File:  [local] / rpl / lapack / lapack / dgejsv.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:27:08 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD

Mise à jour de lapack.

    1: *> \brief \b DGEJSV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DGEJSV + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgejsv.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgejsv.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgejsv.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
   22: *                          M, N, A, LDA, SVA, U, LDU, V, LDV,
   23: *                          WORK, LWORK, IWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       IMPLICIT    NONE
   27: *       INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
   31: *      $            WORK( LWORK )
   32: *       INTEGER     IWORK( * )
   33: *       CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
   34: *       ..
   35: *  
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DGEJSV computes the singular value decomposition (SVD) of a real M-by-N
   43: *> matrix [A], where M >= N. The SVD of [A] is written as
   44: *>
   45: *>              [A] = [U] * [SIGMA] * [V]^t,
   46: *>
   47: *> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
   48: *> diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and
   49: *> [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are
   50: *> the singular values of [A]. The columns of [U] and [V] are the left and
   51: *> the right singular vectors of [A], respectively. The matrices [U] and [V]
   52: *> are computed and stored in the arrays U and V, respectively. The diagonal
   53: *> of [SIGMA] is computed and stored in the array SVA.
   54: *> DGEJSV can sometimes compute tiny singular values and their singular vectors much
   55: *> more accurately than other SVD routines, see below under Further Details.
   56: *> \endverbatim
   57: *
   58: *  Arguments:
   59: *  ==========
   60: *
   61: *> \param[in] JOBA
   62: *> \verbatim
   63: *>          JOBA is CHARACTER*1
   64: *>        Specifies the level of accuracy:
   65: *>       = 'C': This option works well (high relative accuracy) if A = B * D,
   66: *>             with well-conditioned B and arbitrary diagonal matrix D.
   67: *>             The accuracy cannot be spoiled by COLUMN scaling. The
   68: *>             accuracy of the computed output depends on the condition of
   69: *>             B, and the procedure aims at the best theoretical accuracy.
   70: *>             The relative error max_{i=1:N}|d sigma_i| / sigma_i is
   71: *>             bounded by f(M,N)*epsilon* cond(B), independent of D.
   72: *>             The input matrix is preprocessed with the QRF with column
   73: *>             pivoting. This initial preprocessing and preconditioning by
   74: *>             a rank revealing QR factorization is common for all values of
   75: *>             JOBA. Additional actions are specified as follows:
   76: *>       = 'E': Computation as with 'C' with an additional estimate of the
   77: *>             condition number of B. It provides a realistic error bound.
   78: *>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
   79: *>             D1, D2, and well-conditioned matrix C, this option gives
   80: *>             higher accuracy than the 'C' option. If the structure of the
   81: *>             input matrix is not known, and relative accuracy is
   82: *>             desirable, then this option is advisable. The input matrix A
   83: *>             is preprocessed with QR factorization with FULL (row and
   84: *>             column) pivoting.
   85: *>       = 'G'  Computation as with 'F' with an additional estimate of the
   86: *>             condition number of B, where A=D*B. If A has heavily weighted
   87: *>             rows, then using this condition number gives too pessimistic
   88: *>             error bound.
   89: *>       = 'A': Small singular values are the noise and the matrix is treated
   90: *>             as numerically rank defficient. The error in the computed
   91: *>             singular values is bounded by f(m,n)*epsilon*||A||.
   92: *>             The computed SVD A = U * S * V^t restores A up to
   93: *>             f(m,n)*epsilon*||A||.
   94: *>             This gives the procedure the licence to discard (set to zero)
   95: *>             all singular values below N*epsilon*||A||.
   96: *>       = 'R': Similar as in 'A'. Rank revealing property of the initial
   97: *>             QR factorization is used do reveal (using triangular factor)
   98: *>             a gap sigma_{r+1} < epsilon * sigma_r in which case the
   99: *>             numerical RANK is declared to be r. The SVD is computed with
  100: *>             absolute error bounds, but more accurately than with 'A'.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] JOBU
  104: *> \verbatim
  105: *>          JOBU is CHARACTER*1
  106: *>        Specifies whether to compute the columns of U:
  107: *>       = 'U': N columns of U are returned in the array U.
  108: *>       = 'F': full set of M left sing. vectors is returned in the array U.
  109: *>       = 'W': U may be used as workspace of length M*N. See the description
  110: *>             of U.
  111: *>       = 'N': U is not computed.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] JOBV
  115: *> \verbatim
  116: *>          JOBV is CHARACTER*1
  117: *>        Specifies whether to compute the matrix V:
  118: *>       = 'V': N columns of V are returned in the array V; Jacobi rotations
  119: *>             are not explicitly accumulated.
  120: *>       = 'J': N columns of V are returned in the array V, but they are
  121: *>             computed as the product of Jacobi rotations. This option is
  122: *>             allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.
  123: *>       = 'W': V may be used as workspace of length N*N. See the description
  124: *>             of V.
  125: *>       = 'N': V is not computed.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] JOBR
  129: *> \verbatim
  130: *>          JOBR is CHARACTER*1
  131: *>        Specifies the RANGE for the singular values. Issues the licence to
  132: *>        set to zero small positive singular values if they are outside
  133: *>        specified range. If A .NE. 0 is scaled so that the largest singular
  134: *>        value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues
  135: *>        the licence to kill columns of A whose norm in c*A is less than
  136: *>        DSQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,
  137: *>        where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').
  138: *>       = 'N': Do not kill small columns of c*A. This option assumes that
  139: *>             BLAS and QR factorizations and triangular solvers are
  140: *>             implemented to work in that range. If the condition of A
  141: *>             is greater than BIG, use DGESVJ.
  142: *>       = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)]
  143: *>             (roughly, as described above). This option is recommended.
  144: *>                                            ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  145: *>        For computing the singular values in the FULL range [SFMIN,BIG]
  146: *>        use DGESVJ.
  147: *> \endverbatim
  148: *>
  149: *> \param[in] JOBT
  150: *> \verbatim
  151: *>          JOBT is CHARACTER*1
  152: *>        If the matrix is square then the procedure may determine to use
  153: *>        transposed A if A^t seems to be better with respect to convergence.
  154: *>        If the matrix is not square, JOBT is ignored. This is subject to
  155: *>        changes in the future.
  156: *>        The decision is based on two values of entropy over the adjoint
  157: *>        orbit of A^t * A. See the descriptions of WORK(6) and WORK(7).
  158: *>       = 'T': transpose if entropy test indicates possibly faster
  159: *>        convergence of Jacobi process if A^t is taken as input. If A is
  160: *>        replaced with A^t, then the row pivoting is included automatically.
  161: *>       = 'N': do not speculate.
  162: *>        This option can be used to compute only the singular values, or the
  163: *>        full SVD (U, SIGMA and V). For only one set of singular vectors
  164: *>        (U or V), the caller should provide both U and V, as one of the
  165: *>        matrices is used as workspace if the matrix A is transposed.
  166: *>        The implementer can easily remove this constraint and make the
  167: *>        code more complicated. See the descriptions of U and V.
  168: *> \endverbatim
  169: *>
  170: *> \param[in] JOBP
  171: *> \verbatim
  172: *>          JOBP is CHARACTER*1
  173: *>        Issues the licence to introduce structured perturbations to drown
  174: *>        denormalized numbers. This licence should be active if the
  175: *>        denormals are poorly implemented, causing slow computation,
  176: *>        especially in cases of fast convergence (!). For details see [1,2].
  177: *>        For the sake of simplicity, this perturbations are included only
  178: *>        when the full SVD or only the singular values are requested. The
  179: *>        implementer/user can easily add the perturbation for the cases of
  180: *>        computing one set of singular vectors.
  181: *>       = 'P': introduce perturbation
  182: *>       = 'N': do not perturb
  183: *> \endverbatim
  184: *>
  185: *> \param[in] M
  186: *> \verbatim
  187: *>          M is INTEGER
  188: *>         The number of rows of the input matrix A.  M >= 0.
  189: *> \endverbatim
  190: *>
  191: *> \param[in] N
  192: *> \verbatim
  193: *>          N is INTEGER
  194: *>         The number of columns of the input matrix A. M >= N >= 0.
  195: *> \endverbatim
  196: *>
  197: *> \param[in,out] A
  198: *> \verbatim
  199: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  200: *>          On entry, the M-by-N matrix A.
  201: *> \endverbatim
  202: *>
  203: *> \param[in] LDA
  204: *> \verbatim
  205: *>          LDA is INTEGER
  206: *>          The leading dimension of the array A.  LDA >= max(1,M).
  207: *> \endverbatim
  208: *>
  209: *> \param[out] SVA
  210: *> \verbatim
  211: *>          SVA is DOUBLE PRECISION array, dimension (N)
  212: *>          On exit,
  213: *>          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
  214: *>            computation SVA contains Euclidean column norms of the
  215: *>            iterated matrices in the array A.
  216: *>          - For WORK(1) .NE. WORK(2): The singular values of A are
  217: *>            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
  218: *>            sigma_max(A) overflows or if small singular values have been
  219: *>            saved from underflow by scaling the input matrix A.
  220: *>          - If JOBR='R' then some of the singular values may be returned
  221: *>            as exact zeros obtained by "set to zero" because they are
  222: *>            below the numerical rank threshold or are denormalized numbers.
  223: *> \endverbatim
  224: *>
  225: *> \param[out] U
  226: *> \verbatim
  227: *>          U is DOUBLE PRECISION array, dimension ( LDU, N )
  228: *>          If JOBU = 'U', then U contains on exit the M-by-N matrix of
  229: *>                         the left singular vectors.
  230: *>          If JOBU = 'F', then U contains on exit the M-by-M matrix of
  231: *>                         the left singular vectors, including an ONB
  232: *>                         of the orthogonal complement of the Range(A).
  233: *>          If JOBU = 'W'  .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),
  234: *>                         then U is used as workspace if the procedure
  235: *>                         replaces A with A^t. In that case, [V] is computed
  236: *>                         in U as left singular vectors of A^t and then
  237: *>                         copied back to the V array. This 'W' option is just
  238: *>                         a reminder to the caller that in this case U is
  239: *>                         reserved as workspace of length N*N.
  240: *>          If JOBU = 'N'  U is not referenced, unless JOBT='T'.
  241: *> \endverbatim
  242: *>
  243: *> \param[in] LDU
  244: *> \verbatim
  245: *>          LDU is INTEGER
  246: *>          The leading dimension of the array U,  LDU >= 1.
  247: *>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
  248: *> \endverbatim
  249: *>
  250: *> \param[out] V
  251: *> \verbatim
  252: *>          V is DOUBLE PRECISION array, dimension ( LDV, N )
  253: *>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
  254: *>                         the right singular vectors;
  255: *>          If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),
  256: *>                         then V is used as workspace if the pprocedure
  257: *>                         replaces A with A^t. In that case, [U] is computed
  258: *>                         in V as right singular vectors of A^t and then
  259: *>                         copied back to the U array. This 'W' option is just
  260: *>                         a reminder to the caller that in this case V is
  261: *>                         reserved as workspace of length N*N.
  262: *>          If JOBV = 'N'  V is not referenced, unless JOBT='T'.
  263: *> \endverbatim
  264: *>
  265: *> \param[in] LDV
  266: *> \verbatim
  267: *>          LDV is INTEGER
  268: *>          The leading dimension of the array V,  LDV >= 1.
  269: *>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
  270: *> \endverbatim
  271: *>
  272: *> \param[out] WORK
  273: *> \verbatim
  274: *>          WORK is DOUBLE PRECISION array, dimension at least LWORK.
  275: *>          On exit, if N.GT.0 .AND. M.GT.0 (else not referenced), 
  276: *>          WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such
  277: *>                    that SCALE*SVA(1:N) are the computed singular values
  278: *>                    of A. (See the description of SVA().)
  279: *>          WORK(2) = See the description of WORK(1).
  280: *>          WORK(3) = SCONDA is an estimate for the condition number of
  281: *>                    column equilibrated A. (If JOBA .EQ. 'E' or 'G')
  282: *>                    SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
  283: *>                    It is computed using DPOCON. It holds
  284: *>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
  285: *>                    where R is the triangular factor from the QRF of A.
  286: *>                    However, if R is truncated and the numerical rank is
  287: *>                    determined to be strictly smaller than N, SCONDA is
  288: *>                    returned as -1, thus indicating that the smallest
  289: *>                    singular values might be lost.
  290: *>
  291: *>          If full SVD is needed, the following two condition numbers are
  292: *>          useful for the analysis of the algorithm. They are provied for
  293: *>          a developer/implementer who is familiar with the details of
  294: *>          the method.
  295: *>
  296: *>          WORK(4) = an estimate of the scaled condition number of the
  297: *>                    triangular factor in the first QR factorization.
  298: *>          WORK(5) = an estimate of the scaled condition number of the
  299: *>                    triangular factor in the second QR factorization.
  300: *>          The following two parameters are computed if JOBT .EQ. 'T'.
  301: *>          They are provided for a developer/implementer who is familiar
  302: *>          with the details of the method.
  303: *>
  304: *>          WORK(6) = the entropy of A^t*A :: this is the Shannon entropy
  305: *>                    of diag(A^t*A) / Trace(A^t*A) taken as point in the
  306: *>                    probability simplex.
  307: *>          WORK(7) = the entropy of A*A^t.
  308: *> \endverbatim
  309: *>
  310: *> \param[in] LWORK
  311: *> \verbatim
  312: *>          LWORK is INTEGER
  313: *>          Length of WORK to confirm proper allocation of work space.
  314: *>          LWORK depends on the job:
  315: *>
  316: *>          If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and
  317: *>            -> .. no scaled condition estimate required (JOBE.EQ.'N'):
  318: *>               LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement.
  319: *>               ->> For optimal performance (blocked code) the optimal value
  320: *>               is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal
  321: *>               block size for DGEQP3 and DGEQRF.
  322: *>               In general, optimal LWORK is computed as 
  323: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 7).        
  324: *>            -> .. an estimate of the scaled condition number of A is
  325: *>               required (JOBA='E', 'G'). In this case, LWORK is the maximum
  326: *>               of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4*N,7).
  327: *>               ->> For optimal performance (blocked code) the optimal value 
  328: *>               is LWORK >= max(2*M+N,3*N+(N+1)*NB, N*N+4*N, 7).
  329: *>               In general, the optimal length LWORK is computed as
  330: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 
  331: *>                                                     N+N*N+LWORK(DPOCON),7).
  332: *>
  333: *>          If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),
  334: *>            -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
  335: *>            -> For optimal performance, LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
  336: *>               where NB is the optimal block size for DGEQP3, DGEQRF, DGELQF,
  337: *>               DORMLQ. In general, the optimal length LWORK is computed as
  338: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3), N+LWORK(DPOCON), 
  339: *>                       N+LWORK(DGELQF), 2*N+LWORK(DGEQRF), N+LWORK(DORMLQ)).
  340: *>
  341: *>          If SIGMA and the left singular vectors are needed
  342: *>            -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
  343: *>            -> For optimal performance:
  344: *>               if JOBU.EQ.'U' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
  345: *>               if JOBU.EQ.'F' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,N+M*NB,7),
  346: *>               where NB is the optimal block size for DGEQP3, DGEQRF, DORMQR.
  347: *>               In general, the optimal length LWORK is computed as
  348: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DPOCON),
  349: *>                        2*N+LWORK(DGEQRF), N+LWORK(DORMQR)). 
  350: *>               Here LWORK(DORMQR) equals N*NB (for JOBU.EQ.'U') or 
  351: *>               M*NB (for JOBU.EQ.'F').
  352: *>               
  353: *>          If the full SVD is needed: (JOBU.EQ.'U' or JOBU.EQ.'F') and 
  354: *>            -> if JOBV.EQ.'V'  
  355: *>               the minimal requirement is LWORK >= max(2*M+N,6*N+2*N*N). 
  356: *>            -> if JOBV.EQ.'J' the minimal requirement is 
  357: *>               LWORK >= max(2*M+N, 4*N+N*N,2*N+N*N+6).
  358: *>            -> For optimal performance, LWORK should be additionally
  359: *>               larger than N+M*NB, where NB is the optimal block size
  360: *>               for DORMQR.
  361: *> \endverbatim
  362: *>
  363: *> \param[out] IWORK
  364: *> \verbatim
  365: *>          IWORK is INTEGER array, dimension M+3*N.
  366: *>          On exit,
  367: *>          IWORK(1) = the numerical rank determined after the initial
  368: *>                     QR factorization with pivoting. See the descriptions
  369: *>                     of JOBA and JOBR.
  370: *>          IWORK(2) = the number of the computed nonzero singular values
  371: *>          IWORK(3) = if nonzero, a warning message:
  372: *>                     If IWORK(3).EQ.1 then some of the column norms of A
  373: *>                     were denormalized floats. The requested high accuracy
  374: *>                     is not warranted by the data.
  375: *> \endverbatim
  376: *>
  377: *> \param[out] INFO
  378: *> \verbatim
  379: *>          INFO is INTEGER
  380: *>           < 0  : if INFO = -i, then the i-th argument had an illegal value.
  381: *>           = 0 :  successfull exit;
  382: *>           > 0 :  DGEJSV  did not converge in the maximal allowed number
  383: *>                  of sweeps. The computed values may be inaccurate.
  384: *> \endverbatim
  385: *
  386: *  Authors:
  387: *  ========
  388: *
  389: *> \author Univ. of Tennessee 
  390: *> \author Univ. of California Berkeley 
  391: *> \author Univ. of Colorado Denver 
  392: *> \author NAG Ltd. 
  393: *
  394: *> \date June 2016
  395: *
  396: *> \ingroup doubleGEsing
  397: *
  398: *> \par Further Details:
  399: *  =====================
  400: *>
  401: *> \verbatim
  402: *>
  403: *>  DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses DGEQP3,
  404: *>  DGEQRF, and DGELQF as preprocessors and preconditioners. Optionally, an
  405: *>  additional row pivoting can be used as a preprocessor, which in some
  406: *>  cases results in much higher accuracy. An example is matrix A with the
  407: *>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
  408: *>  diagonal matrices and C is well-conditioned matrix. In that case, complete
  409: *>  pivoting in the first QR factorizations provides accuracy dependent on the
  410: *>  condition number of C, and independent of D1, D2. Such higher accuracy is
  411: *>  not completely understood theoretically, but it works well in practice.
  412: *>  Further, if A can be written as A = B*D, with well-conditioned B and some
  413: *>  diagonal D, then the high accuracy is guaranteed, both theoretically and
  414: *>  in software, independent of D. For more details see [1], [2].
  415: *>     The computational range for the singular values can be the full range
  416: *>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
  417: *>  & LAPACK routines called by DGEJSV are implemented to work in that range.
  418: *>  If that is not the case, then the restriction for safe computation with
  419: *>  the singular values in the range of normalized IEEE numbers is that the
  420: *>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
  421: *>  overflow. This code (DGEJSV) is best used in this restricted range,
  422: *>  meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
  423: *>  returned as zeros. See JOBR for details on this.
  424: *>     Further, this implementation is somewhat slower than the one described
  425: *>  in [1,2] due to replacement of some non-LAPACK components, and because
  426: *>  the choice of some tuning parameters in the iterative part (DGESVJ) is
  427: *>  left to the implementer on a particular machine.
  428: *>     The rank revealing QR factorization (in this code: DGEQP3) should be
  429: *>  implemented as in [3]. We have a new version of DGEQP3 under development
  430: *>  that is more robust than the current one in LAPACK, with a cleaner cut in
  431: *>  rank defficient cases. It will be available in the SIGMA library [4].
  432: *>  If M is much larger than N, it is obvious that the inital QRF with
  433: *>  column pivoting can be preprocessed by the QRF without pivoting. That
  434: *>  well known trick is not used in DGEJSV because in some cases heavy row
  435: *>  weighting can be treated with complete pivoting. The overhead in cases
  436: *>  M much larger than N is then only due to pivoting, but the benefits in
  437: *>  terms of accuracy have prevailed. The implementer/user can incorporate
  438: *>  this extra QRF step easily. The implementer can also improve data movement
  439: *>  (matrix transpose, matrix copy, matrix transposed copy) - this
  440: *>  implementation of DGEJSV uses only the simplest, naive data movement.
  441: *> \endverbatim
  442: *
  443: *> \par Contributors:
  444: *  ==================
  445: *>
  446: *>  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
  447: *
  448: *> \par References:
  449: *  ================
  450: *>
  451: *> \verbatim
  452: *>
  453: *> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
  454: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
  455: *>     LAPACK Working note 169.
  456: *> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
  457: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
  458: *>     LAPACK Working note 170.
  459: *> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
  460: *>     factorization software - a case study.
  461: *>     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
  462: *>     LAPACK Working note 176.
  463: *> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
  464: *>     QSVD, (H,K)-SVD computations.
  465: *>     Department of Mathematics, University of Zagreb, 2008.
  466: *> \endverbatim
  467: *
  468: *>  \par Bugs, examples and comments:
  469: *   =================================
  470: *>
  471: *>  Please report all bugs and send interesting examples and/or comments to
  472: *>  drmac@math.hr. Thank you.
  473: *>
  474: *  =====================================================================
  475:       SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
  476:      $                   M, N, A, LDA, SVA, U, LDU, V, LDV,
  477:      $                   WORK, LWORK, IWORK, INFO )
  478: *
  479: *  -- LAPACK computational routine (version 3.6.1) --
  480: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  481: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  482: *     June 2016
  483: *
  484: *     .. Scalar Arguments ..
  485:       IMPLICIT    NONE
  486:       INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
  487: *     ..
  488: *     .. Array Arguments ..
  489:       DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
  490:      $            WORK( LWORK )
  491:       INTEGER     IWORK( * )
  492:       CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
  493: *     ..
  494: *
  495: *  ===========================================================================
  496: *
  497: *     .. Local Parameters ..
  498:       DOUBLE PRECISION   ZERO,  ONE
  499:       PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  500: *     ..
  501: *     .. Local Scalars ..
  502:       DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK,
  503:      $        CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,  MAXPRJ, SCALEM,
  504:      $        SCONDA, SFMIN,  SMALL,  TEMP1,  USCAL1, USCAL2, XSC
  505:       INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
  506:       LOGICAL ALMORT, DEFR,   ERREST, GOSCAL, JRACC,  KILL,   LSVEC,
  507:      $        L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,
  508:      $        NOSCAL, ROWPIV, RSVEC,  TRANSP
  509: *     ..
  510: *     .. Intrinsic Functions ..
  511:       INTRINSIC DABS, DLOG, MAX, MIN, DBLE, IDNINT, DSIGN, DSQRT
  512: *     ..
  513: *     .. External Functions ..
  514:       DOUBLE PRECISION  DLAMCH, DNRM2
  515:       INTEGER   IDAMAX
  516:       LOGICAL   LSAME
  517:       EXTERNAL  IDAMAX, LSAME, DLAMCH, DNRM2
  518: *     ..
  519: *     .. External Subroutines ..
  520:       EXTERNAL  DCOPY,  DGELQF, DGEQP3, DGEQRF, DLACPY, DLASCL,
  521:      $          DLASET, DLASSQ, DLASWP, DORGQR, DORMLQ,
  522:      $          DORMQR, DPOCON, DSCAL,  DSWAP,  DTRSM,  XERBLA
  523: *
  524:       EXTERNAL  DGESVJ
  525: *     ..
  526: *
  527: *     Test the input arguments
  528: *
  529:       LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
  530:       JRACC  = LSAME( JOBV, 'J' )
  531:       RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
  532:       ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
  533:       L2RANK = LSAME( JOBA, 'R' )
  534:       L2ABER = LSAME( JOBA, 'A' )
  535:       ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
  536:       L2TRAN = LSAME( JOBT, 'T' )
  537:       L2KILL = LSAME( JOBR, 'R' )
  538:       DEFR   = LSAME( JOBR, 'N' )
  539:       L2PERT = LSAME( JOBP, 'P' )
  540: *
  541:       IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
  542:      $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
  543:          INFO = - 1
  544:       ELSE IF ( .NOT.( LSVEC  .OR. LSAME( JOBU, 'N' ) .OR.
  545:      $                             LSAME( JOBU, 'W' )) ) THEN
  546:          INFO = - 2
  547:       ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
  548:      $   LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN
  549:          INFO = - 3
  550:       ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
  551:          INFO = - 4
  552:       ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN
  553:          INFO = - 5
  554:       ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
  555:          INFO = - 6
  556:       ELSE IF ( M .LT. 0 ) THEN
  557:          INFO = - 7
  558:       ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
  559:          INFO = - 8
  560:       ELSE IF ( LDA .LT. M ) THEN
  561:          INFO = - 10
  562:       ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
  563:          INFO = - 13
  564:       ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
  565:          INFO = - 14
  566:       ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.
  567:      &                           (LWORK .LT. MAX(7,4*N+1,2*M+N))) .OR.
  568:      & (.NOT.(LSVEC .OR. RSVEC) .AND. ERREST .AND.
  569:      &                         (LWORK .LT. MAX(7,4*N+N*N,2*M+N))) .OR.
  570:      & (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
  571:      & .OR.
  572:      & (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
  573:      & .OR.
  574:      & (LSVEC .AND. RSVEC .AND. (.NOT.JRACC) .AND. 
  575:      &                          (LWORK.LT.MAX(2*M+N,6*N+2*N*N)))
  576:      & .OR. (LSVEC .AND. RSVEC .AND. JRACC .AND.
  577:      &                          LWORK.LT.MAX(2*M+N,4*N+N*N,2*N+N*N+6)))
  578:      &   THEN
  579:          INFO = - 17
  580:       ELSE
  581: *        #:)
  582:          INFO = 0
  583:       END IF
  584: *
  585:       IF ( INFO .NE. 0 ) THEN
  586: *       #:(
  587:          CALL XERBLA( 'DGEJSV', - INFO )
  588:          RETURN
  589:       END IF
  590: *
  591: *     Quick return for void matrix (Y3K safe)
  592: * #:)
  593:       IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
  594:          IWORK(1:3) = 0
  595:          WORK(1:7) = 0
  596:          RETURN
  597:       ENDIF
  598: *
  599: *     Determine whether the matrix U should be M x N or M x M
  600: *
  601:       IF ( LSVEC ) THEN
  602:          N1 = N
  603:          IF ( LSAME( JOBU, 'F' ) ) N1 = M
  604:       END IF
  605: *
  606: *     Set numerical parameters
  607: *
  608: *!    NOTE: Make sure DLAMCH() does not fail on the target architecture.
  609: *
  610:       EPSLN = DLAMCH('Epsilon')
  611:       SFMIN = DLAMCH('SafeMinimum')
  612:       SMALL = SFMIN / EPSLN
  613:       BIG   = DLAMCH('O')
  614: *     BIG   = ONE / SFMIN
  615: *
  616: *     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
  617: *
  618: *(!)  If necessary, scale SVA() to protect the largest norm from
  619: *     overflow. It is possible that this scaling pushes the smallest
  620: *     column norm left from the underflow threshold (extreme case).
  621: *
  622:       SCALEM  = ONE / DSQRT(DBLE(M)*DBLE(N))
  623:       NOSCAL  = .TRUE.
  624:       GOSCAL  = .TRUE.
  625:       DO 1874 p = 1, N
  626:          AAPP = ZERO
  627:          AAQQ = ONE
  628:          CALL DLASSQ( M, A(1,p), 1, AAPP, AAQQ )
  629:          IF ( AAPP .GT. BIG ) THEN
  630:             INFO = - 9
  631:             CALL XERBLA( 'DGEJSV', -INFO )
  632:             RETURN
  633:          END IF
  634:          AAQQ = DSQRT(AAQQ)
  635:          IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
  636:             SVA(p)  = AAPP * AAQQ
  637:          ELSE
  638:             NOSCAL  = .FALSE.
  639:             SVA(p)  = AAPP * ( AAQQ * SCALEM )
  640:             IF ( GOSCAL ) THEN
  641:                GOSCAL = .FALSE.
  642:                CALL DSCAL( p-1, SCALEM, SVA, 1 )
  643:             END IF
  644:          END IF
  645:  1874 CONTINUE
  646: *
  647:       IF ( NOSCAL ) SCALEM = ONE
  648: *
  649:       AAPP = ZERO
  650:       AAQQ = BIG
  651:       DO 4781 p = 1, N
  652:          AAPP = MAX( AAPP, SVA(p) )
  653:          IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
  654:  4781 CONTINUE
  655: *
  656: *     Quick return for zero M x N matrix
  657: * #:)
  658:       IF ( AAPP .EQ. ZERO ) THEN
  659:          IF ( LSVEC ) CALL DLASET( 'G', M, N1, ZERO, ONE, U, LDU )
  660:          IF ( RSVEC ) CALL DLASET( 'G', N, N,  ZERO, ONE, V, LDV )
  661:          WORK(1) = ONE
  662:          WORK(2) = ONE
  663:          IF ( ERREST ) WORK(3) = ONE
  664:          IF ( LSVEC .AND. RSVEC ) THEN
  665:             WORK(4) = ONE
  666:             WORK(5) = ONE
  667:          END IF
  668:          IF ( L2TRAN ) THEN
  669:             WORK(6) = ZERO
  670:             WORK(7) = ZERO
  671:          END IF
  672:          IWORK(1) = 0
  673:          IWORK(2) = 0
  674:          IWORK(3) = 0
  675:          RETURN
  676:       END IF
  677: *
  678: *     Issue warning if denormalized column norms detected. Override the
  679: *     high relative accuracy request. Issue licence to kill columns
  680: *     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
  681: * #:(
  682:       WARNING = 0
  683:       IF ( AAQQ .LE. SFMIN ) THEN
  684:          L2RANK = .TRUE.
  685:          L2KILL = .TRUE.
  686:          WARNING = 1
  687:       END IF
  688: *
  689: *     Quick return for one-column matrix
  690: * #:)
  691:       IF ( N .EQ. 1 ) THEN
  692: *
  693:          IF ( LSVEC ) THEN
  694:             CALL DLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
  695:             CALL DLACPY( 'A', M, 1, A, LDA, U, LDU )
  696: *           computing all M left singular vectors of the M x 1 matrix
  697:             IF ( N1 .NE. N  ) THEN
  698:                CALL DGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,IERR )
  699:                CALL DORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,IERR )
  700:                CALL DCOPY( M, A(1,1), 1, U(1,1), 1 )
  701:             END IF
  702:          END IF
  703:          IF ( RSVEC ) THEN
  704:              V(1,1) = ONE
  705:          END IF
  706:          IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
  707:             SVA(1)  = SVA(1) / SCALEM
  708:             SCALEM  = ONE
  709:          END IF
  710:          WORK(1) = ONE / SCALEM
  711:          WORK(2) = ONE
  712:          IF ( SVA(1) .NE. ZERO ) THEN
  713:             IWORK(1) = 1
  714:             IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
  715:                IWORK(2) = 1
  716:             ELSE
  717:                IWORK(2) = 0
  718:             END IF
  719:          ELSE
  720:             IWORK(1) = 0
  721:             IWORK(2) = 0
  722:          END IF
  723:          IWORK(3) = 0
  724:          IF ( ERREST ) WORK(3) = ONE
  725:          IF ( LSVEC .AND. RSVEC ) THEN
  726:             WORK(4) = ONE
  727:             WORK(5) = ONE
  728:          END IF
  729:          IF ( L2TRAN ) THEN
  730:             WORK(6) = ZERO
  731:             WORK(7) = ZERO
  732:          END IF
  733:          RETURN
  734: *
  735:       END IF
  736: *
  737:       TRANSP = .FALSE.
  738:       L2TRAN = L2TRAN .AND. ( M .EQ. N )
  739: *
  740:       AATMAX = -ONE
  741:       AATMIN =  BIG
  742:       IF ( ROWPIV .OR. L2TRAN ) THEN
  743: *
  744: *     Compute the row norms, needed to determine row pivoting sequence
  745: *     (in the case of heavily row weighted A, row pivoting is strongly
  746: *     advised) and to collect information needed to compare the
  747: *     structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.).
  748: *
  749:          IF ( L2TRAN ) THEN
  750:             DO 1950 p = 1, M
  751:                XSC   = ZERO
  752:                TEMP1 = ONE
  753:                CALL DLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
  754: *              DLASSQ gets both the ell_2 and the ell_infinity norm
  755: *              in one pass through the vector
  756:                WORK(M+N+p)  = XSC * SCALEM
  757:                WORK(N+p)    = XSC * (SCALEM*DSQRT(TEMP1))
  758:                AATMAX = MAX( AATMAX, WORK(N+p) )
  759:                IF (WORK(N+p) .NE. ZERO) AATMIN = MIN(AATMIN,WORK(N+p))
  760:  1950       CONTINUE
  761:          ELSE
  762:             DO 1904 p = 1, M
  763:                WORK(M+N+p) = SCALEM*DABS( A(p,IDAMAX(N,A(p,1),LDA)) )
  764:                AATMAX = MAX( AATMAX, WORK(M+N+p) )
  765:                AATMIN = MIN( AATMIN, WORK(M+N+p) )
  766:  1904       CONTINUE
  767:          END IF
  768: *
  769:       END IF
  770: *
  771: *     For square matrix A try to determine whether A^t  would be  better
  772: *     input for the preconditioned Jacobi SVD, with faster convergence.
  773: *     The decision is based on an O(N) function of the vector of column
  774: *     and row norms of A, based on the Shannon entropy. This should give
  775: *     the right choice in most cases when the difference actually matters.
  776: *     It may fail and pick the slower converging side.
  777: *
  778:       ENTRA  = ZERO
  779:       ENTRAT = ZERO
  780:       IF ( L2TRAN ) THEN
  781: *
  782:          XSC   = ZERO
  783:          TEMP1 = ONE
  784:          CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
  785:          TEMP1 = ONE / TEMP1
  786: *
  787:          ENTRA = ZERO
  788:          DO 1113 p = 1, N
  789:             BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
  790:             IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
  791:  1113    CONTINUE
  792:          ENTRA = - ENTRA / DLOG(DBLE(N))
  793: *
  794: *        Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex.
  795: *        It is derived from the diagonal of  A^t * A.  Do the same with the
  796: *        diagonal of A * A^t, compute the entropy of the corresponding
  797: *        probability distribution. Note that A * A^t and A^t * A have the
  798: *        same trace.
  799: *
  800:          ENTRAT = ZERO
  801:          DO 1114 p = N+1, N+M
  802:             BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1
  803:             IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
  804:  1114    CONTINUE
  805:          ENTRAT = - ENTRAT / DLOG(DBLE(M))
  806: *
  807: *        Analyze the entropies and decide A or A^t. Smaller entropy
  808: *        usually means better input for the algorithm.
  809: *
  810:          TRANSP = ( ENTRAT .LT. ENTRA )
  811: *
  812: *        If A^t is better than A, transpose A.
  813: *
  814:          IF ( TRANSP ) THEN
  815: *           In an optimal implementation, this trivial transpose
  816: *           should be replaced with faster transpose.
  817:             DO 1115 p = 1, N - 1
  818:                DO 1116 q = p + 1, N
  819:                    TEMP1 = A(q,p)
  820:                   A(q,p) = A(p,q)
  821:                   A(p,q) = TEMP1
  822:  1116          CONTINUE
  823:  1115       CONTINUE
  824:             DO 1117 p = 1, N
  825:                WORK(M+N+p) = SVA(p)
  826:                SVA(p)      = WORK(N+p)
  827:  1117       CONTINUE
  828:             TEMP1  = AAPP
  829:             AAPP   = AATMAX
  830:             AATMAX = TEMP1
  831:             TEMP1  = AAQQ
  832:             AAQQ   = AATMIN
  833:             AATMIN = TEMP1
  834:             KILL   = LSVEC
  835:             LSVEC  = RSVEC
  836:             RSVEC  = KILL
  837:             IF ( LSVEC ) N1 = N
  838: *
  839:             ROWPIV = .TRUE.
  840:          END IF
  841: *
  842:       END IF
  843: *     END IF L2TRAN
  844: *
  845: *     Scale the matrix so that its maximal singular value remains less
  846: *     than DSQRT(BIG) -- the matrix is scaled so that its maximal column
  847: *     has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep
  848: *     DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and
  849: *     BLAS routines that, in some implementations, are not capable of
  850: *     working in the full interval [SFMIN,BIG] and that they may provoke
  851: *     overflows in the intermediate results. If the singular values spread
  852: *     from SFMIN to BIG, then DGESVJ will compute them. So, in that case,
  853: *     one should use DGESVJ instead of DGEJSV.
  854: *
  855:       BIG1   = DSQRT( BIG )
  856:       TEMP1  = DSQRT( BIG / DBLE(N) )
  857: *
  858:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
  859:       IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
  860:           AAQQ = ( AAQQ / AAPP ) * TEMP1
  861:       ELSE
  862:           AAQQ = ( AAQQ * TEMP1 ) / AAPP
  863:       END IF
  864:       TEMP1 = TEMP1 * SCALEM
  865:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
  866: *
  867: *     To undo scaling at the end of this procedure, multiply the
  868: *     computed singular values with USCAL2 / USCAL1.
  869: *
  870:       USCAL1 = TEMP1
  871:       USCAL2 = AAPP
  872: *
  873:       IF ( L2KILL ) THEN
  874: *        L2KILL enforces computation of nonzero singular values in
  875: *        the restricted range of condition number of the initial A,
  876: *        sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN).
  877:          XSC = DSQRT( SFMIN )
  878:       ELSE
  879:          XSC = SMALL
  880: *
  881: *        Now, if the condition number of A is too big,
  882: *        sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN,
  883: *        as a precaution measure, the full SVD is computed using DGESVJ
  884: *        with accumulated Jacobi rotations. This provides numerically
  885: *        more robust computation, at the cost of slightly increased run
  886: *        time. Depending on the concrete implementation of BLAS and LAPACK
  887: *        (i.e. how they behave in presence of extreme ill-conditioning) the
  888: *        implementor may decide to remove this switch.
  889:          IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
  890:             JRACC = .TRUE.
  891:          END IF
  892: *
  893:       END IF
  894:       IF ( AAQQ .LT. XSC ) THEN
  895:          DO 700 p = 1, N
  896:             IF ( SVA(p) .LT. XSC ) THEN
  897:                CALL DLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA )
  898:                SVA(p) = ZERO
  899:             END IF
  900:  700     CONTINUE
  901:       END IF
  902: *
  903: *     Preconditioning using QR factorization with pivoting
  904: *
  905:       IF ( ROWPIV ) THEN
  906: *        Optional row permutation (Bjoerck row pivoting):
  907: *        A result by Cox and Higham shows that the Bjoerck's
  908: *        row pivoting combined with standard column pivoting
  909: *        has similar effect as Powell-Reid complete pivoting.
  910: *        The ell-infinity norms of A are made nonincreasing.
  911:          DO 1952 p = 1, M - 1
  912:             q = IDAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1
  913:             IWORK(2*N+p) = q
  914:             IF ( p .NE. q ) THEN
  915:                TEMP1       = WORK(M+N+p)
  916:                WORK(M+N+p) = WORK(M+N+q)
  917:                WORK(M+N+q) = TEMP1
  918:             END IF
  919:  1952    CONTINUE
  920:          CALL DLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )
  921:       END IF
  922: *
  923: *     End of the preparation phase (scaling, optional sorting and
  924: *     transposing, optional flushing of small columns).
  925: *
  926: *     Preconditioning
  927: *
  928: *     If the full SVD is needed, the right singular vectors are computed
  929: *     from a matrix equation, and for that we need theoretical analysis
  930: *     of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF.
  931: *     In all other cases the first RR QRF can be chosen by other criteria
  932: *     (eg speed by replacing global with restricted window pivoting, such
  933: *     as in SGEQPX from TOMS # 782). Good results will be obtained using
  934: *     SGEQPX with properly (!) chosen numerical parameters.
  935: *     Any improvement of DGEQP3 improves overal performance of DGEJSV.
  936: *
  937: *     A * P1 = Q1 * [ R1^t 0]^t:
  938:       DO 1963 p = 1, N
  939: *        .. all columns are free columns
  940:          IWORK(p) = 0
  941:  1963 CONTINUE
  942:       CALL DGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR )
  943: *
  944: *     The upper triangular matrix R1 from the first QRF is inspected for
  945: *     rank deficiency and possibilities for deflation, or possible
  946: *     ill-conditioning. Depending on the user specified flag L2RANK,
  947: *     the procedure explores possibilities to reduce the numerical
  948: *     rank by inspecting the computed upper triangular factor. If
  949: *     L2RANK or L2ABER are up, then DGEJSV will compute the SVD of
  950: *     A + dA, where ||dA|| <= f(M,N)*EPSLN.
  951: *
  952:       NR = 1
  953:       IF ( L2ABER ) THEN
  954: *        Standard absolute error bound suffices. All sigma_i with
  955: *        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
  956: *        agressive enforcement of lower numerical rank by introducing a
  957: *        backward error of the order of N*EPSLN*||A||.
  958:          TEMP1 = DSQRT(DBLE(N))*EPSLN
  959:          DO 3001 p = 2, N
  960:             IF ( DABS(A(p,p)) .GE. (TEMP1*DABS(A(1,1))) ) THEN
  961:                NR = NR + 1
  962:             ELSE
  963:                GO TO 3002
  964:             END IF
  965:  3001    CONTINUE
  966:  3002    CONTINUE
  967:       ELSE IF ( L2RANK ) THEN
  968: *        .. similarly as above, only slightly more gentle (less agressive).
  969: *        Sudden drop on the diagonal of R1 is used as the criterion for
  970: *        close-to-rank-defficient.
  971:          TEMP1 = DSQRT(SFMIN)
  972:          DO 3401 p = 2, N
  973:             IF ( ( DABS(A(p,p)) .LT. (EPSLN*DABS(A(p-1,p-1))) ) .OR.
  974:      $           ( DABS(A(p,p)) .LT. SMALL ) .OR.
  975:      $           ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
  976:             NR = NR + 1
  977:  3401    CONTINUE
  978:  3402    CONTINUE
  979: *
  980:       ELSE
  981: *        The goal is high relative accuracy. However, if the matrix
  982: *        has high scaled condition number the relative accuracy is in
  983: *        general not feasible. Later on, a condition number estimator
  984: *        will be deployed to estimate the scaled condition number.
  985: *        Here we just remove the underflowed part of the triangular
  986: *        factor. This prevents the situation in which the code is
  987: *        working hard to get the accuracy not warranted by the data.
  988:          TEMP1  = DSQRT(SFMIN)
  989:          DO 3301 p = 2, N
  990:             IF ( ( DABS(A(p,p)) .LT. SMALL ) .OR.
  991:      $          ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
  992:             NR = NR + 1
  993:  3301    CONTINUE
  994:  3302    CONTINUE
  995: *
  996:       END IF
  997: *
  998:       ALMORT = .FALSE.
  999:       IF ( NR .EQ. N ) THEN
 1000:          MAXPRJ = ONE
 1001:          DO 3051 p = 2, N
 1002:             TEMP1  = DABS(A(p,p)) / SVA(IWORK(p))
 1003:             MAXPRJ = MIN( MAXPRJ, TEMP1 )
 1004:  3051    CONTINUE
 1005:          IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
 1006:       END IF
 1007: *
 1008: *
 1009:       SCONDA = - ONE
 1010:       CONDR1 = - ONE
 1011:       CONDR2 = - ONE
 1012: *
 1013:       IF ( ERREST ) THEN
 1014:          IF ( N .EQ. NR ) THEN
 1015:             IF ( RSVEC ) THEN
 1016: *              .. V is available as workspace
 1017:                CALL DLACPY( 'U', N, N, A, LDA, V, LDV )
 1018:                DO 3053 p = 1, N
 1019:                   TEMP1 = SVA(IWORK(p))
 1020:                   CALL DSCAL( p, ONE/TEMP1, V(1,p), 1 )
 1021:  3053          CONTINUE
 1022:                CALL DPOCON( 'U', N, V, LDV, ONE, TEMP1,
 1023:      $              WORK(N+1), IWORK(2*N+M+1), IERR )
 1024:             ELSE IF ( LSVEC ) THEN
 1025: *              .. U is available as workspace
 1026:                CALL DLACPY( 'U', N, N, A, LDA, U, LDU )
 1027:                DO 3054 p = 1, N
 1028:                   TEMP1 = SVA(IWORK(p))
 1029:                   CALL DSCAL( p, ONE/TEMP1, U(1,p), 1 )
 1030:  3054          CONTINUE
 1031:                CALL DPOCON( 'U', N, U, LDU, ONE, TEMP1,
 1032:      $              WORK(N+1), IWORK(2*N+M+1), IERR )
 1033:             ELSE
 1034:                CALL DLACPY( 'U', N, N, A, LDA, WORK(N+1), N )
 1035:                DO 3052 p = 1, N
 1036:                   TEMP1 = SVA(IWORK(p))
 1037:                   CALL DSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 )
 1038:  3052          CONTINUE
 1039: *           .. the columns of R are scaled to have unit Euclidean lengths.
 1040:                CALL DPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1,
 1041:      $              WORK(N+N*N+1), IWORK(2*N+M+1), IERR )
 1042:             END IF
 1043:             SCONDA = ONE / DSQRT(TEMP1)
 1044: *           SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
 1045: *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
 1046:          ELSE
 1047:             SCONDA = - ONE
 1048:          END IF
 1049:       END IF
 1050: *
 1051:       L2PERT = L2PERT .AND. ( DABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) )
 1052: *     If there is no violent scaling, artificial perturbation is not needed.
 1053: *
 1054: *     Phase 3:
 1055: *
 1056:       IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
 1057: *
 1058: *         Singular Values only
 1059: *
 1060: *         .. transpose A(1:NR,1:N)
 1061:          DO 1946 p = 1, MIN( N-1, NR )
 1062:             CALL DCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
 1063:  1946    CONTINUE
 1064: *
 1065: *        The following two DO-loops introduce small relative perturbation
 1066: *        into the strict upper triangle of the lower triangular matrix.
 1067: *        Small entries below the main diagonal are also changed.
 1068: *        This modification is useful if the computing environment does not
 1069: *        provide/allow FLUSH TO ZERO underflow, for it prevents many
 1070: *        annoying denormalized numbers in case of strongly scaled matrices.
 1071: *        The perturbation is structured so that it does not introduce any
 1072: *        new perturbation of the singular values, and it does not destroy
 1073: *        the job done by the preconditioner.
 1074: *        The licence for this perturbation is in the variable L2PERT, which
 1075: *        should be .FALSE. if FLUSH TO ZERO underflow is active.
 1076: *
 1077:          IF ( .NOT. ALMORT ) THEN
 1078: *
 1079:             IF ( L2PERT ) THEN
 1080: *              XSC = DSQRT(SMALL)
 1081:                XSC = EPSLN / DBLE(N)
 1082:                DO 4947 q = 1, NR
 1083:                   TEMP1 = XSC*DABS(A(q,q))
 1084:                   DO 4949 p = 1, N
 1085:                      IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
 1086:      $                    .OR. ( p .LT. q ) )
 1087:      $                     A(p,q) = DSIGN( TEMP1, A(p,q) )
 1088:  4949             CONTINUE
 1089:  4947          CONTINUE
 1090:             ELSE
 1091:                CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA )
 1092:             END IF
 1093: *
 1094: *            .. second preconditioning using the QR factorization
 1095: *
 1096:             CALL DGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR )
 1097: *
 1098: *           .. and transpose upper to lower triangular
 1099:             DO 1948 p = 1, NR - 1
 1100:                CALL DCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
 1101:  1948       CONTINUE
 1102: *
 1103:          END IF
 1104: *
 1105: *           Row-cyclic Jacobi SVD algorithm with column pivoting
 1106: *
 1107: *           .. again some perturbation (a "background noise") is added
 1108: *           to drown denormals
 1109:             IF ( L2PERT ) THEN
 1110: *              XSC = DSQRT(SMALL)
 1111:                XSC = EPSLN / DBLE(N)
 1112:                DO 1947 q = 1, NR
 1113:                   TEMP1 = XSC*DABS(A(q,q))
 1114:                   DO 1949 p = 1, NR
 1115:                      IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
 1116:      $                       .OR. ( p .LT. q ) )
 1117:      $                   A(p,q) = DSIGN( TEMP1, A(p,q) )
 1118:  1949             CONTINUE
 1119:  1947          CONTINUE
 1120:             ELSE
 1121:                CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2), LDA )
 1122:             END IF
 1123: *
 1124: *           .. and one-sided Jacobi rotations are started on a lower
 1125: *           triangular matrix (plus perturbation which is ignored in
 1126: *           the part which destroys triangular form (confusing?!))
 1127: *
 1128:             CALL DGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,
 1129:      $                      N, V, LDV, WORK, LWORK, INFO )
 1130: *
 1131:             SCALEM  = WORK(1)
 1132:             NUMRANK = IDNINT(WORK(2))
 1133: *
 1134: *
 1135:       ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
 1136: *
 1137: *        -> Singular Values and Right Singular Vectors <-
 1138: *
 1139:          IF ( ALMORT ) THEN
 1140: *
 1141: *           .. in this case NR equals N
 1142:             DO 1998 p = 1, NR
 1143:                CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1144:  1998       CONTINUE
 1145:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1146: *
 1147:             CALL DGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,
 1148:      $                  WORK, LWORK, INFO )
 1149:             SCALEM  = WORK(1)
 1150:             NUMRANK = IDNINT(WORK(2))
 1151: 
 1152:          ELSE
 1153: *
 1154: *        .. two more QR factorizations ( one QRF is not enough, two require
 1155: *        accumulated product of Jacobi rotations, three are perfect )
 1156: *
 1157:             CALL DLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1), LDA )
 1158:             CALL DGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR)
 1159:             CALL DLACPY( 'Lower', NR, NR, A, LDA, V, LDV )
 1160:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1161:             CALL DGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1162:      $                   LWORK-2*N, IERR )
 1163:             DO 8998 p = 1, NR
 1164:                CALL DCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
 1165:  8998       CONTINUE
 1166:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1167: *
 1168:             CALL DGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,
 1169:      $                  LDU, WORK(N+1), LWORK, INFO )
 1170:             SCALEM  = WORK(N+1)
 1171:             NUMRANK = IDNINT(WORK(N+2))
 1172:             IF ( NR .LT. N ) THEN
 1173:                CALL DLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1),   LDV )
 1174:                CALL DLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1),   LDV )
 1175:                CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1), LDV )
 1176:             END IF
 1177: *
 1178:          CALL DORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK,
 1179:      $               V, LDV, WORK(N+1), LWORK-N, IERR )
 1180: *
 1181:          END IF
 1182: *
 1183:          DO 8991 p = 1, N
 1184:             CALL DCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
 1185:  8991    CONTINUE
 1186:          CALL DLACPY( 'All', N, N, A, LDA, V, LDV )
 1187: *
 1188:          IF ( TRANSP ) THEN
 1189:             CALL DLACPY( 'All', N, N, V, LDV, U, LDU )
 1190:          END IF
 1191: *
 1192:       ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
 1193: *
 1194: *        .. Singular Values and Left Singular Vectors                 ..
 1195: *
 1196: *        .. second preconditioning step to avoid need to accumulate
 1197: *        Jacobi rotations in the Jacobi iterations.
 1198:          DO 1965 p = 1, NR
 1199:             CALL DCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
 1200:  1965    CONTINUE
 1201:          CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
 1202: *
 1203:          CALL DGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1),
 1204:      $              LWORK-2*N, IERR )
 1205: *
 1206:          DO 1967 p = 1, NR - 1
 1207:             CALL DCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
 1208:  1967    CONTINUE
 1209:          CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
 1210: *
 1211:          CALL DGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
 1212:      $        LDA, WORK(N+1), LWORK-N, INFO )
 1213:          SCALEM  = WORK(N+1)
 1214:          NUMRANK = IDNINT(WORK(N+2))
 1215: *
 1216:          IF ( NR .LT. M ) THEN
 1217:             CALL DLASET( 'A',  M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU )
 1218:             IF ( NR .LT. N1 ) THEN
 1219:                CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1), LDU )
 1220:                CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1), LDU )
 1221:             END IF
 1222:          END IF
 1223: *
 1224:          CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
 1225:      $               LDU, WORK(N+1), LWORK-N, IERR )
 1226: *
 1227:          IF ( ROWPIV )
 1228:      $       CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1229: *
 1230:          DO 1974 p = 1, N1
 1231:             XSC = ONE / DNRM2( M, U(1,p), 1 )
 1232:             CALL DSCAL( M, XSC, U(1,p), 1 )
 1233:  1974    CONTINUE
 1234: *
 1235:          IF ( TRANSP ) THEN
 1236:             CALL DLACPY( 'All', N, N, U, LDU, V, LDV )
 1237:          END IF
 1238: *
 1239:       ELSE
 1240: *
 1241: *        .. Full SVD ..
 1242: *
 1243:          IF ( .NOT. JRACC ) THEN
 1244: *
 1245:          IF ( .NOT. ALMORT ) THEN
 1246: *
 1247: *           Second Preconditioning Step (QRF [with pivoting])
 1248: *           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
 1249: *           equivalent to an LQF CALL. Since in many libraries the QRF
 1250: *           seems to be better optimized than the LQF, we do explicit
 1251: *           transpose and use the QRF. This is subject to changes in an
 1252: *           optimized implementation of DGEJSV.
 1253: *
 1254:             DO 1968 p = 1, NR
 1255:                CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1256:  1968       CONTINUE
 1257: *
 1258: *           .. the following two loops perturb small entries to avoid
 1259: *           denormals in the second QR factorization, where they are
 1260: *           as good as zeros. This is done to avoid painfully slow
 1261: *           computation with denormals. The relative size of the perturbation
 1262: *           is a parameter that can be changed by the implementer.
 1263: *           This perturbation device will be obsolete on machines with
 1264: *           properly implemented arithmetic.
 1265: *           To switch it off, set L2PERT=.FALSE. To remove it from  the
 1266: *           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
 1267: *           The following two loops should be blocked and fused with the
 1268: *           transposed copy above.
 1269: *
 1270:             IF ( L2PERT ) THEN
 1271:                XSC = DSQRT(SMALL)
 1272:                DO 2969 q = 1, NR
 1273:                   TEMP1 = XSC*DABS( V(q,q) )
 1274:                   DO 2968 p = 1, N
 1275:                      IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
 1276:      $                   .OR. ( p .LT. q ) )
 1277:      $                   V(p,q) = DSIGN( TEMP1, V(p,q) )
 1278:                      IF ( p .LT. q ) V(p,q) = - V(p,q)
 1279:  2968             CONTINUE
 1280:  2969          CONTINUE
 1281:             ELSE
 1282:                CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1283:             END IF
 1284: *
 1285: *           Estimate the row scaled condition number of R1
 1286: *           (If R1 is rectangular, N > NR, then the condition number
 1287: *           of the leading NR x NR submatrix is estimated.)
 1288: *
 1289:             CALL DLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR )
 1290:             DO 3950 p = 1, NR
 1291:                TEMP1 = DNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1)
 1292:                CALL DSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1)
 1293:  3950       CONTINUE
 1294:             CALL DPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1,
 1295:      $                   WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR)
 1296:             CONDR1 = ONE / DSQRT(TEMP1)
 1297: *           .. here need a second oppinion on the condition number
 1298: *           .. then assume worst case scenario
 1299: *           R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
 1300: *           more conservative    <=> CONDR1 .LT. DSQRT(DBLE(N))
 1301: *
 1302:             COND_OK = DSQRT(DBLE(NR))
 1303: *[TP]       COND_OK is a tuning parameter.
 1304: 
 1305:             IF ( CONDR1 .LT. COND_OK ) THEN
 1306: *              .. the second QRF without pivoting. Note: in an optimized
 1307: *              implementation, this QRF should be implemented as the QRF
 1308: *              of a lower triangular matrix.
 1309: *              R1^t = Q2 * R2
 1310:                CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1311:      $              LWORK-2*N, IERR )
 1312: *
 1313:                IF ( L2PERT ) THEN
 1314:                   XSC = DSQRT(SMALL)/EPSLN
 1315:                   DO 3959 p = 2, NR
 1316:                      DO 3958 q = 1, p - 1
 1317:                         TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
 1318:                         IF ( DABS(V(q,p)) .LE. TEMP1 )
 1319:      $                     V(q,p) = DSIGN( TEMP1, V(q,p) )
 1320:  3958                CONTINUE
 1321:  3959             CONTINUE
 1322:                END IF
 1323: *
 1324:                IF ( NR .NE. N )
 1325:      $         CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
 1326: *              .. save ...
 1327: *
 1328: *           .. this transposed copy should be better than naive
 1329:                DO 1969 p = 1, NR - 1
 1330:                   CALL DCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
 1331:  1969          CONTINUE
 1332: *
 1333:                CONDR2 = CONDR1
 1334: *
 1335:             ELSE
 1336: *
 1337: *              .. ill-conditioned case: second QRF with pivoting
 1338: *              Note that windowed pivoting would be equaly good
 1339: *              numerically, and more run-time efficient. So, in
 1340: *              an optimal implementation, the next call to DGEQP3
 1341: *              should be replaced with eg. CALL SGEQPX (ACM TOMS #782)
 1342: *              with properly (carefully) chosen parameters.
 1343: *
 1344: *              R1^t * P2 = Q2 * R2
 1345:                DO 3003 p = 1, NR
 1346:                   IWORK(N+p) = 0
 1347:  3003          CONTINUE
 1348:                CALL DGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1),
 1349:      $                  WORK(2*N+1), LWORK-2*N, IERR )
 1350: **               CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1351: **     $              LWORK-2*N, IERR )
 1352:                IF ( L2PERT ) THEN
 1353:                   XSC = DSQRT(SMALL)
 1354:                   DO 3969 p = 2, NR
 1355:                      DO 3968 q = 1, p - 1
 1356:                         TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
 1357:                         IF ( DABS(V(q,p)) .LE. TEMP1 )
 1358:      $                     V(q,p) = DSIGN( TEMP1, V(q,p) )
 1359:  3968                CONTINUE
 1360:  3969             CONTINUE
 1361:                END IF
 1362: *
 1363:                CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
 1364: *
 1365:                IF ( L2PERT ) THEN
 1366:                   XSC = DSQRT(SMALL)
 1367:                   DO 8970 p = 2, NR
 1368:                      DO 8971 q = 1, p - 1
 1369:                         TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
 1370:                         V(p,q) = - DSIGN( TEMP1, V(q,p) )
 1371:  8971                CONTINUE
 1372:  8970             CONTINUE
 1373:                ELSE
 1374:                   CALL DLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV )
 1375:                END IF
 1376: *              Now, compute R2 = L3 * Q3, the LQ factorization.
 1377:                CALL DGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1),
 1378:      $               WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
 1379: *              .. and estimate the condition number
 1380:                CALL DLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR )
 1381:                DO 4950 p = 1, NR
 1382:                   TEMP1 = DNRM2( p, WORK(2*N+N*NR+NR+p), NR )
 1383:                   CALL DSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR )
 1384:  4950          CONTINUE
 1385:                CALL DPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
 1386:      $              WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR )
 1387:                CONDR2 = ONE / DSQRT(TEMP1)
 1388: *
 1389:                IF ( CONDR2 .GE. COND_OK ) THEN
 1390: *                 .. save the Householder vectors used for Q3
 1391: *                 (this overwrittes the copy of R2, as it will not be
 1392: *                 needed in this branch, but it does not overwritte the
 1393: *                 Huseholder vectors of Q2.).
 1394:                   CALL DLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N )
 1395: *                 .. and the rest of the information on Q3 is in
 1396: *                 WORK(2*N+N*NR+1:2*N+N*NR+N)
 1397:                END IF
 1398: *
 1399:             END IF
 1400: *
 1401:             IF ( L2PERT ) THEN
 1402:                XSC = DSQRT(SMALL)
 1403:                DO 4968 q = 2, NR
 1404:                   TEMP1 = XSC * V(q,q)
 1405:                   DO 4969 p = 1, q - 1
 1406: *                    V(p,q) = - DSIGN( TEMP1, V(q,p) )
 1407:                      V(p,q) = - DSIGN( TEMP1, V(p,q) )
 1408:  4969             CONTINUE
 1409:  4968          CONTINUE
 1410:             ELSE
 1411:                CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )
 1412:             END IF
 1413: *
 1414: *        Second preconditioning finished; continue with Jacobi SVD
 1415: *        The input matrix is lower trinagular.
 1416: *
 1417: *        Recover the right singular vectors as solution of a well
 1418: *        conditioned triangular matrix equation.
 1419: *
 1420:             IF ( CONDR1 .LT. COND_OK ) THEN
 1421: *
 1422:                CALL DGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U,
 1423:      $              LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO )
 1424:                SCALEM  = WORK(2*N+N*NR+NR+1)
 1425:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
 1426:                DO 3970 p = 1, NR
 1427:                   CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
 1428:                   CALL DSCAL( NR, SVA(p),    V(1,p), 1 )
 1429:  3970          CONTINUE
 1430: 
 1431: *        .. pick the right matrix equation and solve it
 1432: *
 1433:                IF ( NR .EQ. N ) THEN
 1434: * :))             .. best case, R1 is inverted. The solution of this matrix
 1435: *                 equation is Q2*V2 = the product of the Jacobi rotations
 1436: *                 used in DGESVJ, premultiplied with the orthogonal matrix
 1437: *                 from the second QR factorization.
 1438:                   CALL DTRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,LDV )
 1439:                ELSE
 1440: *                 .. R1 is well conditioned, but non-square. Transpose(R2)
 1441: *                 is inverted to get the product of the Jacobi rotations
 1442: *                 used in DGESVJ. The Q-factor from the second QR
 1443: *                 factorization is then built in explicitly.
 1444:                   CALL DTRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1),
 1445:      $                 N,V,LDV)
 1446:                   IF ( NR .LT. N ) THEN
 1447:                     CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)
 1448:                     CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
 1449:                     CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)
 1450:                   END IF
 1451:                   CALL DORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1452:      $                 V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
 1453:                END IF
 1454: *
 1455:             ELSE IF ( CONDR2 .LT. COND_OK ) THEN
 1456: *
 1457: * :)           .. the input matrix A is very likely a relative of
 1458: *              the Kahan matrix :)
 1459: *              The matrix R2 is inverted. The solution of the matrix equation
 1460: *              is Q3^T*V3 = the product of the Jacobi rotations (appplied to
 1461: *              the lower triangular L3 from the LQ factorization of
 1462: *              R2=L3*Q3), pre-multiplied with the transposed Q3.
 1463:                CALL DGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
 1464:      $              LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
 1465:                SCALEM  = WORK(2*N+N*NR+NR+1)
 1466:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
 1467:                DO 3870 p = 1, NR
 1468:                   CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
 1469:                   CALL DSCAL( NR, SVA(p),    U(1,p), 1 )
 1470:  3870          CONTINUE
 1471:                CALL DTRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,LDU)
 1472: *              .. apply the permutation from the second QR factorization
 1473:                DO 873 q = 1, NR
 1474:                   DO 872 p = 1, NR
 1475:                      WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 1476:  872              CONTINUE
 1477:                   DO 874 p = 1, NR
 1478:                      U(p,q) = WORK(2*N+N*NR+NR+p)
 1479:  874              CONTINUE
 1480:  873           CONTINUE
 1481:                IF ( NR .LT. N ) THEN
 1482:                   CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
 1483:                   CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
 1484:                   CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
 1485:                END IF
 1486:                CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1487:      $              V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1488:             ELSE
 1489: *              Last line of defense.
 1490: * #:(          This is a rather pathological case: no scaled condition
 1491: *              improvement after two pivoted QR factorizations. Other
 1492: *              possibility is that the rank revealing QR factorization
 1493: *              or the condition estimator has failed, or the COND_OK
 1494: *              is set very close to ONE (which is unnecessary). Normally,
 1495: *              this branch should never be executed, but in rare cases of
 1496: *              failure of the RRQR or condition estimator, the last line of
 1497: *              defense ensures that DGEJSV completes the task.
 1498: *              Compute the full SVD of L3 using DGESVJ with explicit
 1499: *              accumulation of Jacobi rotations.
 1500:                CALL DGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
 1501:      $              LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
 1502:                SCALEM  = WORK(2*N+N*NR+NR+1)
 1503:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
 1504:                IF ( NR .LT. N ) THEN
 1505:                   CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
 1506:                   CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
 1507:                   CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
 1508:                END IF
 1509:                CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1510:      $              V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1511: *
 1512:                CALL DORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N,
 1513:      $              WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1),
 1514:      $              LWORK-2*N-N*NR-NR, IERR )
 1515:                DO 773 q = 1, NR
 1516:                   DO 772 p = 1, NR
 1517:                      WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 1518:  772              CONTINUE
 1519:                   DO 774 p = 1, NR
 1520:                      U(p,q) = WORK(2*N+N*NR+NR+p)
 1521:  774              CONTINUE
 1522:  773           CONTINUE
 1523: *
 1524:             END IF
 1525: *
 1526: *           Permute the rows of V using the (column) permutation from the
 1527: *           first QRF. Also, scale the columns to make them unit in
 1528: *           Euclidean norm. This applies to all cases.
 1529: *
 1530:             TEMP1 = DSQRT(DBLE(N)) * EPSLN
 1531:             DO 1972 q = 1, N
 1532:                DO 972 p = 1, N
 1533:                   WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 1534:   972          CONTINUE
 1535:                DO 973 p = 1, N
 1536:                   V(p,q) = WORK(2*N+N*NR+NR+p)
 1537:   973          CONTINUE
 1538:                XSC = ONE / DNRM2( N, V(1,q), 1 )
 1539:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1540:      $           CALL DSCAL( N, XSC, V(1,q), 1 )
 1541:  1972       CONTINUE
 1542: *           At this moment, V contains the right singular vectors of A.
 1543: *           Next, assemble the left singular vector matrix U (M x N).
 1544:             IF ( NR .LT. M ) THEN
 1545:                CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
 1546:                IF ( NR .LT. N1 ) THEN
 1547:                   CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
 1548:                   CALL DLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),LDU)
 1549:                END IF
 1550:             END IF
 1551: *
 1552: *           The Q matrix from the first QRF is built into the left singular
 1553: *           matrix U. This applies to all cases.
 1554: *
 1555:             CALL DORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U,
 1556:      $           LDU, WORK(N+1), LWORK-N, IERR )
 1557: 
 1558: *           The columns of U are normalized. The cost is O(M*N) flops.
 1559:             TEMP1 = DSQRT(DBLE(M)) * EPSLN
 1560:             DO 1973 p = 1, NR
 1561:                XSC = ONE / DNRM2( M, U(1,p), 1 )
 1562:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1563:      $          CALL DSCAL( M, XSC, U(1,p), 1 )
 1564:  1973       CONTINUE
 1565: *
 1566: *           If the initial QRF is computed with row pivoting, the left
 1567: *           singular vectors must be adjusted.
 1568: *
 1569:             IF ( ROWPIV )
 1570:      $          CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1571: *
 1572:          ELSE
 1573: *
 1574: *        .. the initial matrix A has almost orthogonal columns and
 1575: *        the second QRF is not needed
 1576: *
 1577:             CALL DLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N )
 1578:             IF ( L2PERT ) THEN
 1579:                XSC = DSQRT(SMALL)
 1580:                DO 5970 p = 2, N
 1581:                   TEMP1 = XSC * WORK( N + (p-1)*N + p )
 1582:                   DO 5971 q = 1, p - 1
 1583:                      WORK(N+(q-1)*N+p)=-DSIGN(TEMP1,WORK(N+(p-1)*N+q))
 1584:  5971             CONTINUE
 1585:  5970          CONTINUE
 1586:             ELSE
 1587:                CALL DLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N )
 1588:             END IF
 1589: *
 1590:             CALL DGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA,
 1591:      $           N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO )
 1592: *
 1593:             SCALEM  = WORK(N+N*N+1)
 1594:             NUMRANK = IDNINT(WORK(N+N*N+2))
 1595:             DO 6970 p = 1, N
 1596:                CALL DCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 )
 1597:                CALL DSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 )
 1598:  6970       CONTINUE
 1599: *
 1600:             CALL DTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,
 1601:      $           ONE, A, LDA, WORK(N+1), N )
 1602:             DO 6972 p = 1, N
 1603:                CALL DCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV )
 1604:  6972       CONTINUE
 1605:             TEMP1 = DSQRT(DBLE(N))*EPSLN
 1606:             DO 6971 p = 1, N
 1607:                XSC = ONE / DNRM2( N, V(1,p), 1 )
 1608:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1609:      $            CALL DSCAL( N, XSC, V(1,p), 1 )
 1610:  6971       CONTINUE
 1611: *
 1612: *           Assemble the left singular vector matrix U (M x N).
 1613: *
 1614:             IF ( N .LT. M ) THEN
 1615:                CALL DLASET( 'A',  M-N, N, ZERO, ZERO, U(N+1,1), LDU )
 1616:                IF ( N .LT. N1 ) THEN
 1617:                   CALL DLASET( 'A',N,  N1-N, ZERO, ZERO,  U(1,N+1),LDU )
 1618:                   CALL DLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),LDU )
 1619:                END IF
 1620:             END IF
 1621:             CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
 1622:      $           LDU, WORK(N+1), LWORK-N, IERR )
 1623:             TEMP1 = DSQRT(DBLE(M))*EPSLN
 1624:             DO 6973 p = 1, N1
 1625:                XSC = ONE / DNRM2( M, U(1,p), 1 )
 1626:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1627:      $            CALL DSCAL( M, XSC, U(1,p), 1 )
 1628:  6973       CONTINUE
 1629: *
 1630:             IF ( ROWPIV )
 1631:      $         CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1632: *
 1633:          END IF
 1634: *
 1635: *        end of the  >> almost orthogonal case <<  in the full SVD
 1636: *
 1637:          ELSE
 1638: *
 1639: *        This branch deploys a preconditioned Jacobi SVD with explicitly
 1640: *        accumulated rotations. It is included as optional, mainly for
 1641: *        experimental purposes. It does perfom well, and can also be used.
 1642: *        In this implementation, this branch will be automatically activated
 1643: *        if the  condition number sigma_max(A) / sigma_min(A) is predicted
 1644: *        to be greater than the overflow threshold. This is because the
 1645: *        a posteriori computation of the singular vectors assumes robust
 1646: *        implementation of BLAS and some LAPACK procedures, capable of working
 1647: *        in presence of extreme values. Since that is not always the case, ...
 1648: *
 1649:          DO 7968 p = 1, NR
 1650:             CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1651:  7968    CONTINUE
 1652: *
 1653:          IF ( L2PERT ) THEN
 1654:             XSC = DSQRT(SMALL/EPSLN)
 1655:             DO 5969 q = 1, NR
 1656:                TEMP1 = XSC*DABS( V(q,q) )
 1657:                DO 5968 p = 1, N
 1658:                   IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
 1659:      $                .OR. ( p .LT. q ) )
 1660:      $                V(p,q) = DSIGN( TEMP1, V(p,q) )
 1661:                   IF ( p .LT. q ) V(p,q) = - V(p,q)
 1662:  5968          CONTINUE
 1663:  5969       CONTINUE
 1664:          ELSE
 1665:             CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1666:          END IF
 1667: 
 1668:          CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1669:      $        LWORK-2*N, IERR )
 1670:          CALL DLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N )
 1671: *
 1672:          DO 7969 p = 1, NR
 1673:             CALL DCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
 1674:  7969    CONTINUE
 1675: 
 1676:          IF ( L2PERT ) THEN
 1677:             XSC = DSQRT(SMALL/EPSLN)
 1678:             DO 9970 q = 2, NR
 1679:                DO 9971 p = 1, q - 1
 1680:                   TEMP1 = XSC * MIN(DABS(U(p,p)),DABS(U(q,q)))
 1681:                   U(p,q) = - DSIGN( TEMP1, U(q,p) )
 1682:  9971          CONTINUE
 1683:  9970       CONTINUE
 1684:          ELSE
 1685:             CALL DLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
 1686:          END IF
 1687: 
 1688:          CALL DGESVJ( 'G', 'U', 'V', NR, NR, U, LDU, SVA,
 1689:      $        N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO )
 1690:          SCALEM  = WORK(2*N+N*NR+1)
 1691:          NUMRANK = IDNINT(WORK(2*N+N*NR+2))
 1692: 
 1693:          IF ( NR .LT. N ) THEN
 1694:             CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
 1695:             CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
 1696:             CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
 1697:          END IF
 1698: 
 1699:          CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1700:      $        V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1701: *
 1702: *           Permute the rows of V using the (column) permutation from the
 1703: *           first QRF. Also, scale the columns to make them unit in
 1704: *           Euclidean norm. This applies to all cases.
 1705: *
 1706:             TEMP1 = DSQRT(DBLE(N)) * EPSLN
 1707:             DO 7972 q = 1, N
 1708:                DO 8972 p = 1, N
 1709:                   WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 1710:  8972          CONTINUE
 1711:                DO 8973 p = 1, N
 1712:                   V(p,q) = WORK(2*N+N*NR+NR+p)
 1713:  8973          CONTINUE
 1714:                XSC = ONE / DNRM2( N, V(1,q), 1 )
 1715:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1716:      $           CALL DSCAL( N, XSC, V(1,q), 1 )
 1717:  7972       CONTINUE
 1718: *
 1719: *           At this moment, V contains the right singular vectors of A.
 1720: *           Next, assemble the left singular vector matrix U (M x N).
 1721: *
 1722:          IF ( NR .LT. M ) THEN
 1723:             CALL DLASET( 'A',  M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
 1724:             IF ( NR .LT. N1 ) THEN
 1725:                CALL DLASET( 'A',NR,  N1-NR, ZERO, ZERO,  U(1,NR+1),LDU )
 1726:                CALL DLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),LDU )
 1727:             END IF
 1728:          END IF
 1729: *
 1730:          CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
 1731:      $        LDU, WORK(N+1), LWORK-N, IERR )
 1732: *
 1733:             IF ( ROWPIV )
 1734:      $         CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1735: *
 1736: *
 1737:          END IF
 1738:          IF ( TRANSP ) THEN
 1739: *           .. swap U and V because the procedure worked on A^t
 1740:             DO 6974 p = 1, N
 1741:                CALL DSWAP( N, U(1,p), 1, V(1,p), 1 )
 1742:  6974       CONTINUE
 1743:          END IF
 1744: *
 1745:       END IF
 1746: *     end of the full SVD
 1747: *
 1748: *     Undo scaling, if necessary (and possible)
 1749: *
 1750:       IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
 1751:          CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
 1752:          USCAL1 = ONE
 1753:          USCAL2 = ONE
 1754:       END IF
 1755: *
 1756:       IF ( NR .LT. N ) THEN
 1757:          DO 3004 p = NR+1, N
 1758:             SVA(p) = ZERO
 1759:  3004    CONTINUE
 1760:       END IF
 1761: *
 1762:       WORK(1) = USCAL2 * SCALEM
 1763:       WORK(2) = USCAL1
 1764:       IF ( ERREST ) WORK(3) = SCONDA
 1765:       IF ( LSVEC .AND. RSVEC ) THEN
 1766:          WORK(4) = CONDR1
 1767:          WORK(5) = CONDR2
 1768:       END IF
 1769:       IF ( L2TRAN ) THEN
 1770:          WORK(6) = ENTRA
 1771:          WORK(7) = ENTRAT
 1772:       END IF
 1773: *
 1774:       IWORK(1) = NR
 1775:       IWORK(2) = NUMRANK
 1776:       IWORK(3) = WARNING
 1777: *
 1778:       RETURN
 1779: *     ..
 1780: *     .. END OF DGEJSV
 1781: *     ..
 1782:       END
 1783: *

CVSweb interface <joel.bertrand@systella.fr>