File:  [local] / rpl / lapack / lapack / dgelst.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:55:29 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Ajout de fichiers de lapack 3.11

    1: *> \brief <b> DGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGELST + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelst.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelst.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelst.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
   22: *                          INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          TRANS
   26: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DGELST solves overdetermined or underdetermined real linear systems
   39: *> involving an M-by-N matrix A, or its transpose, using a QR or LQ
   40: *> factorization of A with compact WY representation of Q.
   41: *> It is assumed that A has full rank.
   42: *>
   43: *> The following options are provided:
   44: *>
   45: *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
   46: *>    an overdetermined system, i.e., solve the least squares problem
   47: *>                 minimize || B - A*X ||.
   48: *>
   49: *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
   50: *>    an underdetermined system A * X = B.
   51: *>
   52: *> 3. If TRANS = 'T' and m >= n:  find the minimum norm solution of
   53: *>    an underdetermined system A**T * X = B.
   54: *>
   55: *> 4. If TRANS = 'T' and m < n:  find the least squares solution of
   56: *>    an overdetermined system, i.e., solve the least squares problem
   57: *>                 minimize || B - A**T * X ||.
   58: *>
   59: *> Several right hand side vectors b and solution vectors x can be
   60: *> handled in a single call; they are stored as the columns of the
   61: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   62: *> matrix X.
   63: *> \endverbatim
   64: *
   65: *  Arguments:
   66: *  ==========
   67: *
   68: *> \param[in] TRANS
   69: *> \verbatim
   70: *>          TRANS is CHARACTER*1
   71: *>          = 'N': the linear system involves A;
   72: *>          = 'T': the linear system involves A**T.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] M
   76: *> \verbatim
   77: *>          M is INTEGER
   78: *>          The number of rows of the matrix A.  M >= 0.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] N
   82: *> \verbatim
   83: *>          N is INTEGER
   84: *>          The number of columns of the matrix A.  N >= 0.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] NRHS
   88: *> \verbatim
   89: *>          NRHS is INTEGER
   90: *>          The number of right hand sides, i.e., the number of
   91: *>          columns of the matrices B and X. NRHS >=0.
   92: *> \endverbatim
   93: *>
   94: *> \param[in,out] A
   95: *> \verbatim
   96: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   97: *>          On entry, the M-by-N matrix A.
   98: *>          On exit,
   99: *>            if M >= N, A is overwritten by details of its QR
  100: *>                       factorization as returned by DGEQRT;
  101: *>            if M <  N, A is overwritten by details of its LQ
  102: *>                       factorization as returned by DGELQT.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] LDA
  106: *> \verbatim
  107: *>          LDA is INTEGER
  108: *>          The leading dimension of the array A.  LDA >= max(1,M).
  109: *> \endverbatim
  110: *>
  111: *> \param[in,out] B
  112: *> \verbatim
  113: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  114: *>          On entry, the matrix B of right hand side vectors, stored
  115: *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  116: *>          if TRANS = 'T'.
  117: *>          On exit, if INFO = 0, B is overwritten by the solution
  118: *>          vectors, stored columnwise:
  119: *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  120: *>          squares solution vectors; the residual sum of squares for the
  121: *>          solution in each column is given by the sum of squares of
  122: *>          elements N+1 to M in that column;
  123: *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
  124: *>          minimum norm solution vectors;
  125: *>          if TRANS = 'T' and m >= n, rows 1 to M of B contain the
  126: *>          minimum norm solution vectors;
  127: *>          if TRANS = 'T' and m < n, rows 1 to M of B contain the
  128: *>          least squares solution vectors; the residual sum of squares
  129: *>          for the solution in each column is given by the sum of
  130: *>          squares of elements M+1 to N in that column.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LDB
  134: *> \verbatim
  135: *>          LDB is INTEGER
  136: *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
  137: *> \endverbatim
  138: *>
  139: *> \param[out] WORK
  140: *> \verbatim
  141: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  142: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LWORK
  146: *> \verbatim
  147: *>          LWORK is INTEGER
  148: *>          The dimension of the array WORK.
  149: *>          LWORK >= max( 1, MN + max( MN, NRHS ) ).
  150: *>          For optimal performance,
  151: *>          LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
  152: *>          where MN = min(M,N) and NB is the optimum block size.
  153: *>
  154: *>          If LWORK = -1, then a workspace query is assumed; the routine
  155: *>          only calculates the optimal size of the WORK array, returns
  156: *>          this value as the first entry of the WORK array, and no error
  157: *>          message related to LWORK is issued by XERBLA.
  158: *> \endverbatim
  159: *>
  160: *> \param[out] INFO
  161: *> \verbatim
  162: *>          INFO is INTEGER
  163: *>          = 0:  successful exit
  164: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  165: *>          > 0:  if INFO =  i, the i-th diagonal element of the
  166: *>                triangular factor of A is zero, so that A does not have
  167: *>                full rank; the least squares solution could not be
  168: *>                computed.
  169: *> \endverbatim
  170: *
  171: *  Authors:
  172: *  ========
  173: *
  174: *> \author Univ. of Tennessee
  175: *> \author Univ. of California Berkeley
  176: *> \author Univ. of Colorado Denver
  177: *> \author NAG Ltd.
  178: *
  179: *> \ingroup doubleGEsolve
  180: *
  181: *> \par Contributors:
  182: *  ==================
  183: *>
  184: *> \verbatim
  185: *>
  186: *>  November 2022,  Igor Kozachenko,
  187: *>                  Computer Science Division,
  188: *>                  University of California, Berkeley
  189: *> \endverbatim
  190: *
  191: *  =====================================================================
  192:       SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
  193:      $                   INFO )
  194: *
  195: *  -- LAPACK driver routine --
  196: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  197: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  198: *
  199: *     .. Scalar Arguments ..
  200:       CHARACTER          TRANS
  201:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
  202: *     ..
  203: *     .. Array Arguments ..
  204:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
  205: *     ..
  206: *
  207: *  =====================================================================
  208: *
  209: *     .. Parameters ..
  210:       DOUBLE PRECISION   ZERO, ONE
  211:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  212: *     ..
  213: *     .. Local Scalars ..
  214:       LOGICAL            LQUERY, TPSD
  215:       INTEGER            BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
  216:      $                   NB, NBMIN, SCLLEN
  217:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM
  218: *     ..
  219: *     .. Local Arrays ..
  220:       DOUBLE PRECISION   RWORK( 1 )
  221: *     ..
  222: *     .. External Functions ..
  223:       LOGICAL            LSAME
  224:       INTEGER            ILAENV
  225:       DOUBLE PRECISION   DLAMCH, DLANGE
  226:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
  227: *     ..
  228: *     .. External Subroutines ..
  229:       EXTERNAL           DGELQT, DGEQRT, DGEMLQT, DGEMQRT, DLABAD,
  230:      $                   DLASCL, DLASET, DTRTRS, XERBLA
  231: *     ..
  232: *     .. Intrinsic Functions ..
  233:       INTRINSIC          DBLE, MAX, MIN
  234: *     ..
  235: *     .. Executable Statements ..
  236: *
  237: *     Test the input arguments.
  238: *
  239:       INFO = 0
  240:       MN = MIN( M, N )
  241:       LQUERY = ( LWORK.EQ.-1 )
  242:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
  243:          INFO = -1
  244:       ELSE IF( M.LT.0 ) THEN
  245:          INFO = -2
  246:       ELSE IF( N.LT.0 ) THEN
  247:          INFO = -3
  248:       ELSE IF( NRHS.LT.0 ) THEN
  249:          INFO = -4
  250:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  251:          INFO = -6
  252:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  253:          INFO = -8
  254:       ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
  255:      $          THEN
  256:          INFO = -10
  257:       END IF
  258: *
  259: *     Figure out optimal block size and optimal workspace size
  260: *
  261:       IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
  262: *
  263:          TPSD = .TRUE.
  264:          IF( LSAME( TRANS, 'N' ) )
  265:      $      TPSD = .FALSE.
  266: *
  267:          NB = ILAENV( 1, 'DGELST', ' ', M, N, -1, -1 )
  268: *
  269:          MNNRHS = MAX( MN, NRHS )
  270:          LWOPT = MAX( 1, (MN+MNNRHS)*NB )
  271:          WORK( 1 ) = DBLE( LWOPT )
  272: *
  273:       END IF
  274: *
  275:       IF( INFO.NE.0 ) THEN
  276:          CALL XERBLA( 'DGELST ', -INFO )
  277:          RETURN
  278:       ELSE IF( LQUERY ) THEN
  279:          RETURN
  280:       END IF
  281: *
  282: *     Quick return if possible
  283: *
  284:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  285:          CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  286:          WORK( 1 ) = DBLE( LWOPT )
  287:          RETURN
  288:       END IF
  289: *
  290: *     *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
  291: *
  292:       IF( NB.GT.MN ) NB = MN
  293: *
  294: *     Determine the block size from the supplied LWORK
  295: *     ( at this stage we know that LWORK >= (minimum required workspace,
  296: *     but it may be less than optimal)
  297: *
  298:       NB = MIN( NB, LWORK/( MN + MNNRHS ) )
  299: *
  300: *     The minimum value of NB, when blocked code is used
  301: *
  302:       NBMIN = MAX( 2, ILAENV( 2, 'DGELST', ' ', M, N, -1, -1 ) )
  303: *
  304:       IF( NB.LT.NBMIN ) THEN
  305:          NB = 1
  306:       END IF
  307: *
  308: *     Get machine parameters
  309: *
  310:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  311:       BIGNUM = ONE / SMLNUM
  312:       CALL DLABAD( SMLNUM, BIGNUM )
  313: *
  314: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
  315: *
  316:       ANRM = DLANGE( 'M', M, N, A, LDA, RWORK )
  317:       IASCL = 0
  318:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  319: *
  320: *        Scale matrix norm up to SMLNUM
  321: *
  322:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  323:          IASCL = 1
  324:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  325: *
  326: *        Scale matrix norm down to BIGNUM
  327: *
  328:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  329:          IASCL = 2
  330:       ELSE IF( ANRM.EQ.ZERO ) THEN
  331: *
  332: *        Matrix all zero. Return zero solution.
  333: *
  334:          CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  335:          WORK( 1 ) = DBLE( LWOPT )
  336:          RETURN
  337:       END IF
  338: *
  339:       BROW = M
  340:       IF( TPSD )
  341:      $   BROW = N
  342:       BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
  343:       IBSCL = 0
  344:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  345: *
  346: *        Scale matrix norm up to SMLNUM
  347: *
  348:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  349:      $                INFO )
  350:          IBSCL = 1
  351:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  352: *
  353: *        Scale matrix norm down to BIGNUM
  354: *
  355:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  356:      $                INFO )
  357:          IBSCL = 2
  358:       END IF
  359: *
  360:       IF( M.GE.N ) THEN
  361: *
  362: *        M > N:
  363: *        Compute the blocked QR factorization of A,
  364: *        using the compact WY representation of Q,
  365: *        workspace at least N, optimally N*NB.
  366: *
  367:          CALL DGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
  368:      $                WORK( MN*NB+1 ), INFO )
  369: *
  370:          IF( .NOT.TPSD ) THEN
  371: *
  372: *           M > N, A is not transposed:
  373: *           Overdetermined system of equations,
  374: *           least-squares problem, min || A * X - B ||.
  375: *
  376: *           Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
  377: *           using the compact WY representation of Q,
  378: *           workspace at least NRHS, optimally NRHS*NB.
  379: *
  380:             CALL DGEMQRT( 'Left', 'Transpose', M, NRHS, N, NB, A, LDA,
  381:      $                    WORK( 1 ), NB, B, LDB, WORK( MN*NB+1 ),
  382:      $                    INFO )
  383: *
  384: *           Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  385: *
  386:             CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
  387:      $                   A, LDA, B, LDB, INFO )
  388: *
  389:             IF( INFO.GT.0 ) THEN
  390:                RETURN
  391:             END IF
  392: *
  393:             SCLLEN = N
  394: *
  395:          ELSE
  396: *
  397: *           M > N, A is transposed:
  398: *           Underdetermined system of equations,
  399: *           minimum norm solution of A**T * X = B.
  400: *
  401: *           Compute B := inv(R**T) * B in two row blocks of B.
  402: *
  403: *           Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  404: *
  405:             CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
  406:      $                   A, LDA, B, LDB, INFO )
  407: *
  408:             IF( INFO.GT.0 ) THEN
  409:                RETURN
  410:             END IF
  411: *
  412: *           Block 2: Zero out all rows below the N-th row in B:
  413: *           B(N+1:M,1:NRHS) = ZERO
  414: *
  415:             DO  J = 1, NRHS
  416:                DO I = N + 1, M
  417:                   B( I, J ) = ZERO
  418:                END DO
  419:             END DO
  420: *
  421: *           Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
  422: *           using the compact WY representation of Q,
  423: *           workspace at least NRHS, optimally NRHS*NB.
  424: *
  425:             CALL DGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
  426:      $                    A, LDA, WORK( 1 ), NB, B, LDB,
  427:      $                    WORK( MN*NB+1 ), INFO )
  428: *
  429:             SCLLEN = M
  430: *
  431:          END IF
  432: *
  433:       ELSE
  434: *
  435: *        M < N:
  436: *        Compute the blocked LQ factorization of A,
  437: *        using the compact WY representation of Q,
  438: *        workspace at least M, optimally M*NB.
  439: *
  440:          CALL DGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
  441:      $                WORK( MN*NB+1 ), INFO )
  442: *
  443:          IF( .NOT.TPSD ) THEN
  444: *
  445: *           M < N, A is not transposed:
  446: *           Underdetermined system of equations,
  447: *           minimum norm solution of A * X = B.
  448: *
  449: *           Compute B := inv(L) * B in two row blocks of B.
  450: *
  451: *           Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  452: *
  453:             CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
  454:      $                   A, LDA, B, LDB, INFO )
  455: *
  456:             IF( INFO.GT.0 ) THEN
  457:                RETURN
  458:             END IF
  459: *
  460: *           Block 2: Zero out all rows below the M-th row in B:
  461: *           B(M+1:N,1:NRHS) = ZERO
  462: *
  463:             DO J = 1, NRHS
  464:                DO I = M + 1, N
  465:                   B( I, J ) = ZERO
  466:                END DO
  467:             END DO
  468: *
  469: *           Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
  470: *           using the compact WY representation of Q,
  471: *           workspace at least NRHS, optimally NRHS*NB.
  472: *
  473:             CALL DGEMLQT( 'Left', 'Transpose', N, NRHS, M, NB, A, LDA,
  474:      $                   WORK( 1 ), NB, B, LDB,
  475:      $                   WORK( MN*NB+1 ), INFO )
  476: *
  477:             SCLLEN = N
  478: *
  479:          ELSE
  480: *
  481: *           M < N, A is transposed:
  482: *           Overdetermined system of equations,
  483: *           least-squares problem, min || A**T * X - B ||.
  484: *
  485: *           Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
  486: *           using the compact WY representation of Q,
  487: *           workspace at least NRHS, optimally NRHS*NB.
  488: *
  489:             CALL DGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
  490:      $                    A, LDA, WORK( 1 ), NB, B, LDB,
  491:      $                    WORK( MN*NB+1), INFO )
  492: *
  493: *           Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  494: *
  495:             CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
  496:      $                   A, LDA, B, LDB, INFO )
  497: *
  498:             IF( INFO.GT.0 ) THEN
  499:                RETURN
  500:             END IF
  501: *
  502:             SCLLEN = M
  503: *
  504:          END IF
  505: *
  506:       END IF
  507: *
  508: *     Undo scaling
  509: *
  510:       IF( IASCL.EQ.1 ) THEN
  511:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  512:      $                INFO )
  513:       ELSE IF( IASCL.EQ.2 ) THEN
  514:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  515:      $                INFO )
  516:       END IF
  517:       IF( IBSCL.EQ.1 ) THEN
  518:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  519:      $                INFO )
  520:       ELSE IF( IBSCL.EQ.2 ) THEN
  521:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  522:      $                INFO )
  523:       END IF
  524: *
  525:       WORK( 1 ) = DBLE( LWOPT )
  526: *
  527:       RETURN
  528: *
  529: *     End of DGELST
  530: *
  531:       END

CVSweb interface <joel.bertrand@systella.fr>