Annotation of rpl/lapack/lapack/dgelsy.f, revision 1.17

1.9       bertrand    1: *> \brief <b> DGELSY solves overdetermined or underdetermined systems for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DGELSY + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsy.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsy.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsy.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                     22: *                          WORK, LWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                     26: *       DOUBLE PRECISION   RCOND
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            JPVT( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
                     31: *       ..
1.15      bertrand   32: *
1.9       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DGELSY computes the minimum-norm solution to a real linear least
                     40: *> squares problem:
                     41: *>     minimize || A * X - B ||
                     42: *> using a complete orthogonal factorization of A.  A is an M-by-N
                     43: *> matrix which may be rank-deficient.
                     44: *>
                     45: *> Several right hand side vectors b and solution vectors x can be
                     46: *> handled in a single call; they are stored as the columns of the
                     47: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     48: *> matrix X.
                     49: *>
                     50: *> The routine first computes a QR factorization with column pivoting:
                     51: *>     A * P = Q * [ R11 R12 ]
                     52: *>                 [  0  R22 ]
                     53: *> with R11 defined as the largest leading submatrix whose estimated
                     54: *> condition number is less than 1/RCOND.  The order of R11, RANK,
                     55: *> is the effective rank of A.
                     56: *>
                     57: *> Then, R22 is considered to be negligible, and R12 is annihilated
                     58: *> by orthogonal transformations from the right, arriving at the
                     59: *> complete orthogonal factorization:
                     60: *>    A * P = Q * [ T11 0 ] * Z
                     61: *>                [  0  0 ]
                     62: *> The minimum-norm solution is then
                     63: *>    X = P * Z**T [ inv(T11)*Q1**T*B ]
                     64: *>                 [        0         ]
                     65: *> where Q1 consists of the first RANK columns of Q.
                     66: *>
                     67: *> This routine is basically identical to the original xGELSX except
                     68: *> three differences:
                     69: *>   o The call to the subroutine xGEQPF has been substituted by the
                     70: *>     the call to the subroutine xGEQP3. This subroutine is a Blas-3
                     71: *>     version of the QR factorization with column pivoting.
                     72: *>   o Matrix B (the right hand side) is updated with Blas-3.
                     73: *>   o The permutation of matrix B (the right hand side) is faster and
                     74: *>     more simple.
                     75: *> \endverbatim
                     76: *
                     77: *  Arguments:
                     78: *  ==========
                     79: *
                     80: *> \param[in] M
                     81: *> \verbatim
                     82: *>          M is INTEGER
                     83: *>          The number of rows of the matrix A.  M >= 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] N
                     87: *> \verbatim
                     88: *>          N is INTEGER
                     89: *>          The number of columns of the matrix A.  N >= 0.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] NRHS
                     93: *> \verbatim
                     94: *>          NRHS is INTEGER
                     95: *>          The number of right hand sides, i.e., the number of
                     96: *>          columns of matrices B and X. NRHS >= 0.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in,out] A
                    100: *> \verbatim
                    101: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                    102: *>          On entry, the M-by-N matrix A.
                    103: *>          On exit, A has been overwritten by details of its
                    104: *>          complete orthogonal factorization.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] LDA
                    108: *> \verbatim
                    109: *>          LDA is INTEGER
                    110: *>          The leading dimension of the array A.  LDA >= max(1,M).
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in,out] B
                    114: *> \verbatim
                    115: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    116: *>          On entry, the M-by-NRHS right hand side matrix B.
                    117: *>          On exit, the N-by-NRHS solution matrix X.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] LDB
                    121: *> \verbatim
                    122: *>          LDB is INTEGER
                    123: *>          The leading dimension of the array B. LDB >= max(1,M,N).
                    124: *> \endverbatim
                    125: *>
                    126: *> \param[in,out] JPVT
                    127: *> \verbatim
                    128: *>          JPVT is INTEGER array, dimension (N)
                    129: *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
                    130: *>          to the front of AP, otherwise column i is a free column.
                    131: *>          On exit, if JPVT(i) = k, then the i-th column of AP
                    132: *>          was the k-th column of A.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[in] RCOND
                    136: *> \verbatim
                    137: *>          RCOND is DOUBLE PRECISION
                    138: *>          RCOND is used to determine the effective rank of A, which
                    139: *>          is defined as the order of the largest leading triangular
                    140: *>          submatrix R11 in the QR factorization with pivoting of A,
                    141: *>          whose estimated condition number < 1/RCOND.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] RANK
                    145: *> \verbatim
                    146: *>          RANK is INTEGER
                    147: *>          The effective rank of A, i.e., the order of the submatrix
                    148: *>          R11.  This is the same as the order of the submatrix T11
                    149: *>          in the complete orthogonal factorization of A.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] WORK
                    153: *> \verbatim
                    154: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    155: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[in] LWORK
                    159: *> \verbatim
                    160: *>          LWORK is INTEGER
                    161: *>          The dimension of the array WORK.
                    162: *>          The unblocked strategy requires that:
                    163: *>             LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
                    164: *>          where MN = min( M, N ).
                    165: *>          The block algorithm requires that:
                    166: *>             LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
                    167: *>          where NB is an upper bound on the blocksize returned
                    168: *>          by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
                    169: *>          and DORMRZ.
                    170: *>
                    171: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    172: *>          only calculates the optimal size of the WORK array, returns
                    173: *>          this value as the first entry of the WORK array, and no error
                    174: *>          message related to LWORK is issued by XERBLA.
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] INFO
                    178: *> \verbatim
                    179: *>          INFO is INTEGER
                    180: *>          = 0: successful exit
                    181: *>          < 0: If INFO = -i, the i-th argument had an illegal value.
                    182: *> \endverbatim
                    183: *
                    184: *  Authors:
                    185: *  ========
                    186: *
1.15      bertrand  187: *> \author Univ. of Tennessee
                    188: *> \author Univ. of California Berkeley
                    189: *> \author Univ. of Colorado Denver
                    190: *> \author NAG Ltd.
1.9       bertrand  191: *
1.15      bertrand  192: *> \date December 2016
1.9       bertrand  193: *
                    194: *> \ingroup doubleGEsolve
                    195: *
                    196: *> \par Contributors:
                    197: *  ==================
                    198: *>
1.15      bertrand  199: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n
1.9       bertrand  200: *>    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
                    201: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
                    202: *>
                    203: *  =====================================================================
1.1       bertrand  204:       SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                    205:      $                   WORK, LWORK, INFO )
                    206: *
1.15      bertrand  207: *  -- LAPACK driver routine (version 3.7.0) --
1.1       bertrand  208: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    209: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.15      bertrand  210: *     December 2016
1.1       bertrand  211: *
                    212: *     .. Scalar Arguments ..
                    213:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                    214:       DOUBLE PRECISION   RCOND
                    215: *     ..
                    216: *     .. Array Arguments ..
                    217:       INTEGER            JPVT( * )
                    218:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
                    219: *     ..
                    220: *
                    221: *  =====================================================================
                    222: *
                    223: *     .. Parameters ..
                    224:       INTEGER            IMAX, IMIN
                    225:       PARAMETER          ( IMAX = 1, IMIN = 2 )
                    226:       DOUBLE PRECISION   ZERO, ONE
                    227:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    228: *     ..
                    229: *     .. Local Scalars ..
                    230:       LOGICAL            LQUERY
                    231:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN,
                    232:      $                   LWKOPT, MN, NB, NB1, NB2, NB3, NB4
                    233:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
                    234:      $                   SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE
                    235: *     ..
                    236: *     .. External Functions ..
                    237:       INTEGER            ILAENV
                    238:       DOUBLE PRECISION   DLAMCH, DLANGE
                    239:       EXTERNAL           ILAENV, DLAMCH, DLANGE
                    240: *     ..
                    241: *     .. External Subroutines ..
                    242:       EXTERNAL           DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET,
                    243:      $                   DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA
                    244: *     ..
                    245: *     .. Intrinsic Functions ..
                    246:       INTRINSIC          ABS, MAX, MIN
                    247: *     ..
                    248: *     .. Executable Statements ..
                    249: *
                    250:       MN = MIN( M, N )
                    251:       ISMIN = MN + 1
                    252:       ISMAX = 2*MN + 1
                    253: *
                    254: *     Test the input arguments.
                    255: *
                    256:       INFO = 0
                    257:       LQUERY = ( LWORK.EQ.-1 )
                    258:       IF( M.LT.0 ) THEN
                    259:          INFO = -1
                    260:       ELSE IF( N.LT.0 ) THEN
                    261:          INFO = -2
                    262:       ELSE IF( NRHS.LT.0 ) THEN
                    263:          INFO = -3
                    264:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    265:          INFO = -5
                    266:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    267:          INFO = -7
                    268:       END IF
                    269: *
                    270: *     Figure out optimal block size
                    271: *
                    272:       IF( INFO.EQ.0 ) THEN
                    273:          IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    274:             LWKMIN = 1
                    275:             LWKOPT = 1
                    276:          ELSE
                    277:             NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
                    278:             NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
                    279:             NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 )
                    280:             NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 )
                    281:             NB = MAX( NB1, NB2, NB3, NB4 )
                    282:             LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS )
                    283:             LWKOPT = MAX( LWKMIN,
                    284:      $                    MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS )
                    285:          END IF
                    286:          WORK( 1 ) = LWKOPT
                    287: *
                    288:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    289:             INFO = -12
                    290:          END IF
                    291:       END IF
                    292: *
                    293:       IF( INFO.NE.0 ) THEN
                    294:          CALL XERBLA( 'DGELSY', -INFO )
                    295:          RETURN
                    296:       ELSE IF( LQUERY ) THEN
                    297:          RETURN
                    298:       END IF
                    299: *
                    300: *     Quick return if possible
                    301: *
                    302:       IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    303:          RANK = 0
                    304:          RETURN
                    305:       END IF
                    306: *
                    307: *     Get machine parameters
                    308: *
                    309:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    310:       BIGNUM = ONE / SMLNUM
                    311:       CALL DLABAD( SMLNUM, BIGNUM )
                    312: *
                    313: *     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
                    314: *
                    315:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
                    316:       IASCL = 0
                    317:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    318: *
                    319: *        Scale matrix norm up to SMLNUM
                    320: *
                    321:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    322:          IASCL = 1
                    323:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    324: *
                    325: *        Scale matrix norm down to BIGNUM
                    326: *
                    327:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    328:          IASCL = 2
                    329:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    330: *
                    331: *        Matrix all zero. Return zero solution.
                    332: *
                    333:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    334:          RANK = 0
                    335:          GO TO 70
                    336:       END IF
                    337: *
                    338:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
                    339:       IBSCL = 0
                    340:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    341: *
                    342: *        Scale matrix norm up to SMLNUM
                    343: *
                    344:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    345:          IBSCL = 1
                    346:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    347: *
                    348: *        Scale matrix norm down to BIGNUM
                    349: *
                    350:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    351:          IBSCL = 2
                    352:       END IF
                    353: *
                    354: *     Compute QR factorization with column pivoting of A:
                    355: *        A * P = Q * R
                    356: *
                    357:       CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
                    358:      $             LWORK-MN, INFO )
                    359:       WSIZE = MN + WORK( MN+1 )
                    360: *
                    361: *     workspace: MN+2*N+NB*(N+1).
                    362: *     Details of Householder rotations stored in WORK(1:MN).
                    363: *
                    364: *     Determine RANK using incremental condition estimation
                    365: *
                    366:       WORK( ISMIN ) = ONE
                    367:       WORK( ISMAX ) = ONE
                    368:       SMAX = ABS( A( 1, 1 ) )
                    369:       SMIN = SMAX
                    370:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
                    371:          RANK = 0
                    372:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    373:          GO TO 70
                    374:       ELSE
                    375:          RANK = 1
                    376:       END IF
                    377: *
                    378:    10 CONTINUE
                    379:       IF( RANK.LT.MN ) THEN
                    380:          I = RANK + 1
                    381:          CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
                    382:      $                A( I, I ), SMINPR, S1, C1 )
                    383:          CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
                    384:      $                A( I, I ), SMAXPR, S2, C2 )
                    385: *
                    386:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
                    387:             DO 20 I = 1, RANK
                    388:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
                    389:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
                    390:    20       CONTINUE
                    391:             WORK( ISMIN+RANK ) = C1
                    392:             WORK( ISMAX+RANK ) = C2
                    393:             SMIN = SMINPR
                    394:             SMAX = SMAXPR
                    395:             RANK = RANK + 1
                    396:             GO TO 10
                    397:          END IF
                    398:       END IF
                    399: *
                    400: *     workspace: 3*MN.
                    401: *
                    402: *     Logically partition R = [ R11 R12 ]
                    403: *                             [  0  R22 ]
                    404: *     where R11 = R(1:RANK,1:RANK)
                    405: *
                    406: *     [R11,R12] = [ T11, 0 ] * Y
                    407: *
                    408:       IF( RANK.LT.N )
                    409:      $   CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
                    410:      $                LWORK-2*MN, INFO )
                    411: *
                    412: *     workspace: 2*MN.
                    413: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
                    414: *
1.8       bertrand  415: *     B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
1.1       bertrand  416: *
                    417:       CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
                    418:      $             B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
                    419:       WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) )
                    420: *
                    421: *     workspace: 2*MN+NB*NRHS.
                    422: *
                    423: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
                    424: *
                    425:       CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
                    426:      $            NRHS, ONE, A, LDA, B, LDB )
                    427: *
                    428:       DO 40 J = 1, NRHS
                    429:          DO 30 I = RANK + 1, N
                    430:             B( I, J ) = ZERO
                    431:    30    CONTINUE
                    432:    40 CONTINUE
                    433: *
1.8       bertrand  434: *     B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
1.1       bertrand  435: *
                    436:       IF( RANK.LT.N ) THEN
                    437:          CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
                    438:      $                LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ),
                    439:      $                LWORK-2*MN, INFO )
                    440:       END IF
                    441: *
                    442: *     workspace: 2*MN+NRHS.
                    443: *
                    444: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
                    445: *
                    446:       DO 60 J = 1, NRHS
                    447:          DO 50 I = 1, N
                    448:             WORK( JPVT( I ) ) = B( I, J )
                    449:    50    CONTINUE
                    450:          CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
                    451:    60 CONTINUE
                    452: *
                    453: *     workspace: N.
                    454: *
                    455: *     Undo scaling
                    456: *
                    457:       IF( IASCL.EQ.1 ) THEN
                    458:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    459:          CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
                    460:      $                INFO )
                    461:       ELSE IF( IASCL.EQ.2 ) THEN
                    462:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    463:          CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
                    464:      $                INFO )
                    465:       END IF
                    466:       IF( IBSCL.EQ.1 ) THEN
                    467:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    468:       ELSE IF( IBSCL.EQ.2 ) THEN
                    469:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    470:       END IF
                    471: *
                    472:    70 CONTINUE
                    473:       WORK( 1 ) = LWKOPT
                    474: *
                    475:       RETURN
                    476: *
                    477: *     End of DGELSY
                    478: *
                    479:       END

CVSweb interface <joel.bertrand@systella.fr>