Annotation of rpl/lapack/lapack/dlalsd.f, revision 1.19

1.12      bertrand    1: *> \brief \b DLALSD uses the singular value decomposition of A to solve the least squares problem.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DLALSD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsd.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
                     22: *                          RANK, WORK, IWORK, INFO )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
                     27: *       DOUBLE PRECISION   RCOND
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       INTEGER            IWORK( * )
                     31: *       DOUBLE PRECISION   B( LDB, * ), D( * ), E( * ), WORK( * )
                     32: *       ..
1.16      bertrand   33: *
1.9       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> DLALSD uses the singular value decomposition of A to solve the least
                     41: *> squares problem of finding X to minimize the Euclidean norm of each
                     42: *> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
                     43: *> are N-by-NRHS. The solution X overwrites B.
                     44: *>
                     45: *> The singular values of A smaller than RCOND times the largest
                     46: *> singular value are treated as zero in solving the least squares
                     47: *> problem; in this case a minimum norm solution is returned.
                     48: *> The actual singular values are returned in D in ascending order.
                     49: *>
                     50: *> This code makes very mild assumptions about floating point
                     51: *> arithmetic. It will work on machines with a guard digit in
                     52: *> add/subtract, or on those binary machines without guard digits
                     53: *> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
                     54: *> It could conceivably fail on hexadecimal or decimal machines
                     55: *> without guard digits, but we know of none.
                     56: *> \endverbatim
                     57: *
                     58: *  Arguments:
                     59: *  ==========
                     60: *
                     61: *> \param[in] UPLO
                     62: *> \verbatim
                     63: *>          UPLO is CHARACTER*1
                     64: *>         = 'U': D and E define an upper bidiagonal matrix.
                     65: *>         = 'L': D and E define a  lower bidiagonal matrix.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] SMLSIZ
                     69: *> \verbatim
                     70: *>          SMLSIZ is INTEGER
                     71: *>         The maximum size of the subproblems at the bottom of the
                     72: *>         computation tree.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] N
                     76: *> \verbatim
                     77: *>          N is INTEGER
                     78: *>         The dimension of the  bidiagonal matrix.  N >= 0.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] NRHS
                     82: *> \verbatim
                     83: *>          NRHS is INTEGER
                     84: *>         The number of columns of B. NRHS must be at least 1.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in,out] D
                     88: *> \verbatim
                     89: *>          D is DOUBLE PRECISION array, dimension (N)
                     90: *>         On entry D contains the main diagonal of the bidiagonal
                     91: *>         matrix. On exit, if INFO = 0, D contains its singular values.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in,out] E
                     95: *> \verbatim
                     96: *>          E is DOUBLE PRECISION array, dimension (N-1)
                     97: *>         Contains the super-diagonal entries of the bidiagonal matrix.
                     98: *>         On exit, E has been destroyed.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in,out] B
                    102: *> \verbatim
                    103: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    104: *>         On input, B contains the right hand sides of the least
                    105: *>         squares problem. On output, B contains the solution X.
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] LDB
                    109: *> \verbatim
                    110: *>          LDB is INTEGER
                    111: *>         The leading dimension of B in the calling subprogram.
                    112: *>         LDB must be at least max(1,N).
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] RCOND
                    116: *> \verbatim
                    117: *>          RCOND is DOUBLE PRECISION
                    118: *>         The singular values of A less than or equal to RCOND times
                    119: *>         the largest singular value are treated as zero in solving
                    120: *>         the least squares problem. If RCOND is negative,
                    121: *>         machine precision is used instead.
                    122: *>         For example, if diag(S)*X=B were the least squares problem,
                    123: *>         where diag(S) is a diagonal matrix of singular values, the
                    124: *>         solution would be X(i) = B(i) / S(i) if S(i) is greater than
                    125: *>         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
                    126: *>         RCOND*max(S).
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[out] RANK
                    130: *> \verbatim
                    131: *>          RANK is INTEGER
                    132: *>         The number of singular values of A greater than RCOND times
                    133: *>         the largest singular value.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[out] WORK
                    137: *> \verbatim
                    138: *>          WORK is DOUBLE PRECISION array, dimension at least
                    139: *>         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
                    140: *>         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[out] IWORK
                    144: *> \verbatim
                    145: *>          IWORK is INTEGER array, dimension at least
                    146: *>         (3*N*NLVL + 11*N)
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[out] INFO
                    150: *> \verbatim
                    151: *>          INFO is INTEGER
                    152: *>         = 0:  successful exit.
                    153: *>         < 0:  if INFO = -i, the i-th argument had an illegal value.
                    154: *>         > 0:  The algorithm failed to compute a singular value while
                    155: *>               working on the submatrix lying in rows and columns
                    156: *>               INFO/(N+1) through MOD(INFO,N+1).
                    157: *> \endverbatim
                    158: *
                    159: *  Authors:
                    160: *  ========
                    161: *
1.16      bertrand  162: *> \author Univ. of Tennessee
                    163: *> \author Univ. of California Berkeley
                    164: *> \author Univ. of Colorado Denver
                    165: *> \author NAG Ltd.
1.9       bertrand  166: *
                    167: *> \ingroup doubleOTHERcomputational
                    168: *
                    169: *> \par Contributors:
                    170: *  ==================
                    171: *>
                    172: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
                    173: *>       California at Berkeley, USA \n
                    174: *>     Osni Marques, LBNL/NERSC, USA \n
                    175: *
                    176: *  =====================================================================
1.1       bertrand  177:       SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
                    178:      $                   RANK, WORK, IWORK, INFO )
                    179: *
1.19    ! bertrand  180: *  -- LAPACK computational routine --
1.1       bertrand  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    183: *
                    184: *     .. Scalar Arguments ..
                    185:       CHARACTER          UPLO
                    186:       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
                    187:       DOUBLE PRECISION   RCOND
                    188: *     ..
                    189: *     .. Array Arguments ..
                    190:       INTEGER            IWORK( * )
                    191:       DOUBLE PRECISION   B( LDB, * ), D( * ), E( * ), WORK( * )
                    192: *     ..
                    193: *
                    194: *  =====================================================================
                    195: *
                    196: *     .. Parameters ..
                    197:       DOUBLE PRECISION   ZERO, ONE, TWO
                    198:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
                    199: *     ..
                    200: *     .. Local Scalars ..
                    201:       INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
                    202:      $                   GIVPTR, I, ICMPQ1, ICMPQ2, IWK, J, K, NLVL,
                    203:      $                   NM1, NSIZE, NSUB, NWORK, PERM, POLES, S, SIZEI,
                    204:      $                   SMLSZP, SQRE, ST, ST1, U, VT, Z
                    205:       DOUBLE PRECISION   CS, EPS, ORGNRM, R, RCND, SN, TOL
                    206: *     ..
                    207: *     .. External Functions ..
                    208:       INTEGER            IDAMAX
                    209:       DOUBLE PRECISION   DLAMCH, DLANST
                    210:       EXTERNAL           IDAMAX, DLAMCH, DLANST
                    211: *     ..
                    212: *     .. External Subroutines ..
                    213:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLALSA, DLARTG, DLASCL,
                    214:      $                   DLASDA, DLASDQ, DLASET, DLASRT, DROT, XERBLA
                    215: *     ..
                    216: *     .. Intrinsic Functions ..
                    217:       INTRINSIC          ABS, DBLE, INT, LOG, SIGN
                    218: *     ..
                    219: *     .. Executable Statements ..
                    220: *
                    221: *     Test the input parameters.
                    222: *
                    223:       INFO = 0
                    224: *
                    225:       IF( N.LT.0 ) THEN
                    226:          INFO = -3
                    227:       ELSE IF( NRHS.LT.1 ) THEN
                    228:          INFO = -4
                    229:       ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
                    230:          INFO = -8
                    231:       END IF
                    232:       IF( INFO.NE.0 ) THEN
                    233:          CALL XERBLA( 'DLALSD', -INFO )
                    234:          RETURN
                    235:       END IF
                    236: *
                    237:       EPS = DLAMCH( 'Epsilon' )
                    238: *
                    239: *     Set up the tolerance.
                    240: *
                    241:       IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
                    242:          RCND = EPS
                    243:       ELSE
                    244:          RCND = RCOND
                    245:       END IF
                    246: *
                    247:       RANK = 0
                    248: *
                    249: *     Quick return if possible.
                    250: *
                    251:       IF( N.EQ.0 ) THEN
                    252:          RETURN
                    253:       ELSE IF( N.EQ.1 ) THEN
                    254:          IF( D( 1 ).EQ.ZERO ) THEN
                    255:             CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B, LDB )
                    256:          ELSE
                    257:             RANK = 1
                    258:             CALL DLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
                    259:             D( 1 ) = ABS( D( 1 ) )
                    260:          END IF
                    261:          RETURN
                    262:       END IF
                    263: *
                    264: *     Rotate the matrix if it is lower bidiagonal.
                    265: *
                    266:       IF( UPLO.EQ.'L' ) THEN
                    267:          DO 10 I = 1, N - 1
                    268:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
                    269:             D( I ) = R
                    270:             E( I ) = SN*D( I+1 )
                    271:             D( I+1 ) = CS*D( I+1 )
                    272:             IF( NRHS.EQ.1 ) THEN
                    273:                CALL DROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
                    274:             ELSE
                    275:                WORK( I*2-1 ) = CS
                    276:                WORK( I*2 ) = SN
                    277:             END IF
                    278:    10    CONTINUE
                    279:          IF( NRHS.GT.1 ) THEN
                    280:             DO 30 I = 1, NRHS
                    281:                DO 20 J = 1, N - 1
                    282:                   CS = WORK( J*2-1 )
                    283:                   SN = WORK( J*2 )
                    284:                   CALL DROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
                    285:    20          CONTINUE
                    286:    30       CONTINUE
                    287:          END IF
                    288:       END IF
                    289: *
                    290: *     Scale.
                    291: *
                    292:       NM1 = N - 1
                    293:       ORGNRM = DLANST( 'M', N, D, E )
                    294:       IF( ORGNRM.EQ.ZERO ) THEN
                    295:          CALL DLASET( 'A', N, NRHS, ZERO, ZERO, B, LDB )
                    296:          RETURN
                    297:       END IF
                    298: *
                    299:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
                    300:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
                    301: *
                    302: *     If N is smaller than the minimum divide size SMLSIZ, then solve
                    303: *     the problem with another solver.
                    304: *
                    305:       IF( N.LE.SMLSIZ ) THEN
                    306:          NWORK = 1 + N*N
                    307:          CALL DLASET( 'A', N, N, ZERO, ONE, WORK, N )
                    308:          CALL DLASDQ( 'U', 0, N, N, 0, NRHS, D, E, WORK, N, WORK, N, B,
                    309:      $                LDB, WORK( NWORK ), INFO )
                    310:          IF( INFO.NE.0 ) THEN
                    311:             RETURN
                    312:          END IF
                    313:          TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
                    314:          DO 40 I = 1, N
                    315:             IF( D( I ).LE.TOL ) THEN
                    316:                CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
                    317:             ELSE
                    318:                CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
                    319:      $                      LDB, INFO )
                    320:                RANK = RANK + 1
                    321:             END IF
                    322:    40    CONTINUE
                    323:          CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
                    324:      $               WORK( NWORK ), N )
                    325:          CALL DLACPY( 'A', N, NRHS, WORK( NWORK ), N, B, LDB )
                    326: *
                    327: *        Unscale.
                    328: *
                    329:          CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
                    330:          CALL DLASRT( 'D', N, D, INFO )
                    331:          CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
                    332: *
                    333:          RETURN
                    334:       END IF
                    335: *
                    336: *     Book-keeping and setting up some constants.
                    337: *
                    338:       NLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
                    339: *
                    340:       SMLSZP = SMLSIZ + 1
                    341: *
                    342:       U = 1
                    343:       VT = 1 + SMLSIZ*N
                    344:       DIFL = VT + SMLSZP*N
                    345:       DIFR = DIFL + NLVL*N
                    346:       Z = DIFR + NLVL*N*2
                    347:       C = Z + NLVL*N
                    348:       S = C + N
                    349:       POLES = S + N
                    350:       GIVNUM = POLES + 2*NLVL*N
                    351:       BX = GIVNUM + 2*NLVL*N
                    352:       NWORK = BX + N*NRHS
                    353: *
                    354:       SIZEI = 1 + N
                    355:       K = SIZEI + N
                    356:       GIVPTR = K + N
                    357:       PERM = GIVPTR + N
                    358:       GIVCOL = PERM + NLVL*N
                    359:       IWK = GIVCOL + NLVL*N*2
                    360: *
                    361:       ST = 1
                    362:       SQRE = 0
                    363:       ICMPQ1 = 1
                    364:       ICMPQ2 = 0
                    365:       NSUB = 0
                    366: *
                    367:       DO 50 I = 1, N
                    368:          IF( ABS( D( I ) ).LT.EPS ) THEN
                    369:             D( I ) = SIGN( EPS, D( I ) )
                    370:          END IF
                    371:    50 CONTINUE
                    372: *
                    373:       DO 60 I = 1, NM1
                    374:          IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
                    375:             NSUB = NSUB + 1
                    376:             IWORK( NSUB ) = ST
                    377: *
                    378: *           Subproblem found. First determine its size and then
                    379: *           apply divide and conquer on it.
                    380: *
                    381:             IF( I.LT.NM1 ) THEN
                    382: *
                    383: *              A subproblem with E(I) small for I < NM1.
                    384: *
                    385:                NSIZE = I - ST + 1
                    386:                IWORK( SIZEI+NSUB-1 ) = NSIZE
                    387:             ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
                    388: *
                    389: *              A subproblem with E(NM1) not too small but I = NM1.
                    390: *
                    391:                NSIZE = N - ST + 1
                    392:                IWORK( SIZEI+NSUB-1 ) = NSIZE
                    393:             ELSE
                    394: *
                    395: *              A subproblem with E(NM1) small. This implies an
                    396: *              1-by-1 subproblem at D(N), which is not solved
                    397: *              explicitly.
                    398: *
                    399:                NSIZE = I - ST + 1
                    400:                IWORK( SIZEI+NSUB-1 ) = NSIZE
                    401:                NSUB = NSUB + 1
                    402:                IWORK( NSUB ) = N
                    403:                IWORK( SIZEI+NSUB-1 ) = 1
                    404:                CALL DCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
                    405:             END IF
                    406:             ST1 = ST - 1
                    407:             IF( NSIZE.EQ.1 ) THEN
                    408: *
                    409: *              This is a 1-by-1 subproblem and is not solved
                    410: *              explicitly.
                    411: *
                    412:                CALL DCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
                    413:             ELSE IF( NSIZE.LE.SMLSIZ ) THEN
                    414: *
                    415: *              This is a small subproblem and is solved by DLASDQ.
                    416: *
                    417:                CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
                    418:      $                      WORK( VT+ST1 ), N )
                    419:                CALL DLASDQ( 'U', 0, NSIZE, NSIZE, 0, NRHS, D( ST ),
                    420:      $                      E( ST ), WORK( VT+ST1 ), N, WORK( NWORK ),
                    421:      $                      N, B( ST, 1 ), LDB, WORK( NWORK ), INFO )
                    422:                IF( INFO.NE.0 ) THEN
                    423:                   RETURN
                    424:                END IF
                    425:                CALL DLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
                    426:      $                      WORK( BX+ST1 ), N )
                    427:             ELSE
                    428: *
                    429: *              A large problem. Solve it using divide and conquer.
                    430: *
                    431:                CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
                    432:      $                      E( ST ), WORK( U+ST1 ), N, WORK( VT+ST1 ),
                    433:      $                      IWORK( K+ST1 ), WORK( DIFL+ST1 ),
                    434:      $                      WORK( DIFR+ST1 ), WORK( Z+ST1 ),
                    435:      $                      WORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
                    436:      $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
                    437:      $                      WORK( GIVNUM+ST1 ), WORK( C+ST1 ),
                    438:      $                      WORK( S+ST1 ), WORK( NWORK ), IWORK( IWK ),
                    439:      $                      INFO )
                    440:                IF( INFO.NE.0 ) THEN
                    441:                   RETURN
                    442:                END IF
                    443:                BXST = BX + ST1
                    444:                CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
                    445:      $                      LDB, WORK( BXST ), N, WORK( U+ST1 ), N,
                    446:      $                      WORK( VT+ST1 ), IWORK( K+ST1 ),
                    447:      $                      WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
                    448:      $                      WORK( Z+ST1 ), WORK( POLES+ST1 ),
                    449:      $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
                    450:      $                      IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
                    451:      $                      WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
                    452:      $                      IWORK( IWK ), INFO )
                    453:                IF( INFO.NE.0 ) THEN
                    454:                   RETURN
                    455:                END IF
                    456:             END IF
                    457:             ST = I + 1
                    458:          END IF
                    459:    60 CONTINUE
                    460: *
                    461: *     Apply the singular values and treat the tiny ones as zero.
                    462: *
                    463:       TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
                    464: *
                    465:       DO 70 I = 1, N
                    466: *
                    467: *        Some of the elements in D can be negative because 1-by-1
                    468: *        subproblems were not solved explicitly.
                    469: *
                    470:          IF( ABS( D( I ) ).LE.TOL ) THEN
                    471:             CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, WORK( BX+I-1 ), N )
                    472:          ELSE
                    473:             RANK = RANK + 1
                    474:             CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
                    475:      $                   WORK( BX+I-1 ), N, INFO )
                    476:          END IF
                    477:          D( I ) = ABS( D( I ) )
                    478:    70 CONTINUE
                    479: *
                    480: *     Now apply back the right singular vectors.
                    481: *
                    482:       ICMPQ2 = 1
                    483:       DO 80 I = 1, NSUB
                    484:          ST = IWORK( I )
                    485:          ST1 = ST - 1
                    486:          NSIZE = IWORK( SIZEI+I-1 )
                    487:          BXST = BX + ST1
                    488:          IF( NSIZE.EQ.1 ) THEN
                    489:             CALL DCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
                    490:          ELSE IF( NSIZE.LE.SMLSIZ ) THEN
                    491:             CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
                    492:      $                  WORK( VT+ST1 ), N, WORK( BXST ), N, ZERO,
                    493:      $                  B( ST, 1 ), LDB )
                    494:          ELSE
                    495:             CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
                    496:      $                   B( ST, 1 ), LDB, WORK( U+ST1 ), N,
                    497:      $                   WORK( VT+ST1 ), IWORK( K+ST1 ),
                    498:      $                   WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
                    499:      $                   WORK( Z+ST1 ), WORK( POLES+ST1 ),
                    500:      $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
                    501:      $                   IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
                    502:      $                   WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
                    503:      $                   IWORK( IWK ), INFO )
                    504:             IF( INFO.NE.0 ) THEN
                    505:                RETURN
                    506:             END IF
                    507:          END IF
                    508:    80 CONTINUE
                    509: *
                    510: *     Unscale and sort the singular values.
                    511: *
                    512:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
                    513:       CALL DLASRT( 'D', N, D, INFO )
                    514:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
                    515: *
                    516:       RETURN
                    517: *
                    518: *     End of DLALSD
                    519: *
                    520:       END

CVSweb interface <joel.bertrand@systella.fr>