File:  [local] / rpl / lapack / lapack / dgelsy.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:17:51 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief <b> DGELSY solves overdetermined or underdetermined systems for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGELSY + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsy.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsy.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsy.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
   22: *                          WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
   26: *       DOUBLE PRECISION   RCOND
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            JPVT( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DGELSY computes the minimum-norm solution to a real linear least
   40: *> squares problem:
   41: *>     minimize || A * X - B ||
   42: *> using a complete orthogonal factorization of A.  A is an M-by-N
   43: *> matrix which may be rank-deficient.
   44: *>
   45: *> Several right hand side vectors b and solution vectors x can be
   46: *> handled in a single call; they are stored as the columns of the
   47: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   48: *> matrix X.
   49: *>
   50: *> The routine first computes a QR factorization with column pivoting:
   51: *>     A * P = Q * [ R11 R12 ]
   52: *>                 [  0  R22 ]
   53: *> with R11 defined as the largest leading submatrix whose estimated
   54: *> condition number is less than 1/RCOND.  The order of R11, RANK,
   55: *> is the effective rank of A.
   56: *>
   57: *> Then, R22 is considered to be negligible, and R12 is annihilated
   58: *> by orthogonal transformations from the right, arriving at the
   59: *> complete orthogonal factorization:
   60: *>    A * P = Q * [ T11 0 ] * Z
   61: *>                [  0  0 ]
   62: *> The minimum-norm solution is then
   63: *>    X = P * Z**T [ inv(T11)*Q1**T*B ]
   64: *>                 [        0         ]
   65: *> where Q1 consists of the first RANK columns of Q.
   66: *>
   67: *> This routine is basically identical to the original xGELSX except
   68: *> three differences:
   69: *>   o The call to the subroutine xGEQPF has been substituted by the
   70: *>     the call to the subroutine xGEQP3. This subroutine is a Blas-3
   71: *>     version of the QR factorization with column pivoting.
   72: *>   o Matrix B (the right hand side) is updated with Blas-3.
   73: *>   o The permutation of matrix B (the right hand side) is faster and
   74: *>     more simple.
   75: *> \endverbatim
   76: *
   77: *  Arguments:
   78: *  ==========
   79: *
   80: *> \param[in] M
   81: *> \verbatim
   82: *>          M is INTEGER
   83: *>          The number of rows of the matrix A.  M >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] N
   87: *> \verbatim
   88: *>          N is INTEGER
   89: *>          The number of columns of the matrix A.  N >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] NRHS
   93: *> \verbatim
   94: *>          NRHS is INTEGER
   95: *>          The number of right hand sides, i.e., the number of
   96: *>          columns of matrices B and X. NRHS >= 0.
   97: *> \endverbatim
   98: *>
   99: *> \param[in,out] A
  100: *> \verbatim
  101: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  102: *>          On entry, the M-by-N matrix A.
  103: *>          On exit, A has been overwritten by details of its
  104: *>          complete orthogonal factorization.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDA
  108: *> \verbatim
  109: *>          LDA is INTEGER
  110: *>          The leading dimension of the array A.  LDA >= max(1,M).
  111: *> \endverbatim
  112: *>
  113: *> \param[in,out] B
  114: *> \verbatim
  115: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  116: *>          On entry, the M-by-NRHS right hand side matrix B.
  117: *>          On exit, the N-by-NRHS solution matrix X.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] LDB
  121: *> \verbatim
  122: *>          LDB is INTEGER
  123: *>          The leading dimension of the array B. LDB >= max(1,M,N).
  124: *> \endverbatim
  125: *>
  126: *> \param[in,out] JPVT
  127: *> \verbatim
  128: *>          JPVT is INTEGER array, dimension (N)
  129: *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
  130: *>          to the front of AP, otherwise column i is a free column.
  131: *>          On exit, if JPVT(i) = k, then the i-th column of AP
  132: *>          was the k-th column of A.
  133: *> \endverbatim
  134: *>
  135: *> \param[in] RCOND
  136: *> \verbatim
  137: *>          RCOND is DOUBLE PRECISION
  138: *>          RCOND is used to determine the effective rank of A, which
  139: *>          is defined as the order of the largest leading triangular
  140: *>          submatrix R11 in the QR factorization with pivoting of A,
  141: *>          whose estimated condition number < 1/RCOND.
  142: *> \endverbatim
  143: *>
  144: *> \param[out] RANK
  145: *> \verbatim
  146: *>          RANK is INTEGER
  147: *>          The effective rank of A, i.e., the order of the submatrix
  148: *>          R11.  This is the same as the order of the submatrix T11
  149: *>          in the complete orthogonal factorization of A.
  150: *> \endverbatim
  151: *>
  152: *> \param[out] WORK
  153: *> \verbatim
  154: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  155: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  156: *> \endverbatim
  157: *>
  158: *> \param[in] LWORK
  159: *> \verbatim
  160: *>          LWORK is INTEGER
  161: *>          The dimension of the array WORK.
  162: *>          The unblocked strategy requires that:
  163: *>             LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
  164: *>          where MN = min( M, N ).
  165: *>          The block algorithm requires that:
  166: *>             LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
  167: *>          where NB is an upper bound on the blocksize returned
  168: *>          by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
  169: *>          and DORMRZ.
  170: *>
  171: *>          If LWORK = -1, then a workspace query is assumed; the routine
  172: *>          only calculates the optimal size of the WORK array, returns
  173: *>          this value as the first entry of the WORK array, and no error
  174: *>          message related to LWORK is issued by XERBLA.
  175: *> \endverbatim
  176: *>
  177: *> \param[out] INFO
  178: *> \verbatim
  179: *>          INFO is INTEGER
  180: *>          = 0: successful exit
  181: *>          < 0: If INFO = -i, the i-th argument had an illegal value.
  182: *> \endverbatim
  183: *
  184: *  Authors:
  185: *  ========
  186: *
  187: *> \author Univ. of Tennessee
  188: *> \author Univ. of California Berkeley
  189: *> \author Univ. of Colorado Denver
  190: *> \author NAG Ltd.
  191: *
  192: *> \date December 2016
  193: *
  194: *> \ingroup doubleGEsolve
  195: *
  196: *> \par Contributors:
  197: *  ==================
  198: *>
  199: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n
  200: *>    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
  201: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
  202: *>
  203: *  =====================================================================
  204:       SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
  205:      $                   WORK, LWORK, INFO )
  206: *
  207: *  -- LAPACK driver routine (version 3.7.0) --
  208: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  209: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  210: *     December 2016
  211: *
  212: *     .. Scalar Arguments ..
  213:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
  214:       DOUBLE PRECISION   RCOND
  215: *     ..
  216: *     .. Array Arguments ..
  217:       INTEGER            JPVT( * )
  218:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
  219: *     ..
  220: *
  221: *  =====================================================================
  222: *
  223: *     .. Parameters ..
  224:       INTEGER            IMAX, IMIN
  225:       PARAMETER          ( IMAX = 1, IMIN = 2 )
  226:       DOUBLE PRECISION   ZERO, ONE
  227:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  228: *     ..
  229: *     .. Local Scalars ..
  230:       LOGICAL            LQUERY
  231:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN,
  232:      $                   LWKOPT, MN, NB, NB1, NB2, NB3, NB4
  233:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
  234:      $                   SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE
  235: *     ..
  236: *     .. External Functions ..
  237:       INTEGER            ILAENV
  238:       DOUBLE PRECISION   DLAMCH, DLANGE
  239:       EXTERNAL           ILAENV, DLAMCH, DLANGE
  240: *     ..
  241: *     .. External Subroutines ..
  242:       EXTERNAL           DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET,
  243:      $                   DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA
  244: *     ..
  245: *     .. Intrinsic Functions ..
  246:       INTRINSIC          ABS, MAX, MIN
  247: *     ..
  248: *     .. Executable Statements ..
  249: *
  250:       MN = MIN( M, N )
  251:       ISMIN = MN + 1
  252:       ISMAX = 2*MN + 1
  253: *
  254: *     Test the input arguments.
  255: *
  256:       INFO = 0
  257:       LQUERY = ( LWORK.EQ.-1 )
  258:       IF( M.LT.0 ) THEN
  259:          INFO = -1
  260:       ELSE IF( N.LT.0 ) THEN
  261:          INFO = -2
  262:       ELSE IF( NRHS.LT.0 ) THEN
  263:          INFO = -3
  264:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  265:          INFO = -5
  266:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  267:          INFO = -7
  268:       END IF
  269: *
  270: *     Figure out optimal block size
  271: *
  272:       IF( INFO.EQ.0 ) THEN
  273:          IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
  274:             LWKMIN = 1
  275:             LWKOPT = 1
  276:          ELSE
  277:             NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
  278:             NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
  279:             NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 )
  280:             NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 )
  281:             NB = MAX( NB1, NB2, NB3, NB4 )
  282:             LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS )
  283:             LWKOPT = MAX( LWKMIN,
  284:      $                    MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS )
  285:          END IF
  286:          WORK( 1 ) = LWKOPT
  287: *
  288:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  289:             INFO = -12
  290:          END IF
  291:       END IF
  292: *
  293:       IF( INFO.NE.0 ) THEN
  294:          CALL XERBLA( 'DGELSY', -INFO )
  295:          RETURN
  296:       ELSE IF( LQUERY ) THEN
  297:          RETURN
  298:       END IF
  299: *
  300: *     Quick return if possible
  301: *
  302:       IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
  303:          RANK = 0
  304:          RETURN
  305:       END IF
  306: *
  307: *     Get machine parameters
  308: *
  309:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  310:       BIGNUM = ONE / SMLNUM
  311:       CALL DLABAD( SMLNUM, BIGNUM )
  312: *
  313: *     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
  314: *
  315:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
  316:       IASCL = 0
  317:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  318: *
  319: *        Scale matrix norm up to SMLNUM
  320: *
  321:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  322:          IASCL = 1
  323:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  324: *
  325: *        Scale matrix norm down to BIGNUM
  326: *
  327:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  328:          IASCL = 2
  329:       ELSE IF( ANRM.EQ.ZERO ) THEN
  330: *
  331: *        Matrix all zero. Return zero solution.
  332: *
  333:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  334:          RANK = 0
  335:          GO TO 70
  336:       END IF
  337: *
  338:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
  339:       IBSCL = 0
  340:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  341: *
  342: *        Scale matrix norm up to SMLNUM
  343: *
  344:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  345:          IBSCL = 1
  346:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  347: *
  348: *        Scale matrix norm down to BIGNUM
  349: *
  350:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  351:          IBSCL = 2
  352:       END IF
  353: *
  354: *     Compute QR factorization with column pivoting of A:
  355: *        A * P = Q * R
  356: *
  357:       CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
  358:      $             LWORK-MN, INFO )
  359:       WSIZE = MN + WORK( MN+1 )
  360: *
  361: *     workspace: MN+2*N+NB*(N+1).
  362: *     Details of Householder rotations stored in WORK(1:MN).
  363: *
  364: *     Determine RANK using incremental condition estimation
  365: *
  366:       WORK( ISMIN ) = ONE
  367:       WORK( ISMAX ) = ONE
  368:       SMAX = ABS( A( 1, 1 ) )
  369:       SMIN = SMAX
  370:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
  371:          RANK = 0
  372:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  373:          GO TO 70
  374:       ELSE
  375:          RANK = 1
  376:       END IF
  377: *
  378:    10 CONTINUE
  379:       IF( RANK.LT.MN ) THEN
  380:          I = RANK + 1
  381:          CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
  382:      $                A( I, I ), SMINPR, S1, C1 )
  383:          CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
  384:      $                A( I, I ), SMAXPR, S2, C2 )
  385: *
  386:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
  387:             DO 20 I = 1, RANK
  388:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
  389:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
  390:    20       CONTINUE
  391:             WORK( ISMIN+RANK ) = C1
  392:             WORK( ISMAX+RANK ) = C2
  393:             SMIN = SMINPR
  394:             SMAX = SMAXPR
  395:             RANK = RANK + 1
  396:             GO TO 10
  397:          END IF
  398:       END IF
  399: *
  400: *     workspace: 3*MN.
  401: *
  402: *     Logically partition R = [ R11 R12 ]
  403: *                             [  0  R22 ]
  404: *     where R11 = R(1:RANK,1:RANK)
  405: *
  406: *     [R11,R12] = [ T11, 0 ] * Y
  407: *
  408:       IF( RANK.LT.N )
  409:      $   CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
  410:      $                LWORK-2*MN, INFO )
  411: *
  412: *     workspace: 2*MN.
  413: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
  414: *
  415: *     B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  416: *
  417:       CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
  418:      $             B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
  419:       WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) )
  420: *
  421: *     workspace: 2*MN+NB*NRHS.
  422: *
  423: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
  424: *
  425:       CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
  426:      $            NRHS, ONE, A, LDA, B, LDB )
  427: *
  428:       DO 40 J = 1, NRHS
  429:          DO 30 I = RANK + 1, N
  430:             B( I, J ) = ZERO
  431:    30    CONTINUE
  432:    40 CONTINUE
  433: *
  434: *     B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
  435: *
  436:       IF( RANK.LT.N ) THEN
  437:          CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
  438:      $                LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ),
  439:      $                LWORK-2*MN, INFO )
  440:       END IF
  441: *
  442: *     workspace: 2*MN+NRHS.
  443: *
  444: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
  445: *
  446:       DO 60 J = 1, NRHS
  447:          DO 50 I = 1, N
  448:             WORK( JPVT( I ) ) = B( I, J )
  449:    50    CONTINUE
  450:          CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
  451:    60 CONTINUE
  452: *
  453: *     workspace: N.
  454: *
  455: *     Undo scaling
  456: *
  457:       IF( IASCL.EQ.1 ) THEN
  458:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  459:          CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
  460:      $                INFO )
  461:       ELSE IF( IASCL.EQ.2 ) THEN
  462:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  463:          CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
  464:      $                INFO )
  465:       END IF
  466:       IF( IBSCL.EQ.1 ) THEN
  467:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  468:       ELSE IF( IBSCL.EQ.2 ) THEN
  469:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  470:       END IF
  471: *
  472:    70 CONTINUE
  473:       WORK( 1 ) = LWKOPT
  474: *
  475:       RETURN
  476: *
  477: *     End of DGELSY
  478: *
  479:       END

CVSweb interface <joel.bertrand@systella.fr>