Annotation of rpl/lapack/lapack/dgelst.f, revision 1.1

1.1     ! bertrand    1: *> \brief <b> DGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGELST + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelst.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelst.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelst.f">
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
        !            22: *                          INFO )
        !            23: *
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          TRANS
        !            26: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
        !            30: *       ..
        !            31: *
        !            32: *
        !            33: *> \par Purpose:
        !            34: *  =============
        !            35: *>
        !            36: *> \verbatim
        !            37: *>
        !            38: *> DGELST solves overdetermined or underdetermined real linear systems
        !            39: *> involving an M-by-N matrix A, or its transpose, using a QR or LQ
        !            40: *> factorization of A with compact WY representation of Q.
        !            41: *> It is assumed that A has full rank.
        !            42: *>
        !            43: *> The following options are provided:
        !            44: *>
        !            45: *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
        !            46: *>    an overdetermined system, i.e., solve the least squares problem
        !            47: *>                 minimize || B - A*X ||.
        !            48: *>
        !            49: *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
        !            50: *>    an underdetermined system A * X = B.
        !            51: *>
        !            52: *> 3. If TRANS = 'T' and m >= n:  find the minimum norm solution of
        !            53: *>    an underdetermined system A**T * X = B.
        !            54: *>
        !            55: *> 4. If TRANS = 'T' and m < n:  find the least squares solution of
        !            56: *>    an overdetermined system, i.e., solve the least squares problem
        !            57: *>                 minimize || B - A**T * X ||.
        !            58: *>
        !            59: *> Several right hand side vectors b and solution vectors x can be
        !            60: *> handled in a single call; they are stored as the columns of the
        !            61: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
        !            62: *> matrix X.
        !            63: *> \endverbatim
        !            64: *
        !            65: *  Arguments:
        !            66: *  ==========
        !            67: *
        !            68: *> \param[in] TRANS
        !            69: *> \verbatim
        !            70: *>          TRANS is CHARACTER*1
        !            71: *>          = 'N': the linear system involves A;
        !            72: *>          = 'T': the linear system involves A**T.
        !            73: *> \endverbatim
        !            74: *>
        !            75: *> \param[in] M
        !            76: *> \verbatim
        !            77: *>          M is INTEGER
        !            78: *>          The number of rows of the matrix A.  M >= 0.
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[in] N
        !            82: *> \verbatim
        !            83: *>          N is INTEGER
        !            84: *>          The number of columns of the matrix A.  N >= 0.
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[in] NRHS
        !            88: *> \verbatim
        !            89: *>          NRHS is INTEGER
        !            90: *>          The number of right hand sides, i.e., the number of
        !            91: *>          columns of the matrices B and X. NRHS >=0.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[in,out] A
        !            95: *> \verbatim
        !            96: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !            97: *>          On entry, the M-by-N matrix A.
        !            98: *>          On exit,
        !            99: *>            if M >= N, A is overwritten by details of its QR
        !           100: *>                       factorization as returned by DGEQRT;
        !           101: *>            if M <  N, A is overwritten by details of its LQ
        !           102: *>                       factorization as returned by DGELQT.
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[in] LDA
        !           106: *> \verbatim
        !           107: *>          LDA is INTEGER
        !           108: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[in,out] B
        !           112: *> \verbatim
        !           113: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           114: *>          On entry, the matrix B of right hand side vectors, stored
        !           115: *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
        !           116: *>          if TRANS = 'T'.
        !           117: *>          On exit, if INFO = 0, B is overwritten by the solution
        !           118: *>          vectors, stored columnwise:
        !           119: *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
        !           120: *>          squares solution vectors; the residual sum of squares for the
        !           121: *>          solution in each column is given by the sum of squares of
        !           122: *>          elements N+1 to M in that column;
        !           123: *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
        !           124: *>          minimum norm solution vectors;
        !           125: *>          if TRANS = 'T' and m >= n, rows 1 to M of B contain the
        !           126: *>          minimum norm solution vectors;
        !           127: *>          if TRANS = 'T' and m < n, rows 1 to M of B contain the
        !           128: *>          least squares solution vectors; the residual sum of squares
        !           129: *>          for the solution in each column is given by the sum of
        !           130: *>          squares of elements M+1 to N in that column.
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[in] LDB
        !           134: *> \verbatim
        !           135: *>          LDB is INTEGER
        !           136: *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[out] WORK
        !           140: *> \verbatim
        !           141: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           142: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[in] LWORK
        !           146: *> \verbatim
        !           147: *>          LWORK is INTEGER
        !           148: *>          The dimension of the array WORK.
        !           149: *>          LWORK >= max( 1, MN + max( MN, NRHS ) ).
        !           150: *>          For optimal performance,
        !           151: *>          LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
        !           152: *>          where MN = min(M,N) and NB is the optimum block size.
        !           153: *>
        !           154: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           155: *>          only calculates the optimal size of the WORK array, returns
        !           156: *>          this value as the first entry of the WORK array, and no error
        !           157: *>          message related to LWORK is issued by XERBLA.
        !           158: *> \endverbatim
        !           159: *>
        !           160: *> \param[out] INFO
        !           161: *> \verbatim
        !           162: *>          INFO is INTEGER
        !           163: *>          = 0:  successful exit
        !           164: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           165: *>          > 0:  if INFO =  i, the i-th diagonal element of the
        !           166: *>                triangular factor of A is zero, so that A does not have
        !           167: *>                full rank; the least squares solution could not be
        !           168: *>                computed.
        !           169: *> \endverbatim
        !           170: *
        !           171: *  Authors:
        !           172: *  ========
        !           173: *
        !           174: *> \author Univ. of Tennessee
        !           175: *> \author Univ. of California Berkeley
        !           176: *> \author Univ. of Colorado Denver
        !           177: *> \author NAG Ltd.
        !           178: *
        !           179: *> \ingroup doubleGEsolve
        !           180: *
        !           181: *> \par Contributors:
        !           182: *  ==================
        !           183: *>
        !           184: *> \verbatim
        !           185: *>
        !           186: *>  November 2022,  Igor Kozachenko,
        !           187: *>                  Computer Science Division,
        !           188: *>                  University of California, Berkeley
        !           189: *> \endverbatim
        !           190: *
        !           191: *  =====================================================================
        !           192:       SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
        !           193:      $                   INFO )
        !           194: *
        !           195: *  -- LAPACK driver routine --
        !           196: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           197: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           198: *
        !           199: *     .. Scalar Arguments ..
        !           200:       CHARACTER          TRANS
        !           201:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
        !           202: *     ..
        !           203: *     .. Array Arguments ..
        !           204:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
        !           205: *     ..
        !           206: *
        !           207: *  =====================================================================
        !           208: *
        !           209: *     .. Parameters ..
        !           210:       DOUBLE PRECISION   ZERO, ONE
        !           211:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           212: *     ..
        !           213: *     .. Local Scalars ..
        !           214:       LOGICAL            LQUERY, TPSD
        !           215:       INTEGER            BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
        !           216:      $                   NB, NBMIN, SCLLEN
        !           217:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM
        !           218: *     ..
        !           219: *     .. Local Arrays ..
        !           220:       DOUBLE PRECISION   RWORK( 1 )
        !           221: *     ..
        !           222: *     .. External Functions ..
        !           223:       LOGICAL            LSAME
        !           224:       INTEGER            ILAENV
        !           225:       DOUBLE PRECISION   DLAMCH, DLANGE
        !           226:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
        !           227: *     ..
        !           228: *     .. External Subroutines ..
        !           229:       EXTERNAL           DGELQT, DGEQRT, DGEMLQT, DGEMQRT, DLABAD,
        !           230:      $                   DLASCL, DLASET, DTRTRS, XERBLA
        !           231: *     ..
        !           232: *     .. Intrinsic Functions ..
        !           233:       INTRINSIC          DBLE, MAX, MIN
        !           234: *     ..
        !           235: *     .. Executable Statements ..
        !           236: *
        !           237: *     Test the input arguments.
        !           238: *
        !           239:       INFO = 0
        !           240:       MN = MIN( M, N )
        !           241:       LQUERY = ( LWORK.EQ.-1 )
        !           242:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
        !           243:          INFO = -1
        !           244:       ELSE IF( M.LT.0 ) THEN
        !           245:          INFO = -2
        !           246:       ELSE IF( N.LT.0 ) THEN
        !           247:          INFO = -3
        !           248:       ELSE IF( NRHS.LT.0 ) THEN
        !           249:          INFO = -4
        !           250:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           251:          INFO = -6
        !           252:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
        !           253:          INFO = -8
        !           254:       ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
        !           255:      $          THEN
        !           256:          INFO = -10
        !           257:       END IF
        !           258: *
        !           259: *     Figure out optimal block size and optimal workspace size
        !           260: *
        !           261:       IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
        !           262: *
        !           263:          TPSD = .TRUE.
        !           264:          IF( LSAME( TRANS, 'N' ) )
        !           265:      $      TPSD = .FALSE.
        !           266: *
        !           267:          NB = ILAENV( 1, 'DGELST', ' ', M, N, -1, -1 )
        !           268: *
        !           269:          MNNRHS = MAX( MN, NRHS )
        !           270:          LWOPT = MAX( 1, (MN+MNNRHS)*NB )
        !           271:          WORK( 1 ) = DBLE( LWOPT )
        !           272: *
        !           273:       END IF
        !           274: *
        !           275:       IF( INFO.NE.0 ) THEN
        !           276:          CALL XERBLA( 'DGELST ', -INFO )
        !           277:          RETURN
        !           278:       ELSE IF( LQUERY ) THEN
        !           279:          RETURN
        !           280:       END IF
        !           281: *
        !           282: *     Quick return if possible
        !           283: *
        !           284:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
        !           285:          CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
        !           286:          WORK( 1 ) = DBLE( LWOPT )
        !           287:          RETURN
        !           288:       END IF
        !           289: *
        !           290: *     *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
        !           291: *
        !           292:       IF( NB.GT.MN ) NB = MN
        !           293: *
        !           294: *     Determine the block size from the supplied LWORK
        !           295: *     ( at this stage we know that LWORK >= (minimum required workspace,
        !           296: *     but it may be less than optimal)
        !           297: *
        !           298:       NB = MIN( NB, LWORK/( MN + MNNRHS ) )
        !           299: *
        !           300: *     The minimum value of NB, when blocked code is used
        !           301: *
        !           302:       NBMIN = MAX( 2, ILAENV( 2, 'DGELST', ' ', M, N, -1, -1 ) )
        !           303: *
        !           304:       IF( NB.LT.NBMIN ) THEN
        !           305:          NB = 1
        !           306:       END IF
        !           307: *
        !           308: *     Get machine parameters
        !           309: *
        !           310:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
        !           311:       BIGNUM = ONE / SMLNUM
        !           312:       CALL DLABAD( SMLNUM, BIGNUM )
        !           313: *
        !           314: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
        !           315: *
        !           316:       ANRM = DLANGE( 'M', M, N, A, LDA, RWORK )
        !           317:       IASCL = 0
        !           318:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           319: *
        !           320: *        Scale matrix norm up to SMLNUM
        !           321: *
        !           322:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
        !           323:          IASCL = 1
        !           324:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           325: *
        !           326: *        Scale matrix norm down to BIGNUM
        !           327: *
        !           328:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
        !           329:          IASCL = 2
        !           330:       ELSE IF( ANRM.EQ.ZERO ) THEN
        !           331: *
        !           332: *        Matrix all zero. Return zero solution.
        !           333: *
        !           334:          CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
        !           335:          WORK( 1 ) = DBLE( LWOPT )
        !           336:          RETURN
        !           337:       END IF
        !           338: *
        !           339:       BROW = M
        !           340:       IF( TPSD )
        !           341:      $   BROW = N
        !           342:       BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
        !           343:       IBSCL = 0
        !           344:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           345: *
        !           346: *        Scale matrix norm up to SMLNUM
        !           347: *
        !           348:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
        !           349:      $                INFO )
        !           350:          IBSCL = 1
        !           351:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           352: *
        !           353: *        Scale matrix norm down to BIGNUM
        !           354: *
        !           355:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
        !           356:      $                INFO )
        !           357:          IBSCL = 2
        !           358:       END IF
        !           359: *
        !           360:       IF( M.GE.N ) THEN
        !           361: *
        !           362: *        M > N:
        !           363: *        Compute the blocked QR factorization of A,
        !           364: *        using the compact WY representation of Q,
        !           365: *        workspace at least N, optimally N*NB.
        !           366: *
        !           367:          CALL DGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
        !           368:      $                WORK( MN*NB+1 ), INFO )
        !           369: *
        !           370:          IF( .NOT.TPSD ) THEN
        !           371: *
        !           372: *           M > N, A is not transposed:
        !           373: *           Overdetermined system of equations,
        !           374: *           least-squares problem, min || A * X - B ||.
        !           375: *
        !           376: *           Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
        !           377: *           using the compact WY representation of Q,
        !           378: *           workspace at least NRHS, optimally NRHS*NB.
        !           379: *
        !           380:             CALL DGEMQRT( 'Left', 'Transpose', M, NRHS, N, NB, A, LDA,
        !           381:      $                    WORK( 1 ), NB, B, LDB, WORK( MN*NB+1 ),
        !           382:      $                    INFO )
        !           383: *
        !           384: *           Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
        !           385: *
        !           386:             CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
        !           387:      $                   A, LDA, B, LDB, INFO )
        !           388: *
        !           389:             IF( INFO.GT.0 ) THEN
        !           390:                RETURN
        !           391:             END IF
        !           392: *
        !           393:             SCLLEN = N
        !           394: *
        !           395:          ELSE
        !           396: *
        !           397: *           M > N, A is transposed:
        !           398: *           Underdetermined system of equations,
        !           399: *           minimum norm solution of A**T * X = B.
        !           400: *
        !           401: *           Compute B := inv(R**T) * B in two row blocks of B.
        !           402: *
        !           403: *           Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
        !           404: *
        !           405:             CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
        !           406:      $                   A, LDA, B, LDB, INFO )
        !           407: *
        !           408:             IF( INFO.GT.0 ) THEN
        !           409:                RETURN
        !           410:             END IF
        !           411: *
        !           412: *           Block 2: Zero out all rows below the N-th row in B:
        !           413: *           B(N+1:M,1:NRHS) = ZERO
        !           414: *
        !           415:             DO  J = 1, NRHS
        !           416:                DO I = N + 1, M
        !           417:                   B( I, J ) = ZERO
        !           418:                END DO
        !           419:             END DO
        !           420: *
        !           421: *           Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
        !           422: *           using the compact WY representation of Q,
        !           423: *           workspace at least NRHS, optimally NRHS*NB.
        !           424: *
        !           425:             CALL DGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
        !           426:      $                    A, LDA, WORK( 1 ), NB, B, LDB,
        !           427:      $                    WORK( MN*NB+1 ), INFO )
        !           428: *
        !           429:             SCLLEN = M
        !           430: *
        !           431:          END IF
        !           432: *
        !           433:       ELSE
        !           434: *
        !           435: *        M < N:
        !           436: *        Compute the blocked LQ factorization of A,
        !           437: *        using the compact WY representation of Q,
        !           438: *        workspace at least M, optimally M*NB.
        !           439: *
        !           440:          CALL DGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
        !           441:      $                WORK( MN*NB+1 ), INFO )
        !           442: *
        !           443:          IF( .NOT.TPSD ) THEN
        !           444: *
        !           445: *           M < N, A is not transposed:
        !           446: *           Underdetermined system of equations,
        !           447: *           minimum norm solution of A * X = B.
        !           448: *
        !           449: *           Compute B := inv(L) * B in two row blocks of B.
        !           450: *
        !           451: *           Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
        !           452: *
        !           453:             CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
        !           454:      $                   A, LDA, B, LDB, INFO )
        !           455: *
        !           456:             IF( INFO.GT.0 ) THEN
        !           457:                RETURN
        !           458:             END IF
        !           459: *
        !           460: *           Block 2: Zero out all rows below the M-th row in B:
        !           461: *           B(M+1:N,1:NRHS) = ZERO
        !           462: *
        !           463:             DO J = 1, NRHS
        !           464:                DO I = M + 1, N
        !           465:                   B( I, J ) = ZERO
        !           466:                END DO
        !           467:             END DO
        !           468: *
        !           469: *           Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
        !           470: *           using the compact WY representation of Q,
        !           471: *           workspace at least NRHS, optimally NRHS*NB.
        !           472: *
        !           473:             CALL DGEMLQT( 'Left', 'Transpose', N, NRHS, M, NB, A, LDA,
        !           474:      $                   WORK( 1 ), NB, B, LDB,
        !           475:      $                   WORK( MN*NB+1 ), INFO )
        !           476: *
        !           477:             SCLLEN = N
        !           478: *
        !           479:          ELSE
        !           480: *
        !           481: *           M < N, A is transposed:
        !           482: *           Overdetermined system of equations,
        !           483: *           least-squares problem, min || A**T * X - B ||.
        !           484: *
        !           485: *           Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
        !           486: *           using the compact WY representation of Q,
        !           487: *           workspace at least NRHS, optimally NRHS*NB.
        !           488: *
        !           489:             CALL DGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
        !           490:      $                    A, LDA, WORK( 1 ), NB, B, LDB,
        !           491:      $                    WORK( MN*NB+1), INFO )
        !           492: *
        !           493: *           Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
        !           494: *
        !           495:             CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
        !           496:      $                   A, LDA, B, LDB, INFO )
        !           497: *
        !           498:             IF( INFO.GT.0 ) THEN
        !           499:                RETURN
        !           500:             END IF
        !           501: *
        !           502:             SCLLEN = M
        !           503: *
        !           504:          END IF
        !           505: *
        !           506:       END IF
        !           507: *
        !           508: *     Undo scaling
        !           509: *
        !           510:       IF( IASCL.EQ.1 ) THEN
        !           511:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
        !           512:      $                INFO )
        !           513:       ELSE IF( IASCL.EQ.2 ) THEN
        !           514:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
        !           515:      $                INFO )
        !           516:       END IF
        !           517:       IF( IBSCL.EQ.1 ) THEN
        !           518:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
        !           519:      $                INFO )
        !           520:       ELSE IF( IBSCL.EQ.2 ) THEN
        !           521:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
        !           522:      $                INFO )
        !           523:       END IF
        !           524: *
        !           525:       WORK( 1 ) = DBLE( LWOPT )
        !           526: *
        !           527:       RETURN
        !           528: *
        !           529: *     End of DGELST
        !           530: *
        !           531:       END

CVSweb interface <joel.bertrand@systella.fr>