  231:       END IF
  232:       IF( INFO.NE.0 ) THEN
  233:          CALL XERBLA( 'DLALSD', -INFO )
  234:          RETURN
  235:       END IF
  236: *
  237:       EPS = DLAMCH( 'Epsilon' )
  238: *
  239: *     Set up the tolerance.
  240: *
  241:       IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
  242:          RCND = EPS
  243:       ELSE
  244:          RCND = RCOND
  245:       END IF
  246: *
  247:       RANK = 0
  248: *
  249: *     Quick return if possible.
  250: *
  251:       IF( N.EQ.0 ) THEN
  252:          RETURN
  253:       ELSE IF( N.EQ.1 ) THEN
  254:          IF( D( 1 ).EQ.ZERO ) THEN
  255:             CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B, LDB )
  256:          ELSE
  257:             RANK = 1
  258:             CALL DLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
  259:             D( 1 ) = ABS( D( 1 ) )
  260:          END IF
  261:          RETURN
  262:       END IF
  263: *
  264: *     Rotate the matrix if it is lower bidiagonal.
  265: *
  266:       IF( UPLO.EQ.'L' ) THEN
  267:          DO 10 I = 1, N - 1
  268:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  269:             D( I ) = R
  270:             E( I ) = SN*D( I+1 )
  271:             D( I+1 ) = CS*D( I+1 )
  272:             IF( NRHS.EQ.1 ) THEN
  273:                CALL DROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
  274:             ELSE
  275:                WORK( I*2-1 ) = CS
  276:                WORK( I*2 ) = SN
  277:             END IF
  278:    10    CONTINUE
  279:          IF( NRHS.GT.1 ) THEN
  280:             DO 30 I = 1, NRHS
  281:                DO 20 J = 1, N - 1
  282:                   CS = WORK( J*2-1 )
  283:                   SN = WORK( J*2 )
  284:                   CALL DROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
  285:    20          CONTINUE
  286:    30       CONTINUE
  287:          END IF
  288:       END IF
  289: *
  290: *     Scale.
  291: *
  292:       NM1 = N - 1
  293:       ORGNRM = DLANST( 'M', N, D, E )
  294:       IF( ORGNRM.EQ.ZERO ) THEN
  295:          CALL DLASET( 'A', N, NRHS, ZERO, ZERO, B, LDB )
  296:          RETURN
  297:       END IF
  298: *
  299:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
  300:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
  301: *
  302: *     If N is smaller than the minimum divide size SMLSIZ, then solve
  303: *     the problem with another solver.
  304: *
  305:       IF( N.LE.SMLSIZ ) THEN
  306:          NWORK = 1 + N*N
  307:          CALL DLASET( 'A', N, N, ZERO, ONE, WORK, N )
  308:          CALL DLASDQ( 'U', 0, N, N, 0, NRHS, D, E, WORK, N, WORK, N, B,
  309:      $                LDB, WORK( NWORK ), INFO )
  310:          IF( INFO.NE.0 ) THEN
  311:             RETURN
  312:          END IF
  313:          TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
  314:          DO 40 I = 1, N
  315:             IF( D( I ).LE.TOL ) THEN
  316:                CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
  317:             ELSE
  318:                CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
  319:      $                      LDB, INFO )
  320:                RANK = RANK + 1
  321:             END IF
  322:    40    CONTINUE
  323:          CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
  324:      $               WORK( NWORK ), N )
  325:          CALL DLACPY( 'A', N, NRHS, WORK( NWORK ), N, B, LDB )
  326: *
  327: *        Unscale.
  328: *
  329:          CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  330:          CALL DLASRT( 'D', N, D, INFO )
  331:          CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
  332: *
  333:          RETURN
  334:       END IF
  335: *
  336: *     Book-keeping and setting up some constants.
  337: *
  338:       NLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
  339: *
  340:       SMLSZP = SMLSIZ + 1
  341: *
  342:       U = 1
  343:       VT = 1 + SMLSIZ*N
  344:       DIFL = VT + SMLSZP*N
  345:       DIFR = DIFL + NLVL*N
  346:       Z = DIFR + NLVL*N*2
  347:       C = Z + NLVL*N
  348:       S = C + N
  349:       POLES = S + N
  350:       GIVNUM = POLES + 2*NLVL*N
  351:       BX = GIVNUM + 2*NLVL*N
  352:       NWORK = BX + N*NRHS
  353: *
  354:       SIZEI = 1 + N
  355:       K = SIZEI + N
  356:       GIVPTR = K + N
  357:       PERM = GIVPTR + N
  358:       GIVCOL = PERM + NLVL*N
  359:       IWK = GIVCOL + NLVL*N*2
  360: *
  361:       ST = 1
  362:       SQRE = 0
  363:       ICMPQ1 = 1
  364:       ICMPQ2 = 0
  365:       NSUB = 0
  366: *
  367:       DO 50 I = 1, N
  368:          IF( ABS( D( I ) ).LT.EPS ) THEN
  369:             D( I ) = SIGN( EPS, D( I ) )
  370:          END IF
  371:    50 CONTINUE
  372: *
  373:       DO 60 I = 1, NM1
  374:          IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
  375:             NSUB = NSUB + 1
  376:             IWORK( NSUB ) = ST
  377: *
  378: *           Subproblem found. First determine its size and then
  379: *           apply divide and conquer on it.
  380: *
  381:             IF( I.LT.NM1 ) THEN
  382: *
  383: *              A subproblem with E(I) small for I < NM1.
  384: *
  385:                NSIZE = I - ST + 1
  386:                IWORK( SIZEI+NSUB-1 ) = NSIZE
  387:             ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
  388: *
  389: *              A subproblem with E(NM1) not too small but I = NM1.
  390: *
  391:                NSIZE = N - ST + 1
  392:                IWORK( SIZEI+NSUB-1 ) = NSIZE
  393:             ELSE
  394: *
  395: *              A subproblem with E(NM1) small. This implies an
  396: *              1-by-1 subproblem at D(N), which is not solved
  397: *              explicitly.
  398: *
  399:                NSIZE = I - ST + 1
  400:                IWORK( SIZEI+NSUB-1 ) = NSIZE
  401:                NSUB = NSUB + 1
  402:                IWORK( NSUB ) = N
  403:                IWORK( SIZEI+NSUB-1 ) = 1
  404:                CALL DCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
  405:             END IF
  406:             ST1 = ST - 1
  407:             IF( NSIZE.EQ.1 ) THEN
  408: *
  409: *              This is a 1-by-1 subproblem and is not solved
  410: *              explicitly.
  411: *
  412:                CALL DCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
  413:             ELSE IF( NSIZE.LE.SMLSIZ ) THEN
  414: *
  415: *              This is a small subproblem and is solved by DLASDQ.
  416: *
  417:                CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
  418:      $                      WORK( VT+ST1 ), N )
  419:                CALL DLASDQ( 'U', 0, NSIZE, NSIZE, 0, NRHS, D( ST ),
  420:      $                      E( ST ), WORK( VT+ST1 ), N, WORK( NWORK ),
  421:      $                      N, B( ST, 1 ), LDB, WORK( NWORK ), INFO )
  422:                IF( INFO.NE.0 ) THEN
  423:                   RETURN
  424:                END IF
  425:                CALL DLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
  426:      $                      WORK( BX+ST1 ), N )
  427:             ELSE
  428: *
  429: *              A large problem. Solve it using divide and conquer.
  430: *
  431:                CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
  432:      $                      E( ST ), WORK( U+ST1 ), N, WORK( VT+ST1 ),
  433:      $                      IWORK( K+ST1 ), WORK( DIFL+ST1 ),
  434:      $                      WORK( DIFR+ST1 ), WORK( Z+ST1 ),
  435:      $                      WORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
  436:      $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
  437:      $                      WORK( GIVNUM+ST1 ), WORK( C+ST1 ),
  438:      $                      WORK( S+ST1 ), WORK( NWORK ), IWORK( IWK ),
  439:      $                      INFO )
  440:                IF( INFO.NE.0 ) THEN
  441:                   RETURN
  442:                END IF
  443:                BXST = BX + ST1
  444:                CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
  445:      $                      LDB, WORK( BXST ), N, WORK( U+ST1 ), N,
  446:      $                      WORK( VT+ST1 ), IWORK( K+ST1 ),
  447:      $                      WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
  448:      $                      WORK( Z+ST1 ), WORK( POLES+ST1 ),
  449:      $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
  450:      $                      IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
  451:      $                      WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
  452:      $                      IWORK( IWK ), INFO )
  453:                IF( INFO.NE.0 ) THEN
  454:                   RETURN
  455:                END IF
  456:             END IF
  457:             ST = I + 1
  458:          END IF
  459:    60 CONTINUE
  460: *
  461: *     Apply the singular values and treat the tiny ones as zero.
  462: *
  463:       TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
  464: *
  465:       DO 70 I = 1, N
  466: *
  467: *        Some of the elements in D can be negative because 1-by-1
  468: *        subproblems were not solved explicitly.
  469: *
  470:          IF( ABS( D( I ) ).LE.TOL ) THEN
  471:             CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, WORK( BX+I-1 ), N )
  472:          ELSE
  473:             RANK = RANK + 1
  474:             CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
  475:      $                   WORK( BX+I-1 ), N, INFO )
  476:          END IF
  477:          D( I ) = ABS( D( I ) )
  478:    70 CONTINUE
  479: *
  480: *     Now apply back the right singular vectors.
  481: *
  482:       ICMPQ2 = 1
  483:       DO 80 I = 1, NSUB
  484:          ST = IWORK( I )
  485:          ST1 = ST - 1
  486:          NSIZE = IWORK( SIZEI+I-1 )
  487:          BXST = BX + ST1
  488:          IF( NSIZE.EQ.1 ) THEN
  489:             CALL DCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
  490:          ELSE IF( NSIZE.LE.SMLSIZ ) THEN
  491:             CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  492:      $                  WORK( VT+ST1 ), N, WORK( BXST ), N, ZERO,
  493:      $                  B( ST, 1 ), LDB )
  494:          ELSE
  495:             CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
  496:      $                   B( ST, 1 ), LDB, WORK( U+ST1 ), N,
  497:      $                   WORK( VT+ST1 ), IWORK( K+ST1 ),
  498:      $                   WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
  499:      $                   WORK( Z+ST1 ), WORK( POLES+ST1 ),
  500:      $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
  501:      $                   IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
  502:      $                   WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
  503:      $                   IWORK( IWK ), INFO )
  504:             IF( INFO.NE.0 ) THEN
  505:                RETURN
  506:             END IF
  507:          END IF
  508:    80 CONTINUE
  509: *
  510: *     Unscale and sort the singular values.
  511: *
  512:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  513:       CALL DLASRT( 'D', N, D, INFO )
  514:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
  515: *
  516:       RETURN
  517: *
  518: *     End of DLALSD
  519: *
  520:       END

CVSweb interface <joel.bertrand@systella.fr>