Annotation of rpl/lapack/lapack/dgejsv.f, revision 1.14

1.7       bertrand    1: *> \brief \b DGEJSV
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGEJSV + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgejsv.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgejsv.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgejsv.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
                     22: *                          M, N, A, LDA, SVA, U, LDU, V, LDV,
                     23: *                          WORK, LWORK, IWORK, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       IMPLICIT    NONE
                     27: *       INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
                     31: *      $            WORK( LWORK )
                     32: *       INTEGER     IWORK( * )
                     33: *       CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
                     34: *       ..
                     35: *  
                     36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> DGEJSV computes the singular value decomposition (SVD) of a real M-by-N
                     43: *> matrix [A], where M >= N. The SVD of [A] is written as
                     44: *>
                     45: *>              [A] = [U] * [SIGMA] * [V]^t,
                     46: *>
                     47: *> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
                     48: *> diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and
                     49: *> [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are
                     50: *> the singular values of [A]. The columns of [U] and [V] are the left and
                     51: *> the right singular vectors of [A], respectively. The matrices [U] and [V]
                     52: *> are computed and stored in the arrays U and V, respectively. The diagonal
                     53: *> of [SIGMA] is computed and stored in the array SVA.
1.13      bertrand   54: *> DGEJSV can sometimes compute tiny singular values and their singular vectors much
1.14    ! bertrand   55: *> more accurately than other SVD routines, see below under Further Details.
        !            56: *> \endverbatim
1.7       bertrand   57: *
                     58: *  Arguments:
                     59: *  ==========
                     60: *
                     61: *> \param[in] JOBA
                     62: *> \verbatim
                     63: *>          JOBA is CHARACTER*1
                     64: *>        Specifies the level of accuracy:
                     65: *>       = 'C': This option works well (high relative accuracy) if A = B * D,
                     66: *>             with well-conditioned B and arbitrary diagonal matrix D.
                     67: *>             The accuracy cannot be spoiled by COLUMN scaling. The
                     68: *>             accuracy of the computed output depends on the condition of
                     69: *>             B, and the procedure aims at the best theoretical accuracy.
                     70: *>             The relative error max_{i=1:N}|d sigma_i| / sigma_i is
                     71: *>             bounded by f(M,N)*epsilon* cond(B), independent of D.
                     72: *>             The input matrix is preprocessed with the QRF with column
                     73: *>             pivoting. This initial preprocessing and preconditioning by
                     74: *>             a rank revealing QR factorization is common for all values of
                     75: *>             JOBA. Additional actions are specified as follows:
                     76: *>       = 'E': Computation as with 'C' with an additional estimate of the
                     77: *>             condition number of B. It provides a realistic error bound.
                     78: *>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
                     79: *>             D1, D2, and well-conditioned matrix C, this option gives
                     80: *>             higher accuracy than the 'C' option. If the structure of the
                     81: *>             input matrix is not known, and relative accuracy is
                     82: *>             desirable, then this option is advisable. The input matrix A
                     83: *>             is preprocessed with QR factorization with FULL (row and
                     84: *>             column) pivoting.
                     85: *>       = 'G'  Computation as with 'F' with an additional estimate of the
                     86: *>             condition number of B, where A=D*B. If A has heavily weighted
                     87: *>             rows, then using this condition number gives too pessimistic
                     88: *>             error bound.
                     89: *>       = 'A': Small singular values are the noise and the matrix is treated
                     90: *>             as numerically rank defficient. The error in the computed
                     91: *>             singular values is bounded by f(m,n)*epsilon*||A||.
                     92: *>             The computed SVD A = U * S * V^t restores A up to
                     93: *>             f(m,n)*epsilon*||A||.
                     94: *>             This gives the procedure the licence to discard (set to zero)
                     95: *>             all singular values below N*epsilon*||A||.
                     96: *>       = 'R': Similar as in 'A'. Rank revealing property of the initial
                     97: *>             QR factorization is used do reveal (using triangular factor)
                     98: *>             a gap sigma_{r+1} < epsilon * sigma_r in which case the
                     99: *>             numerical RANK is declared to be r. The SVD is computed with
                    100: *>             absolute error bounds, but more accurately than with 'A'.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] JOBU
                    104: *> \verbatim
                    105: *>          JOBU is CHARACTER*1
                    106: *>        Specifies whether to compute the columns of U:
                    107: *>       = 'U': N columns of U are returned in the array U.
                    108: *>       = 'F': full set of M left sing. vectors is returned in the array U.
                    109: *>       = 'W': U may be used as workspace of length M*N. See the description
                    110: *>             of U.
                    111: *>       = 'N': U is not computed.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] JOBV
                    115: *> \verbatim
                    116: *>          JOBV is CHARACTER*1
                    117: *>        Specifies whether to compute the matrix V:
                    118: *>       = 'V': N columns of V are returned in the array V; Jacobi rotations
                    119: *>             are not explicitly accumulated.
                    120: *>       = 'J': N columns of V are returned in the array V, but they are
                    121: *>             computed as the product of Jacobi rotations. This option is
                    122: *>             allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.
                    123: *>       = 'W': V may be used as workspace of length N*N. See the description
                    124: *>             of V.
                    125: *>       = 'N': V is not computed.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] JOBR
                    129: *> \verbatim
                    130: *>          JOBR is CHARACTER*1
                    131: *>        Specifies the RANGE for the singular values. Issues the licence to
                    132: *>        set to zero small positive singular values if they are outside
                    133: *>        specified range. If A .NE. 0 is scaled so that the largest singular
                    134: *>        value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues
                    135: *>        the licence to kill columns of A whose norm in c*A is less than
                    136: *>        DSQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,
                    137: *>        where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').
                    138: *>       = 'N': Do not kill small columns of c*A. This option assumes that
                    139: *>             BLAS and QR factorizations and triangular solvers are
                    140: *>             implemented to work in that range. If the condition of A
                    141: *>             is greater than BIG, use DGESVJ.
                    142: *>       = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)]
                    143: *>             (roughly, as described above). This option is recommended.
                    144: *>                                            ~~~~~~~~~~~~~~~~~~~~~~~~~~~
                    145: *>        For computing the singular values in the FULL range [SFMIN,BIG]
                    146: *>        use DGESVJ.
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[in] JOBT
                    150: *> \verbatim
                    151: *>          JOBT is CHARACTER*1
                    152: *>        If the matrix is square then the procedure may determine to use
                    153: *>        transposed A if A^t seems to be better with respect to convergence.
                    154: *>        If the matrix is not square, JOBT is ignored. This is subject to
                    155: *>        changes in the future.
                    156: *>        The decision is based on two values of entropy over the adjoint
                    157: *>        orbit of A^t * A. See the descriptions of WORK(6) and WORK(7).
                    158: *>       = 'T': transpose if entropy test indicates possibly faster
                    159: *>        convergence of Jacobi process if A^t is taken as input. If A is
                    160: *>        replaced with A^t, then the row pivoting is included automatically.
                    161: *>       = 'N': do not speculate.
                    162: *>        This option can be used to compute only the singular values, or the
                    163: *>        full SVD (U, SIGMA and V). For only one set of singular vectors
                    164: *>        (U or V), the caller should provide both U and V, as one of the
                    165: *>        matrices is used as workspace if the matrix A is transposed.
                    166: *>        The implementer can easily remove this constraint and make the
                    167: *>        code more complicated. See the descriptions of U and V.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[in] JOBP
                    171: *> \verbatim
                    172: *>          JOBP is CHARACTER*1
                    173: *>        Issues the licence to introduce structured perturbations to drown
                    174: *>        denormalized numbers. This licence should be active if the
                    175: *>        denormals are poorly implemented, causing slow computation,
                    176: *>        especially in cases of fast convergence (!). For details see [1,2].
                    177: *>        For the sake of simplicity, this perturbations are included only
                    178: *>        when the full SVD or only the singular values are requested. The
                    179: *>        implementer/user can easily add the perturbation for the cases of
                    180: *>        computing one set of singular vectors.
                    181: *>       = 'P': introduce perturbation
                    182: *>       = 'N': do not perturb
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[in] M
                    186: *> \verbatim
                    187: *>          M is INTEGER
                    188: *>         The number of rows of the input matrix A.  M >= 0.
                    189: *> \endverbatim
                    190: *>
                    191: *> \param[in] N
                    192: *> \verbatim
                    193: *>          N is INTEGER
                    194: *>         The number of columns of the input matrix A. M >= N >= 0.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[in,out] A
                    198: *> \verbatim
                    199: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                    200: *>          On entry, the M-by-N matrix A.
                    201: *> \endverbatim
                    202: *>
                    203: *> \param[in] LDA
                    204: *> \verbatim
                    205: *>          LDA is INTEGER
                    206: *>          The leading dimension of the array A.  LDA >= max(1,M).
                    207: *> \endverbatim
                    208: *>
                    209: *> \param[out] SVA
                    210: *> \verbatim
                    211: *>          SVA is DOUBLE PRECISION array, dimension (N)
                    212: *>          On exit,
                    213: *>          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
                    214: *>            computation SVA contains Euclidean column norms of the
                    215: *>            iterated matrices in the array A.
                    216: *>          - For WORK(1) .NE. WORK(2): The singular values of A are
                    217: *>            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
                    218: *>            sigma_max(A) overflows or if small singular values have been
                    219: *>            saved from underflow by scaling the input matrix A.
                    220: *>          - If JOBR='R' then some of the singular values may be returned
                    221: *>            as exact zeros obtained by "set to zero" because they are
                    222: *>            below the numerical rank threshold or are denormalized numbers.
                    223: *> \endverbatim
                    224: *>
                    225: *> \param[out] U
                    226: *> \verbatim
                    227: *>          U is DOUBLE PRECISION array, dimension ( LDU, N )
                    228: *>          If JOBU = 'U', then U contains on exit the M-by-N matrix of
                    229: *>                         the left singular vectors.
                    230: *>          If JOBU = 'F', then U contains on exit the M-by-M matrix of
                    231: *>                         the left singular vectors, including an ONB
                    232: *>                         of the orthogonal complement of the Range(A).
                    233: *>          If JOBU = 'W'  .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),
                    234: *>                         then U is used as workspace if the procedure
                    235: *>                         replaces A with A^t. In that case, [V] is computed
                    236: *>                         in U as left singular vectors of A^t and then
                    237: *>                         copied back to the V array. This 'W' option is just
                    238: *>                         a reminder to the caller that in this case U is
                    239: *>                         reserved as workspace of length N*N.
1.14    ! bertrand  240: *>          If JOBU = 'N'  U is not referenced, unless JOBT='T'.
1.7       bertrand  241: *> \endverbatim
                    242: *>
                    243: *> \param[in] LDU
                    244: *> \verbatim
                    245: *>          LDU is INTEGER
                    246: *>          The leading dimension of the array U,  LDU >= 1.
                    247: *>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
                    248: *> \endverbatim
                    249: *>
                    250: *> \param[out] V
                    251: *> \verbatim
                    252: *>          V is DOUBLE PRECISION array, dimension ( LDV, N )
                    253: *>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
                    254: *>                         the right singular vectors;
                    255: *>          If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),
                    256: *>                         then V is used as workspace if the pprocedure
                    257: *>                         replaces A with A^t. In that case, [U] is computed
                    258: *>                         in V as right singular vectors of A^t and then
                    259: *>                         copied back to the U array. This 'W' option is just
                    260: *>                         a reminder to the caller that in this case V is
                    261: *>                         reserved as workspace of length N*N.
1.14    ! bertrand  262: *>          If JOBV = 'N'  V is not referenced, unless JOBT='T'.
1.7       bertrand  263: *> \endverbatim
                    264: *>
                    265: *> \param[in] LDV
                    266: *> \verbatim
                    267: *>          LDV is INTEGER
                    268: *>          The leading dimension of the array V,  LDV >= 1.
                    269: *>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
                    270: *> \endverbatim
                    271: *>
                    272: *> \param[out] WORK
                    273: *> \verbatim
                    274: *>          WORK is DOUBLE PRECISION array, dimension at least LWORK.
                    275: *>          On exit, if N.GT.0 .AND. M.GT.0 (else not referenced), 
                    276: *>          WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such
                    277: *>                    that SCALE*SVA(1:N) are the computed singular values
                    278: *>                    of A. (See the description of SVA().)
                    279: *>          WORK(2) = See the description of WORK(1).
                    280: *>          WORK(3) = SCONDA is an estimate for the condition number of
                    281: *>                    column equilibrated A. (If JOBA .EQ. 'E' or 'G')
                    282: *>                    SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
                    283: *>                    It is computed using DPOCON. It holds
                    284: *>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
                    285: *>                    where R is the triangular factor from the QRF of A.
                    286: *>                    However, if R is truncated and the numerical rank is
                    287: *>                    determined to be strictly smaller than N, SCONDA is
                    288: *>                    returned as -1, thus indicating that the smallest
                    289: *>                    singular values might be lost.
                    290: *>
                    291: *>          If full SVD is needed, the following two condition numbers are
                    292: *>          useful for the analysis of the algorithm. They are provied for
                    293: *>          a developer/implementer who is familiar with the details of
                    294: *>          the method.
                    295: *>
                    296: *>          WORK(4) = an estimate of the scaled condition number of the
                    297: *>                    triangular factor in the first QR factorization.
                    298: *>          WORK(5) = an estimate of the scaled condition number of the
                    299: *>                    triangular factor in the second QR factorization.
                    300: *>          The following two parameters are computed if JOBT .EQ. 'T'.
                    301: *>          They are provided for a developer/implementer who is familiar
                    302: *>          with the details of the method.
                    303: *>
                    304: *>          WORK(6) = the entropy of A^t*A :: this is the Shannon entropy
                    305: *>                    of diag(A^t*A) / Trace(A^t*A) taken as point in the
                    306: *>                    probability simplex.
                    307: *>          WORK(7) = the entropy of A*A^t.
                    308: *> \endverbatim
                    309: *>
                    310: *> \param[in] LWORK
                    311: *> \verbatim
                    312: *>          LWORK is INTEGER
                    313: *>          Length of WORK to confirm proper allocation of work space.
                    314: *>          LWORK depends on the job:
                    315: *>
                    316: *>          If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and
                    317: *>            -> .. no scaled condition estimate required (JOBE.EQ.'N'):
                    318: *>               LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement.
                    319: *>               ->> For optimal performance (blocked code) the optimal value
                    320: *>               is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal
                    321: *>               block size for DGEQP3 and DGEQRF.
                    322: *>               In general, optimal LWORK is computed as 
                    323: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 7).        
                    324: *>            -> .. an estimate of the scaled condition number of A is
                    325: *>               required (JOBA='E', 'G'). In this case, LWORK is the maximum
                    326: *>               of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4*N,7).
                    327: *>               ->> For optimal performance (blocked code) the optimal value 
                    328: *>               is LWORK >= max(2*M+N,3*N+(N+1)*NB, N*N+4*N, 7).
                    329: *>               In general, the optimal length LWORK is computed as
                    330: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 
                    331: *>                                                     N+N*N+LWORK(DPOCON),7).
                    332: *>
                    333: *>          If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),
                    334: *>            -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
                    335: *>            -> For optimal performance, LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
1.14    ! bertrand  336: *>               where NB is the optimal block size for DGEQP3, DGEQRF, DGELQF,
1.7       bertrand  337: *>               DORMLQ. In general, the optimal length LWORK is computed as
                    338: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3), N+LWORK(DPOCON), 
1.14    ! bertrand  339: *>                       N+LWORK(DGELQF), 2*N+LWORK(DGEQRF), N+LWORK(DORMLQ)).
1.7       bertrand  340: *>
                    341: *>          If SIGMA and the left singular vectors are needed
                    342: *>            -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
                    343: *>            -> For optimal performance:
                    344: *>               if JOBU.EQ.'U' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
                    345: *>               if JOBU.EQ.'F' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,N+M*NB,7),
                    346: *>               where NB is the optimal block size for DGEQP3, DGEQRF, DORMQR.
                    347: *>               In general, the optimal length LWORK is computed as
                    348: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DPOCON),
                    349: *>                        2*N+LWORK(DGEQRF), N+LWORK(DORMQR)). 
                    350: *>               Here LWORK(DORMQR) equals N*NB (for JOBU.EQ.'U') or 
                    351: *>               M*NB (for JOBU.EQ.'F').
                    352: *>               
                    353: *>          If the full SVD is needed: (JOBU.EQ.'U' or JOBU.EQ.'F') and 
                    354: *>            -> if JOBV.EQ.'V'  
                    355: *>               the minimal requirement is LWORK >= max(2*M+N,6*N+2*N*N). 
                    356: *>            -> if JOBV.EQ.'J' the minimal requirement is 
                    357: *>               LWORK >= max(2*M+N, 4*N+N*N,2*N+N*N+6).
                    358: *>            -> For optimal performance, LWORK should be additionally
                    359: *>               larger than N+M*NB, where NB is the optimal block size
                    360: *>               for DORMQR.
                    361: *> \endverbatim
                    362: *>
                    363: *> \param[out] IWORK
                    364: *> \verbatim
                    365: *>          IWORK is INTEGER array, dimension M+3*N.
                    366: *>          On exit,
                    367: *>          IWORK(1) = the numerical rank determined after the initial
                    368: *>                     QR factorization with pivoting. See the descriptions
                    369: *>                     of JOBA and JOBR.
                    370: *>          IWORK(2) = the number of the computed nonzero singular values
                    371: *>          IWORK(3) = if nonzero, a warning message:
                    372: *>                     If IWORK(3).EQ.1 then some of the column norms of A
                    373: *>                     were denormalized floats. The requested high accuracy
                    374: *>                     is not warranted by the data.
                    375: *> \endverbatim
                    376: *>
                    377: *> \param[out] INFO
                    378: *> \verbatim
                    379: *>          INFO is INTEGER
                    380: *>           < 0  : if INFO = -i, then the i-th argument had an illegal value.
                    381: *>           = 0 :  successfull exit;
                    382: *>           > 0 :  DGEJSV  did not converge in the maximal allowed number
                    383: *>                  of sweeps. The computed values may be inaccurate.
                    384: *> \endverbatim
                    385: *
                    386: *  Authors:
                    387: *  ========
                    388: *
                    389: *> \author Univ. of Tennessee 
                    390: *> \author Univ. of California Berkeley 
                    391: *> \author Univ. of Colorado Denver 
                    392: *> \author NAG Ltd. 
                    393: *
1.14    ! bertrand  394: *> \date June 2016
1.7       bertrand  395: *
1.10      bertrand  396: *> \ingroup doubleGEsing
1.7       bertrand  397: *
                    398: *> \par Further Details:
                    399: *  =====================
                    400: *>
                    401: *> \verbatim
                    402: *>
                    403: *>  DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses DGEQP3,
                    404: *>  DGEQRF, and DGELQF as preprocessors and preconditioners. Optionally, an
                    405: *>  additional row pivoting can be used as a preprocessor, which in some
                    406: *>  cases results in much higher accuracy. An example is matrix A with the
                    407: *>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
                    408: *>  diagonal matrices and C is well-conditioned matrix. In that case, complete
                    409: *>  pivoting in the first QR factorizations provides accuracy dependent on the
                    410: *>  condition number of C, and independent of D1, D2. Such higher accuracy is
                    411: *>  not completely understood theoretically, but it works well in practice.
                    412: *>  Further, if A can be written as A = B*D, with well-conditioned B and some
                    413: *>  diagonal D, then the high accuracy is guaranteed, both theoretically and
                    414: *>  in software, independent of D. For more details see [1], [2].
                    415: *>     The computational range for the singular values can be the full range
                    416: *>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
                    417: *>  & LAPACK routines called by DGEJSV are implemented to work in that range.
                    418: *>  If that is not the case, then the restriction for safe computation with
                    419: *>  the singular values in the range of normalized IEEE numbers is that the
                    420: *>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
                    421: *>  overflow. This code (DGEJSV) is best used in this restricted range,
                    422: *>  meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
                    423: *>  returned as zeros. See JOBR for details on this.
                    424: *>     Further, this implementation is somewhat slower than the one described
                    425: *>  in [1,2] due to replacement of some non-LAPACK components, and because
                    426: *>  the choice of some tuning parameters in the iterative part (DGESVJ) is
                    427: *>  left to the implementer on a particular machine.
                    428: *>     The rank revealing QR factorization (in this code: DGEQP3) should be
                    429: *>  implemented as in [3]. We have a new version of DGEQP3 under development
                    430: *>  that is more robust than the current one in LAPACK, with a cleaner cut in
                    431: *>  rank defficient cases. It will be available in the SIGMA library [4].
                    432: *>  If M is much larger than N, it is obvious that the inital QRF with
                    433: *>  column pivoting can be preprocessed by the QRF without pivoting. That
                    434: *>  well known trick is not used in DGEJSV because in some cases heavy row
                    435: *>  weighting can be treated with complete pivoting. The overhead in cases
                    436: *>  M much larger than N is then only due to pivoting, but the benefits in
                    437: *>  terms of accuracy have prevailed. The implementer/user can incorporate
                    438: *>  this extra QRF step easily. The implementer can also improve data movement
                    439: *>  (matrix transpose, matrix copy, matrix transposed copy) - this
                    440: *>  implementation of DGEJSV uses only the simplest, naive data movement.
                    441: *> \endverbatim
                    442: *
                    443: *> \par Contributors:
                    444: *  ==================
                    445: *>
                    446: *>  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
                    447: *
                    448: *> \par References:
                    449: *  ================
                    450: *>
                    451: *> \verbatim
                    452: *>
                    453: *> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
                    454: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
                    455: *>     LAPACK Working note 169.
                    456: *> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
                    457: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
                    458: *>     LAPACK Working note 170.
                    459: *> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
                    460: *>     factorization software - a case study.
                    461: *>     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
                    462: *>     LAPACK Working note 176.
                    463: *> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
                    464: *>     QSVD, (H,K)-SVD computations.
                    465: *>     Department of Mathematics, University of Zagreb, 2008.
                    466: *> \endverbatim
                    467: *
                    468: *>  \par Bugs, examples and comments:
                    469: *   =================================
                    470: *>
                    471: *>  Please report all bugs and send interesting examples and/or comments to
                    472: *>  drmac@math.hr. Thank you.
                    473: *>
                    474: *  =====================================================================
1.1       bertrand  475:       SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
1.6       bertrand  476:      $                   M, N, A, LDA, SVA, U, LDU, V, LDV,
                    477:      $                   WORK, LWORK, IWORK, INFO )
1.1       bertrand  478: *
1.14    ! bertrand  479: *  -- LAPACK computational routine (version 3.6.1) --
1.1       bertrand  480: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    481: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.14    ! bertrand  482: *     June 2016
1.1       bertrand  483: *
                    484: *     .. Scalar Arguments ..
                    485:       IMPLICIT    NONE
                    486:       INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
                    487: *     ..
                    488: *     .. Array Arguments ..
                    489:       DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
1.6       bertrand  490:      $            WORK( LWORK )
1.1       bertrand  491:       INTEGER     IWORK( * )
                    492:       CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
                    493: *     ..
                    494: *
1.6       bertrand  495: *  ===========================================================================
1.1       bertrand  496: *
                    497: *     .. Local Parameters ..
                    498:       DOUBLE PRECISION   ZERO,  ONE
                    499:       PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
                    500: *     ..
                    501: *     .. Local Scalars ..
                    502:       DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK,
1.6       bertrand  503:      $        CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,  MAXPRJ, SCALEM,
                    504:      $        SCONDA, SFMIN,  SMALL,  TEMP1,  USCAL1, USCAL2, XSC
1.1       bertrand  505:       INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
                    506:       LOGICAL ALMORT, DEFR,   ERREST, GOSCAL, JRACC,  KILL,   LSVEC,
1.6       bertrand  507:      $        L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,
                    508:      $        NOSCAL, ROWPIV, RSVEC,  TRANSP
1.1       bertrand  509: *     ..
                    510: *     .. Intrinsic Functions ..
1.13      bertrand  511:       INTRINSIC DABS, DLOG, MAX, MIN, DBLE, IDNINT, DSIGN, DSQRT
1.1       bertrand  512: *     ..
                    513: *     .. External Functions ..
                    514:       DOUBLE PRECISION  DLAMCH, DNRM2
                    515:       INTEGER   IDAMAX
                    516:       LOGICAL   LSAME
                    517:       EXTERNAL  IDAMAX, LSAME, DLAMCH, DNRM2
                    518: *     ..
                    519: *     .. External Subroutines ..
                    520:       EXTERNAL  DCOPY,  DGELQF, DGEQP3, DGEQRF, DLACPY, DLASCL,
1.6       bertrand  521:      $          DLASET, DLASSQ, DLASWP, DORGQR, DORMLQ,
                    522:      $          DORMQR, DPOCON, DSCAL,  DSWAP,  DTRSM,  XERBLA
1.1       bertrand  523: *
                    524:       EXTERNAL  DGESVJ
                    525: *     ..
                    526: *
                    527: *     Test the input arguments
                    528: *
                    529:       LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
                    530:       JRACC  = LSAME( JOBV, 'J' )
                    531:       RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
                    532:       ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
                    533:       L2RANK = LSAME( JOBA, 'R' )
                    534:       L2ABER = LSAME( JOBA, 'A' )
                    535:       ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
                    536:       L2TRAN = LSAME( JOBT, 'T' )
                    537:       L2KILL = LSAME( JOBR, 'R' )
                    538:       DEFR   = LSAME( JOBR, 'N' )
                    539:       L2PERT = LSAME( JOBP, 'P' )
                    540: *
                    541:       IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
1.6       bertrand  542:      $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
1.1       bertrand  543:          INFO = - 1
                    544:       ELSE IF ( .NOT.( LSVEC  .OR. LSAME( JOBU, 'N' ) .OR.
1.6       bertrand  545:      $                             LSAME( JOBU, 'W' )) ) THEN
1.1       bertrand  546:          INFO = - 2
                    547:       ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
1.6       bertrand  548:      $   LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN
1.1       bertrand  549:          INFO = - 3
                    550:       ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
                    551:          INFO = - 4
                    552:       ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN
                    553:          INFO = - 5
                    554:       ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
                    555:          INFO = - 6
                    556:       ELSE IF ( M .LT. 0 ) THEN
                    557:          INFO = - 7
                    558:       ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
                    559:          INFO = - 8
                    560:       ELSE IF ( LDA .LT. M ) THEN
                    561:          INFO = - 10
                    562:       ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
                    563:          INFO = - 13
                    564:       ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
                    565:          INFO = - 14
                    566:       ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.
1.13      bertrand  567:      &                           (LWORK .LT. MAX(7,4*N+1,2*M+N))) .OR.
1.6       bertrand  568:      & (.NOT.(LSVEC .OR. RSVEC) .AND. ERREST .AND.
1.13      bertrand  569:      &                         (LWORK .LT. MAX(7,4*N+N*N,2*M+N))) .OR.
                    570:      & (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
1.6       bertrand  571:      & .OR.
1.13      bertrand  572:      & (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
1.6       bertrand  573:      & .OR.
                    574:      & (LSVEC .AND. RSVEC .AND. (.NOT.JRACC) .AND. 
1.13      bertrand  575:      &                          (LWORK.LT.MAX(2*M+N,6*N+2*N*N)))
1.6       bertrand  576:      & .OR. (LSVEC .AND. RSVEC .AND. JRACC .AND.
1.13      bertrand  577:      &                          LWORK.LT.MAX(2*M+N,4*N+N*N,2*N+N*N+6)))
1.1       bertrand  578:      &   THEN
                    579:          INFO = - 17
                    580:       ELSE
                    581: *        #:)
                    582:          INFO = 0
                    583:       END IF
                    584: *
                    585:       IF ( INFO .NE. 0 ) THEN
                    586: *       #:(
                    587:          CALL XERBLA( 'DGEJSV', - INFO )
1.6       bertrand  588:          RETURN
1.1       bertrand  589:       END IF
                    590: *
                    591: *     Quick return for void matrix (Y3K safe)
                    592: * #:)
1.14    ! bertrand  593:       IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
        !           594:          IWORK(1:3) = 0
        !           595:          WORK(1:7) = 0
        !           596:          RETURN
        !           597:       ENDIF
1.1       bertrand  598: *
                    599: *     Determine whether the matrix U should be M x N or M x M
                    600: *
                    601:       IF ( LSVEC ) THEN
                    602:          N1 = N
                    603:          IF ( LSAME( JOBU, 'F' ) ) N1 = M
                    604:       END IF
                    605: *
                    606: *     Set numerical parameters
                    607: *
                    608: *!    NOTE: Make sure DLAMCH() does not fail on the target architecture.
                    609: *
                    610:       EPSLN = DLAMCH('Epsilon')
                    611:       SFMIN = DLAMCH('SafeMinimum')
                    612:       SMALL = SFMIN / EPSLN
                    613:       BIG   = DLAMCH('O')
                    614: *     BIG   = ONE / SFMIN
                    615: *
                    616: *     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
                    617: *
                    618: *(!)  If necessary, scale SVA() to protect the largest norm from
                    619: *     overflow. It is possible that this scaling pushes the smallest
                    620: *     column norm left from the underflow threshold (extreme case).
                    621: *
                    622:       SCALEM  = ONE / DSQRT(DBLE(M)*DBLE(N))
                    623:       NOSCAL  = .TRUE.
                    624:       GOSCAL  = .TRUE.
                    625:       DO 1874 p = 1, N
                    626:          AAPP = ZERO
1.4       bertrand  627:          AAQQ = ONE
1.1       bertrand  628:          CALL DLASSQ( M, A(1,p), 1, AAPP, AAQQ )
                    629:          IF ( AAPP .GT. BIG ) THEN
                    630:             INFO = - 9
                    631:             CALL XERBLA( 'DGEJSV', -INFO )
                    632:             RETURN
                    633:          END IF
                    634:          AAQQ = DSQRT(AAQQ)
                    635:          IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
                    636:             SVA(p)  = AAPP * AAQQ
                    637:          ELSE
                    638:             NOSCAL  = .FALSE.
                    639:             SVA(p)  = AAPP * ( AAQQ * SCALEM )
                    640:             IF ( GOSCAL ) THEN
                    641:                GOSCAL = .FALSE.
                    642:                CALL DSCAL( p-1, SCALEM, SVA, 1 )
                    643:             END IF
                    644:          END IF
                    645:  1874 CONTINUE
                    646: *
                    647:       IF ( NOSCAL ) SCALEM = ONE
                    648: *
                    649:       AAPP = ZERO
                    650:       AAQQ = BIG
                    651:       DO 4781 p = 1, N
1.13      bertrand  652:          AAPP = MAX( AAPP, SVA(p) )
                    653:          IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
1.1       bertrand  654:  4781 CONTINUE
                    655: *
                    656: *     Quick return for zero M x N matrix
                    657: * #:)
                    658:       IF ( AAPP .EQ. ZERO ) THEN
                    659:          IF ( LSVEC ) CALL DLASET( 'G', M, N1, ZERO, ONE, U, LDU )
                    660:          IF ( RSVEC ) CALL DLASET( 'G', N, N,  ZERO, ONE, V, LDV )
                    661:          WORK(1) = ONE
                    662:          WORK(2) = ONE
                    663:          IF ( ERREST ) WORK(3) = ONE
                    664:          IF ( LSVEC .AND. RSVEC ) THEN
                    665:             WORK(4) = ONE
                    666:             WORK(5) = ONE
                    667:          END IF
                    668:          IF ( L2TRAN ) THEN
                    669:             WORK(6) = ZERO
                    670:             WORK(7) = ZERO
                    671:          END IF
                    672:          IWORK(1) = 0
                    673:          IWORK(2) = 0
1.6       bertrand  674:          IWORK(3) = 0
1.1       bertrand  675:          RETURN
                    676:       END IF
                    677: *
                    678: *     Issue warning if denormalized column norms detected. Override the
                    679: *     high relative accuracy request. Issue licence to kill columns
                    680: *     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
                    681: * #:(
                    682:       WARNING = 0
                    683:       IF ( AAQQ .LE. SFMIN ) THEN
                    684:          L2RANK = .TRUE.
                    685:          L2KILL = .TRUE.
                    686:          WARNING = 1
                    687:       END IF
                    688: *
                    689: *     Quick return for one-column matrix
                    690: * #:)
                    691:       IF ( N .EQ. 1 ) THEN
                    692: *
                    693:          IF ( LSVEC ) THEN
                    694:             CALL DLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
                    695:             CALL DLACPY( 'A', M, 1, A, LDA, U, LDU )
                    696: *           computing all M left singular vectors of the M x 1 matrix
                    697:             IF ( N1 .NE. N  ) THEN
                    698:                CALL DGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,IERR )
                    699:                CALL DORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,IERR )
                    700:                CALL DCOPY( M, A(1,1), 1, U(1,1), 1 )
                    701:             END IF
                    702:          END IF
                    703:          IF ( RSVEC ) THEN
                    704:              V(1,1) = ONE
                    705:          END IF
                    706:          IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
                    707:             SVA(1)  = SVA(1) / SCALEM
                    708:             SCALEM  = ONE
                    709:          END IF
                    710:          WORK(1) = ONE / SCALEM
                    711:          WORK(2) = ONE
                    712:          IF ( SVA(1) .NE. ZERO ) THEN
                    713:             IWORK(1) = 1
                    714:             IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
                    715:                IWORK(2) = 1
                    716:             ELSE
                    717:                IWORK(2) = 0
                    718:             END IF
                    719:          ELSE
                    720:             IWORK(1) = 0
                    721:             IWORK(2) = 0
                    722:          END IF
1.14    ! bertrand  723:          IWORK(3) = 0
1.1       bertrand  724:          IF ( ERREST ) WORK(3) = ONE
                    725:          IF ( LSVEC .AND. RSVEC ) THEN
                    726:             WORK(4) = ONE
                    727:             WORK(5) = ONE
                    728:          END IF
                    729:          IF ( L2TRAN ) THEN
                    730:             WORK(6) = ZERO
                    731:             WORK(7) = ZERO
                    732:          END IF
                    733:          RETURN
                    734: *
                    735:       END IF
                    736: *
                    737:       TRANSP = .FALSE.
                    738:       L2TRAN = L2TRAN .AND. ( M .EQ. N )
                    739: *
                    740:       AATMAX = -ONE
                    741:       AATMIN =  BIG
                    742:       IF ( ROWPIV .OR. L2TRAN ) THEN
                    743: *
                    744: *     Compute the row norms, needed to determine row pivoting sequence
                    745: *     (in the case of heavily row weighted A, row pivoting is strongly
                    746: *     advised) and to collect information needed to compare the
                    747: *     structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.).
                    748: *
                    749:          IF ( L2TRAN ) THEN
                    750:             DO 1950 p = 1, M
                    751:                XSC   = ZERO
1.4       bertrand  752:                TEMP1 = ONE
1.1       bertrand  753:                CALL DLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
                    754: *              DLASSQ gets both the ell_2 and the ell_infinity norm
                    755: *              in one pass through the vector
                    756:                WORK(M+N+p)  = XSC * SCALEM
                    757:                WORK(N+p)    = XSC * (SCALEM*DSQRT(TEMP1))
1.13      bertrand  758:                AATMAX = MAX( AATMAX, WORK(N+p) )
                    759:                IF (WORK(N+p) .NE. ZERO) AATMIN = MIN(AATMIN,WORK(N+p))
1.1       bertrand  760:  1950       CONTINUE
                    761:          ELSE
                    762:             DO 1904 p = 1, M
                    763:                WORK(M+N+p) = SCALEM*DABS( A(p,IDAMAX(N,A(p,1),LDA)) )
1.13      bertrand  764:                AATMAX = MAX( AATMAX, WORK(M+N+p) )
                    765:                AATMIN = MIN( AATMIN, WORK(M+N+p) )
1.1       bertrand  766:  1904       CONTINUE
                    767:          END IF
                    768: *
                    769:       END IF
                    770: *
                    771: *     For square matrix A try to determine whether A^t  would be  better
                    772: *     input for the preconditioned Jacobi SVD, with faster convergence.
                    773: *     The decision is based on an O(N) function of the vector of column
                    774: *     and row norms of A, based on the Shannon entropy. This should give
                    775: *     the right choice in most cases when the difference actually matters.
                    776: *     It may fail and pick the slower converging side.
                    777: *
                    778:       ENTRA  = ZERO
                    779:       ENTRAT = ZERO
                    780:       IF ( L2TRAN ) THEN
                    781: *
                    782:          XSC   = ZERO
1.4       bertrand  783:          TEMP1 = ONE
1.1       bertrand  784:          CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
                    785:          TEMP1 = ONE / TEMP1
                    786: *
                    787:          ENTRA = ZERO
                    788:          DO 1113 p = 1, N
                    789:             BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
                    790:             IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
                    791:  1113    CONTINUE
                    792:          ENTRA = - ENTRA / DLOG(DBLE(N))
                    793: *
                    794: *        Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex.
                    795: *        It is derived from the diagonal of  A^t * A.  Do the same with the
                    796: *        diagonal of A * A^t, compute the entropy of the corresponding
                    797: *        probability distribution. Note that A * A^t and A^t * A have the
                    798: *        same trace.
                    799: *
                    800:          ENTRAT = ZERO
                    801:          DO 1114 p = N+1, N+M
                    802:             BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1
                    803:             IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
                    804:  1114    CONTINUE
                    805:          ENTRAT = - ENTRAT / DLOG(DBLE(M))
                    806: *
                    807: *        Analyze the entropies and decide A or A^t. Smaller entropy
                    808: *        usually means better input for the algorithm.
                    809: *
                    810:          TRANSP = ( ENTRAT .LT. ENTRA )
                    811: *
                    812: *        If A^t is better than A, transpose A.
                    813: *
                    814:          IF ( TRANSP ) THEN
                    815: *           In an optimal implementation, this trivial transpose
                    816: *           should be replaced with faster transpose.
                    817:             DO 1115 p = 1, N - 1
                    818:                DO 1116 q = p + 1, N
                    819:                    TEMP1 = A(q,p)
                    820:                   A(q,p) = A(p,q)
                    821:                   A(p,q) = TEMP1
                    822:  1116          CONTINUE
                    823:  1115       CONTINUE
                    824:             DO 1117 p = 1, N
                    825:                WORK(M+N+p) = SVA(p)
                    826:                SVA(p)      = WORK(N+p)
                    827:  1117       CONTINUE
                    828:             TEMP1  = AAPP
                    829:             AAPP   = AATMAX
                    830:             AATMAX = TEMP1
                    831:             TEMP1  = AAQQ
                    832:             AAQQ   = AATMIN
                    833:             AATMIN = TEMP1
                    834:             KILL   = LSVEC
                    835:             LSVEC  = RSVEC
                    836:             RSVEC  = KILL
1.4       bertrand  837:             IF ( LSVEC ) N1 = N
1.1       bertrand  838: *
                    839:             ROWPIV = .TRUE.
                    840:          END IF
                    841: *
                    842:       END IF
                    843: *     END IF L2TRAN
                    844: *
                    845: *     Scale the matrix so that its maximal singular value remains less
                    846: *     than DSQRT(BIG) -- the matrix is scaled so that its maximal column
                    847: *     has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep
                    848: *     DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and
                    849: *     BLAS routines that, in some implementations, are not capable of
                    850: *     working in the full interval [SFMIN,BIG] and that they may provoke
                    851: *     overflows in the intermediate results. If the singular values spread
                    852: *     from SFMIN to BIG, then DGESVJ will compute them. So, in that case,
                    853: *     one should use DGESVJ instead of DGEJSV.
                    854: *
                    855:       BIG1   = DSQRT( BIG )
                    856:       TEMP1  = DSQRT( BIG / DBLE(N) )
                    857: *
                    858:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
                    859:       IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
                    860:           AAQQ = ( AAQQ / AAPP ) * TEMP1
                    861:       ELSE
                    862:           AAQQ = ( AAQQ * TEMP1 ) / AAPP
                    863:       END IF
                    864:       TEMP1 = TEMP1 * SCALEM
                    865:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
                    866: *
                    867: *     To undo scaling at the end of this procedure, multiply the
                    868: *     computed singular values with USCAL2 / USCAL1.
                    869: *
                    870:       USCAL1 = TEMP1
                    871:       USCAL2 = AAPP
                    872: *
                    873:       IF ( L2KILL ) THEN
                    874: *        L2KILL enforces computation of nonzero singular values in
                    875: *        the restricted range of condition number of the initial A,
                    876: *        sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN).
                    877:          XSC = DSQRT( SFMIN )
                    878:       ELSE
                    879:          XSC = SMALL
                    880: *
                    881: *        Now, if the condition number of A is too big,
                    882: *        sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN,
                    883: *        as a precaution measure, the full SVD is computed using DGESVJ
                    884: *        with accumulated Jacobi rotations. This provides numerically
                    885: *        more robust computation, at the cost of slightly increased run
                    886: *        time. Depending on the concrete implementation of BLAS and LAPACK
                    887: *        (i.e. how they behave in presence of extreme ill-conditioning) the
                    888: *        implementor may decide to remove this switch.
                    889:          IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
                    890:             JRACC = .TRUE.
                    891:          END IF
                    892: *
                    893:       END IF
                    894:       IF ( AAQQ .LT. XSC ) THEN
                    895:          DO 700 p = 1, N
                    896:             IF ( SVA(p) .LT. XSC ) THEN
                    897:                CALL DLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA )
                    898:                SVA(p) = ZERO
                    899:             END IF
                    900:  700     CONTINUE
                    901:       END IF
                    902: *
                    903: *     Preconditioning using QR factorization with pivoting
                    904: *
                    905:       IF ( ROWPIV ) THEN
                    906: *        Optional row permutation (Bjoerck row pivoting):
                    907: *        A result by Cox and Higham shows that the Bjoerck's
                    908: *        row pivoting combined with standard column pivoting
                    909: *        has similar effect as Powell-Reid complete pivoting.
                    910: *        The ell-infinity norms of A are made nonincreasing.
                    911:          DO 1952 p = 1, M - 1
                    912:             q = IDAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1
                    913:             IWORK(2*N+p) = q
                    914:             IF ( p .NE. q ) THEN
                    915:                TEMP1       = WORK(M+N+p)
                    916:                WORK(M+N+p) = WORK(M+N+q)
                    917:                WORK(M+N+q) = TEMP1
                    918:             END IF
                    919:  1952    CONTINUE
                    920:          CALL DLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )
                    921:       END IF
                    922: *
                    923: *     End of the preparation phase (scaling, optional sorting and
                    924: *     transposing, optional flushing of small columns).
                    925: *
                    926: *     Preconditioning
                    927: *
                    928: *     If the full SVD is needed, the right singular vectors are computed
                    929: *     from a matrix equation, and for that we need theoretical analysis
                    930: *     of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF.
                    931: *     In all other cases the first RR QRF can be chosen by other criteria
                    932: *     (eg speed by replacing global with restricted window pivoting, such
                    933: *     as in SGEQPX from TOMS # 782). Good results will be obtained using
                    934: *     SGEQPX with properly (!) chosen numerical parameters.
                    935: *     Any improvement of DGEQP3 improves overal performance of DGEJSV.
                    936: *
                    937: *     A * P1 = Q1 * [ R1^t 0]^t:
                    938:       DO 1963 p = 1, N
                    939: *        .. all columns are free columns
                    940:          IWORK(p) = 0
                    941:  1963 CONTINUE
                    942:       CALL DGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR )
                    943: *
                    944: *     The upper triangular matrix R1 from the first QRF is inspected for
                    945: *     rank deficiency and possibilities for deflation, or possible
                    946: *     ill-conditioning. Depending on the user specified flag L2RANK,
                    947: *     the procedure explores possibilities to reduce the numerical
                    948: *     rank by inspecting the computed upper triangular factor. If
                    949: *     L2RANK or L2ABER are up, then DGEJSV will compute the SVD of
                    950: *     A + dA, where ||dA|| <= f(M,N)*EPSLN.
                    951: *
                    952:       NR = 1
                    953:       IF ( L2ABER ) THEN
                    954: *        Standard absolute error bound suffices. All sigma_i with
                    955: *        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
                    956: *        agressive enforcement of lower numerical rank by introducing a
                    957: *        backward error of the order of N*EPSLN*||A||.
                    958:          TEMP1 = DSQRT(DBLE(N))*EPSLN
                    959:          DO 3001 p = 2, N
                    960:             IF ( DABS(A(p,p)) .GE. (TEMP1*DABS(A(1,1))) ) THEN
                    961:                NR = NR + 1
                    962:             ELSE
                    963:                GO TO 3002
                    964:             END IF
                    965:  3001    CONTINUE
                    966:  3002    CONTINUE
                    967:       ELSE IF ( L2RANK ) THEN
                    968: *        .. similarly as above, only slightly more gentle (less agressive).
                    969: *        Sudden drop on the diagonal of R1 is used as the criterion for
                    970: *        close-to-rank-defficient.
                    971:          TEMP1 = DSQRT(SFMIN)
                    972:          DO 3401 p = 2, N
                    973:             IF ( ( DABS(A(p,p)) .LT. (EPSLN*DABS(A(p-1,p-1))) ) .OR.
1.6       bertrand  974:      $           ( DABS(A(p,p)) .LT. SMALL ) .OR.
                    975:      $           ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
1.1       bertrand  976:             NR = NR + 1
                    977:  3401    CONTINUE
                    978:  3402    CONTINUE
                    979: *
                    980:       ELSE
                    981: *        The goal is high relative accuracy. However, if the matrix
                    982: *        has high scaled condition number the relative accuracy is in
                    983: *        general not feasible. Later on, a condition number estimator
                    984: *        will be deployed to estimate the scaled condition number.
                    985: *        Here we just remove the underflowed part of the triangular
                    986: *        factor. This prevents the situation in which the code is
                    987: *        working hard to get the accuracy not warranted by the data.
                    988:          TEMP1  = DSQRT(SFMIN)
                    989:          DO 3301 p = 2, N
                    990:             IF ( ( DABS(A(p,p)) .LT. SMALL ) .OR.
1.6       bertrand  991:      $          ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
1.1       bertrand  992:             NR = NR + 1
                    993:  3301    CONTINUE
                    994:  3302    CONTINUE
                    995: *
                    996:       END IF
                    997: *
                    998:       ALMORT = .FALSE.
                    999:       IF ( NR .EQ. N ) THEN
                   1000:          MAXPRJ = ONE
                   1001:          DO 3051 p = 2, N
                   1002:             TEMP1  = DABS(A(p,p)) / SVA(IWORK(p))
1.13      bertrand 1003:             MAXPRJ = MIN( MAXPRJ, TEMP1 )
1.1       bertrand 1004:  3051    CONTINUE
                   1005:          IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
                   1006:       END IF
                   1007: *
                   1008: *
                   1009:       SCONDA = - ONE
                   1010:       CONDR1 = - ONE
                   1011:       CONDR2 = - ONE
                   1012: *
                   1013:       IF ( ERREST ) THEN
                   1014:          IF ( N .EQ. NR ) THEN
                   1015:             IF ( RSVEC ) THEN
                   1016: *              .. V is available as workspace
                   1017:                CALL DLACPY( 'U', N, N, A, LDA, V, LDV )
                   1018:                DO 3053 p = 1, N
                   1019:                   TEMP1 = SVA(IWORK(p))
                   1020:                   CALL DSCAL( p, ONE/TEMP1, V(1,p), 1 )
                   1021:  3053          CONTINUE
                   1022:                CALL DPOCON( 'U', N, V, LDV, ONE, TEMP1,
1.6       bertrand 1023:      $              WORK(N+1), IWORK(2*N+M+1), IERR )
1.1       bertrand 1024:             ELSE IF ( LSVEC ) THEN
                   1025: *              .. U is available as workspace
                   1026:                CALL DLACPY( 'U', N, N, A, LDA, U, LDU )
                   1027:                DO 3054 p = 1, N
                   1028:                   TEMP1 = SVA(IWORK(p))
                   1029:                   CALL DSCAL( p, ONE/TEMP1, U(1,p), 1 )
                   1030:  3054          CONTINUE
                   1031:                CALL DPOCON( 'U', N, U, LDU, ONE, TEMP1,
1.6       bertrand 1032:      $              WORK(N+1), IWORK(2*N+M+1), IERR )
1.1       bertrand 1033:             ELSE
                   1034:                CALL DLACPY( 'U', N, N, A, LDA, WORK(N+1), N )
                   1035:                DO 3052 p = 1, N
                   1036:                   TEMP1 = SVA(IWORK(p))
                   1037:                   CALL DSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 )
                   1038:  3052          CONTINUE
                   1039: *           .. the columns of R are scaled to have unit Euclidean lengths.
                   1040:                CALL DPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1,
1.6       bertrand 1041:      $              WORK(N+N*N+1), IWORK(2*N+M+1), IERR )
1.1       bertrand 1042:             END IF
                   1043:             SCONDA = ONE / DSQRT(TEMP1)
                   1044: *           SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
                   1045: *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
                   1046:          ELSE
                   1047:             SCONDA = - ONE
                   1048:          END IF
                   1049:       END IF
                   1050: *
                   1051:       L2PERT = L2PERT .AND. ( DABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) )
                   1052: *     If there is no violent scaling, artificial perturbation is not needed.
                   1053: *
                   1054: *     Phase 3:
                   1055: *
                   1056:       IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
                   1057: *
                   1058: *         Singular Values only
                   1059: *
                   1060: *         .. transpose A(1:NR,1:N)
1.13      bertrand 1061:          DO 1946 p = 1, MIN( N-1, NR )
1.1       bertrand 1062:             CALL DCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
                   1063:  1946    CONTINUE
                   1064: *
                   1065: *        The following two DO-loops introduce small relative perturbation
                   1066: *        into the strict upper triangle of the lower triangular matrix.
                   1067: *        Small entries below the main diagonal are also changed.
                   1068: *        This modification is useful if the computing environment does not
                   1069: *        provide/allow FLUSH TO ZERO underflow, for it prevents many
                   1070: *        annoying denormalized numbers in case of strongly scaled matrices.
                   1071: *        The perturbation is structured so that it does not introduce any
                   1072: *        new perturbation of the singular values, and it does not destroy
                   1073: *        the job done by the preconditioner.
                   1074: *        The licence for this perturbation is in the variable L2PERT, which
                   1075: *        should be .FALSE. if FLUSH TO ZERO underflow is active.
                   1076: *
                   1077:          IF ( .NOT. ALMORT ) THEN
                   1078: *
                   1079:             IF ( L2PERT ) THEN
                   1080: *              XSC = DSQRT(SMALL)
                   1081:                XSC = EPSLN / DBLE(N)
                   1082:                DO 4947 q = 1, NR
                   1083:                   TEMP1 = XSC*DABS(A(q,q))
                   1084:                   DO 4949 p = 1, N
                   1085:                      IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
1.6       bertrand 1086:      $                    .OR. ( p .LT. q ) )
                   1087:      $                     A(p,q) = DSIGN( TEMP1, A(p,q) )
1.1       bertrand 1088:  4949             CONTINUE
                   1089:  4947          CONTINUE
                   1090:             ELSE
                   1091:                CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA )
                   1092:             END IF
                   1093: *
                   1094: *            .. second preconditioning using the QR factorization
                   1095: *
                   1096:             CALL DGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR )
                   1097: *
                   1098: *           .. and transpose upper to lower triangular
                   1099:             DO 1948 p = 1, NR - 1
                   1100:                CALL DCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
                   1101:  1948       CONTINUE
                   1102: *
                   1103:          END IF
                   1104: *
                   1105: *           Row-cyclic Jacobi SVD algorithm with column pivoting
                   1106: *
                   1107: *           .. again some perturbation (a "background noise") is added
                   1108: *           to drown denormals
                   1109:             IF ( L2PERT ) THEN
                   1110: *              XSC = DSQRT(SMALL)
                   1111:                XSC = EPSLN / DBLE(N)
                   1112:                DO 1947 q = 1, NR
                   1113:                   TEMP1 = XSC*DABS(A(q,q))
                   1114:                   DO 1949 p = 1, NR
                   1115:                      IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
1.6       bertrand 1116:      $                       .OR. ( p .LT. q ) )
                   1117:      $                   A(p,q) = DSIGN( TEMP1, A(p,q) )
1.1       bertrand 1118:  1949             CONTINUE
                   1119:  1947          CONTINUE
                   1120:             ELSE
                   1121:                CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2), LDA )
                   1122:             END IF
                   1123: *
                   1124: *           .. and one-sided Jacobi rotations are started on a lower
                   1125: *           triangular matrix (plus perturbation which is ignored in
                   1126: *           the part which destroys triangular form (confusing?!))
                   1127: *
                   1128:             CALL DGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,
1.6       bertrand 1129:      $                      N, V, LDV, WORK, LWORK, INFO )
1.1       bertrand 1130: *
                   1131:             SCALEM  = WORK(1)
                   1132:             NUMRANK = IDNINT(WORK(2))
                   1133: *
                   1134: *
                   1135:       ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
                   1136: *
                   1137: *        -> Singular Values and Right Singular Vectors <-
                   1138: *
                   1139:          IF ( ALMORT ) THEN
                   1140: *
                   1141: *           .. in this case NR equals N
                   1142:             DO 1998 p = 1, NR
                   1143:                CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
                   1144:  1998       CONTINUE
                   1145:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
                   1146: *
                   1147:             CALL DGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,
1.6       bertrand 1148:      $                  WORK, LWORK, INFO )
1.1       bertrand 1149:             SCALEM  = WORK(1)
                   1150:             NUMRANK = IDNINT(WORK(2))
                   1151: 
                   1152:          ELSE
                   1153: *
                   1154: *        .. two more QR factorizations ( one QRF is not enough, two require
                   1155: *        accumulated product of Jacobi rotations, three are perfect )
                   1156: *
                   1157:             CALL DLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1), LDA )
                   1158:             CALL DGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR)
                   1159:             CALL DLACPY( 'Lower', NR, NR, A, LDA, V, LDV )
                   1160:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
                   1161:             CALL DGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1),
1.6       bertrand 1162:      $                   LWORK-2*N, IERR )
1.1       bertrand 1163:             DO 8998 p = 1, NR
                   1164:                CALL DCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
                   1165:  8998       CONTINUE
                   1166:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
                   1167: *
                   1168:             CALL DGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,
1.6       bertrand 1169:      $                  LDU, WORK(N+1), LWORK, INFO )
1.1       bertrand 1170:             SCALEM  = WORK(N+1)
                   1171:             NUMRANK = IDNINT(WORK(N+2))
                   1172:             IF ( NR .LT. N ) THEN
                   1173:                CALL DLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1),   LDV )
                   1174:                CALL DLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1),   LDV )
                   1175:                CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1), LDV )
                   1176:             END IF
                   1177: *
                   1178:          CALL DORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK,
1.6       bertrand 1179:      $               V, LDV, WORK(N+1), LWORK-N, IERR )
1.1       bertrand 1180: *
                   1181:          END IF
                   1182: *
                   1183:          DO 8991 p = 1, N
                   1184:             CALL DCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
                   1185:  8991    CONTINUE
                   1186:          CALL DLACPY( 'All', N, N, A, LDA, V, LDV )
                   1187: *
                   1188:          IF ( TRANSP ) THEN
                   1189:             CALL DLACPY( 'All', N, N, V, LDV, U, LDU )
                   1190:          END IF
                   1191: *
                   1192:       ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
                   1193: *
                   1194: *        .. Singular Values and Left Singular Vectors                 ..
                   1195: *
                   1196: *        .. second preconditioning step to avoid need to accumulate
                   1197: *        Jacobi rotations in the Jacobi iterations.
                   1198:          DO 1965 p = 1, NR
                   1199:             CALL DCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
                   1200:  1965    CONTINUE
                   1201:          CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
                   1202: *
                   1203:          CALL DGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1),
1.6       bertrand 1204:      $              LWORK-2*N, IERR )
1.1       bertrand 1205: *
                   1206:          DO 1967 p = 1, NR - 1
                   1207:             CALL DCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
                   1208:  1967    CONTINUE
                   1209:          CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
                   1210: *
                   1211:          CALL DGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
1.6       bertrand 1212:      $        LDA, WORK(N+1), LWORK-N, INFO )
1.1       bertrand 1213:          SCALEM  = WORK(N+1)
                   1214:          NUMRANK = IDNINT(WORK(N+2))
                   1215: *
                   1216:          IF ( NR .LT. M ) THEN
                   1217:             CALL DLASET( 'A',  M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU )
                   1218:             IF ( NR .LT. N1 ) THEN
                   1219:                CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1), LDU )
                   1220:                CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1), LDU )
                   1221:             END IF
                   1222:          END IF
                   1223: *
                   1224:          CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
1.6       bertrand 1225:      $               LDU, WORK(N+1), LWORK-N, IERR )
1.1       bertrand 1226: *
                   1227:          IF ( ROWPIV )
1.6       bertrand 1228:      $       CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
1.1       bertrand 1229: *
                   1230:          DO 1974 p = 1, N1
                   1231:             XSC = ONE / DNRM2( M, U(1,p), 1 )
                   1232:             CALL DSCAL( M, XSC, U(1,p), 1 )
                   1233:  1974    CONTINUE
                   1234: *
                   1235:          IF ( TRANSP ) THEN
                   1236:             CALL DLACPY( 'All', N, N, U, LDU, V, LDV )
                   1237:          END IF
                   1238: *
                   1239:       ELSE
                   1240: *
                   1241: *        .. Full SVD ..
                   1242: *
                   1243:          IF ( .NOT. JRACC ) THEN
                   1244: *
                   1245:          IF ( .NOT. ALMORT ) THEN
                   1246: *
                   1247: *           Second Preconditioning Step (QRF [with pivoting])
                   1248: *           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
                   1249: *           equivalent to an LQF CALL. Since in many libraries the QRF
                   1250: *           seems to be better optimized than the LQF, we do explicit
                   1251: *           transpose and use the QRF. This is subject to changes in an
                   1252: *           optimized implementation of DGEJSV.
                   1253: *
                   1254:             DO 1968 p = 1, NR
                   1255:                CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
                   1256:  1968       CONTINUE
                   1257: *
                   1258: *           .. the following two loops perturb small entries to avoid
                   1259: *           denormals in the second QR factorization, where they are
                   1260: *           as good as zeros. This is done to avoid painfully slow
                   1261: *           computation with denormals. The relative size of the perturbation
                   1262: *           is a parameter that can be changed by the implementer.
                   1263: *           This perturbation device will be obsolete on machines with
                   1264: *           properly implemented arithmetic.
                   1265: *           To switch it off, set L2PERT=.FALSE. To remove it from  the
                   1266: *           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
                   1267: *           The following two loops should be blocked and fused with the
                   1268: *           transposed copy above.
                   1269: *
                   1270:             IF ( L2PERT ) THEN
                   1271:                XSC = DSQRT(SMALL)
                   1272:                DO 2969 q = 1, NR
                   1273:                   TEMP1 = XSC*DABS( V(q,q) )
                   1274:                   DO 2968 p = 1, N
                   1275:                      IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
1.6       bertrand 1276:      $                   .OR. ( p .LT. q ) )
                   1277:      $                   V(p,q) = DSIGN( TEMP1, V(p,q) )
                   1278:                      IF ( p .LT. q ) V(p,q) = - V(p,q)
1.1       bertrand 1279:  2968             CONTINUE
                   1280:  2969          CONTINUE
                   1281:             ELSE
                   1282:                CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
                   1283:             END IF
                   1284: *
                   1285: *           Estimate the row scaled condition number of R1
                   1286: *           (If R1 is rectangular, N > NR, then the condition number
                   1287: *           of the leading NR x NR submatrix is estimated.)
                   1288: *
                   1289:             CALL DLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR )
                   1290:             DO 3950 p = 1, NR
                   1291:                TEMP1 = DNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1)
                   1292:                CALL DSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1)
                   1293:  3950       CONTINUE
                   1294:             CALL DPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1,
1.6       bertrand 1295:      $                   WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR)
1.1       bertrand 1296:             CONDR1 = ONE / DSQRT(TEMP1)
                   1297: *           .. here need a second oppinion on the condition number
                   1298: *           .. then assume worst case scenario
                   1299: *           R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
                   1300: *           more conservative    <=> CONDR1 .LT. DSQRT(DBLE(N))
                   1301: *
                   1302:             COND_OK = DSQRT(DBLE(NR))
                   1303: *[TP]       COND_OK is a tuning parameter.
                   1304: 
                   1305:             IF ( CONDR1 .LT. COND_OK ) THEN
                   1306: *              .. the second QRF without pivoting. Note: in an optimized
                   1307: *              implementation, this QRF should be implemented as the QRF
                   1308: *              of a lower triangular matrix.
                   1309: *              R1^t = Q2 * R2
                   1310:                CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
1.6       bertrand 1311:      $              LWORK-2*N, IERR )
1.1       bertrand 1312: *
                   1313:                IF ( L2PERT ) THEN
                   1314:                   XSC = DSQRT(SMALL)/EPSLN
                   1315:                   DO 3959 p = 2, NR
                   1316:                      DO 3958 q = 1, p - 1
1.13      bertrand 1317:                         TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
1.1       bertrand 1318:                         IF ( DABS(V(q,p)) .LE. TEMP1 )
1.6       bertrand 1319:      $                     V(q,p) = DSIGN( TEMP1, V(q,p) )
1.1       bertrand 1320:  3958                CONTINUE
                   1321:  3959             CONTINUE
                   1322:                END IF
                   1323: *
                   1324:                IF ( NR .NE. N )
1.6       bertrand 1325:      $         CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
1.1       bertrand 1326: *              .. save ...
                   1327: *
                   1328: *           .. this transposed copy should be better than naive
                   1329:                DO 1969 p = 1, NR - 1
                   1330:                   CALL DCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
                   1331:  1969          CONTINUE
                   1332: *
                   1333:                CONDR2 = CONDR1
                   1334: *
                   1335:             ELSE
                   1336: *
                   1337: *              .. ill-conditioned case: second QRF with pivoting
                   1338: *              Note that windowed pivoting would be equaly good
                   1339: *              numerically, and more run-time efficient. So, in
                   1340: *              an optimal implementation, the next call to DGEQP3
                   1341: *              should be replaced with eg. CALL SGEQPX (ACM TOMS #782)
                   1342: *              with properly (carefully) chosen parameters.
                   1343: *
                   1344: *              R1^t * P2 = Q2 * R2
                   1345:                DO 3003 p = 1, NR
                   1346:                   IWORK(N+p) = 0
                   1347:  3003          CONTINUE
                   1348:                CALL DGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1),
1.6       bertrand 1349:      $                  WORK(2*N+1), LWORK-2*N, IERR )
1.1       bertrand 1350: **               CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
1.6       bertrand 1351: **     $              LWORK-2*N, IERR )
1.1       bertrand 1352:                IF ( L2PERT ) THEN
                   1353:                   XSC = DSQRT(SMALL)
                   1354:                   DO 3969 p = 2, NR
                   1355:                      DO 3968 q = 1, p - 1
1.13      bertrand 1356:                         TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
1.1       bertrand 1357:                         IF ( DABS(V(q,p)) .LE. TEMP1 )
1.6       bertrand 1358:      $                     V(q,p) = DSIGN( TEMP1, V(q,p) )
1.1       bertrand 1359:  3968                CONTINUE
                   1360:  3969             CONTINUE
                   1361:                END IF
                   1362: *
                   1363:                CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
                   1364: *
                   1365:                IF ( L2PERT ) THEN
                   1366:                   XSC = DSQRT(SMALL)
                   1367:                   DO 8970 p = 2, NR
                   1368:                      DO 8971 q = 1, p - 1
1.13      bertrand 1369:                         TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
1.1       bertrand 1370:                         V(p,q) = - DSIGN( TEMP1, V(q,p) )
                   1371:  8971                CONTINUE
                   1372:  8970             CONTINUE
                   1373:                ELSE
                   1374:                   CALL DLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV )
                   1375:                END IF
                   1376: *              Now, compute R2 = L3 * Q3, the LQ factorization.
                   1377:                CALL DGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1),
1.6       bertrand 1378:      $               WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
1.1       bertrand 1379: *              .. and estimate the condition number
                   1380:                CALL DLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR )
                   1381:                DO 4950 p = 1, NR
                   1382:                   TEMP1 = DNRM2( p, WORK(2*N+N*NR+NR+p), NR )
                   1383:                   CALL DSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR )
                   1384:  4950          CONTINUE
                   1385:                CALL DPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
1.6       bertrand 1386:      $              WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR )
1.1       bertrand 1387:                CONDR2 = ONE / DSQRT(TEMP1)
                   1388: *
                   1389:                IF ( CONDR2 .GE. COND_OK ) THEN
                   1390: *                 .. save the Householder vectors used for Q3
                   1391: *                 (this overwrittes the copy of R2, as it will not be
                   1392: *                 needed in this branch, but it does not overwritte the
                   1393: *                 Huseholder vectors of Q2.).
                   1394:                   CALL DLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N )
                   1395: *                 .. and the rest of the information on Q3 is in
                   1396: *                 WORK(2*N+N*NR+1:2*N+N*NR+N)
                   1397:                END IF
                   1398: *
                   1399:             END IF
                   1400: *
                   1401:             IF ( L2PERT ) THEN
                   1402:                XSC = DSQRT(SMALL)
                   1403:                DO 4968 q = 2, NR
                   1404:                   TEMP1 = XSC * V(q,q)
                   1405:                   DO 4969 p = 1, q - 1
                   1406: *                    V(p,q) = - DSIGN( TEMP1, V(q,p) )
                   1407:                      V(p,q) = - DSIGN( TEMP1, V(p,q) )
                   1408:  4969             CONTINUE
                   1409:  4968          CONTINUE
                   1410:             ELSE
                   1411:                CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )
                   1412:             END IF
                   1413: *
                   1414: *        Second preconditioning finished; continue with Jacobi SVD
                   1415: *        The input matrix is lower trinagular.
                   1416: *
                   1417: *        Recover the right singular vectors as solution of a well
                   1418: *        conditioned triangular matrix equation.
                   1419: *
                   1420:             IF ( CONDR1 .LT. COND_OK ) THEN
                   1421: *
                   1422:                CALL DGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U,
1.6       bertrand 1423:      $              LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO )
1.1       bertrand 1424:                SCALEM  = WORK(2*N+N*NR+NR+1)
                   1425:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
                   1426:                DO 3970 p = 1, NR
                   1427:                   CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
                   1428:                   CALL DSCAL( NR, SVA(p),    V(1,p), 1 )
                   1429:  3970          CONTINUE
                   1430: 
                   1431: *        .. pick the right matrix equation and solve it
                   1432: *
1.6       bertrand 1433:                IF ( NR .EQ. N ) THEN
1.1       bertrand 1434: * :))             .. best case, R1 is inverted. The solution of this matrix
                   1435: *                 equation is Q2*V2 = the product of the Jacobi rotations
                   1436: *                 used in DGESVJ, premultiplied with the orthogonal matrix
                   1437: *                 from the second QR factorization.
                   1438:                   CALL DTRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,LDV )
                   1439:                ELSE
                   1440: *                 .. R1 is well conditioned, but non-square. Transpose(R2)
                   1441: *                 is inverted to get the product of the Jacobi rotations
                   1442: *                 used in DGESVJ. The Q-factor from the second QR
                   1443: *                 factorization is then built in explicitly.
                   1444:                   CALL DTRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1),
1.6       bertrand 1445:      $                 N,V,LDV)
1.1       bertrand 1446:                   IF ( NR .LT. N ) THEN
                   1447:                     CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)
                   1448:                     CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
                   1449:                     CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)
                   1450:                   END IF
                   1451:                   CALL DORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
1.6       bertrand 1452:      $                 V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
1.1       bertrand 1453:                END IF
                   1454: *
                   1455:             ELSE IF ( CONDR2 .LT. COND_OK ) THEN
                   1456: *
                   1457: * :)           .. the input matrix A is very likely a relative of
                   1458: *              the Kahan matrix :)
                   1459: *              The matrix R2 is inverted. The solution of the matrix equation
                   1460: *              is Q3^T*V3 = the product of the Jacobi rotations (appplied to
                   1461: *              the lower triangular L3 from the LQ factorization of
                   1462: *              R2=L3*Q3), pre-multiplied with the transposed Q3.
                   1463:                CALL DGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
1.6       bertrand 1464:      $              LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
1.1       bertrand 1465:                SCALEM  = WORK(2*N+N*NR+NR+1)
                   1466:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
                   1467:                DO 3870 p = 1, NR
                   1468:                   CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
                   1469:                   CALL DSCAL( NR, SVA(p),    U(1,p), 1 )
                   1470:  3870          CONTINUE
                   1471:                CALL DTRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,LDU)
                   1472: *              .. apply the permutation from the second QR factorization
                   1473:                DO 873 q = 1, NR
                   1474:                   DO 872 p = 1, NR
                   1475:                      WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
                   1476:  872              CONTINUE
                   1477:                   DO 874 p = 1, NR
                   1478:                      U(p,q) = WORK(2*N+N*NR+NR+p)
                   1479:  874              CONTINUE
                   1480:  873           CONTINUE
                   1481:                IF ( NR .LT. N ) THEN
                   1482:                   CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
                   1483:                   CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
                   1484:                   CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
                   1485:                END IF
                   1486:                CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
1.6       bertrand 1487:      $              V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
1.1       bertrand 1488:             ELSE
                   1489: *              Last line of defense.
                   1490: * #:(          This is a rather pathological case: no scaled condition
                   1491: *              improvement after two pivoted QR factorizations. Other
                   1492: *              possibility is that the rank revealing QR factorization
                   1493: *              or the condition estimator has failed, or the COND_OK
                   1494: *              is set very close to ONE (which is unnecessary). Normally,
                   1495: *              this branch should never be executed, but in rare cases of
                   1496: *              failure of the RRQR or condition estimator, the last line of
                   1497: *              defense ensures that DGEJSV completes the task.
                   1498: *              Compute the full SVD of L3 using DGESVJ with explicit
                   1499: *              accumulation of Jacobi rotations.
                   1500:                CALL DGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
1.6       bertrand 1501:      $              LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
1.1       bertrand 1502:                SCALEM  = WORK(2*N+N*NR+NR+1)
                   1503:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
                   1504:                IF ( NR .LT. N ) THEN
                   1505:                   CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
                   1506:                   CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
                   1507:                   CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
                   1508:                END IF
                   1509:                CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
1.6       bertrand 1510:      $              V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
1.1       bertrand 1511: *
                   1512:                CALL DORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N,
1.6       bertrand 1513:      $              WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1),
                   1514:      $              LWORK-2*N-N*NR-NR, IERR )
1.1       bertrand 1515:                DO 773 q = 1, NR
                   1516:                   DO 772 p = 1, NR
                   1517:                      WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
                   1518:  772              CONTINUE
                   1519:                   DO 774 p = 1, NR
                   1520:                      U(p,q) = WORK(2*N+N*NR+NR+p)
                   1521:  774              CONTINUE
                   1522:  773           CONTINUE
                   1523: *
                   1524:             END IF
                   1525: *
                   1526: *           Permute the rows of V using the (column) permutation from the
                   1527: *           first QRF. Also, scale the columns to make them unit in
                   1528: *           Euclidean norm. This applies to all cases.
                   1529: *
                   1530:             TEMP1 = DSQRT(DBLE(N)) * EPSLN
                   1531:             DO 1972 q = 1, N
                   1532:                DO 972 p = 1, N
                   1533:                   WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
                   1534:   972          CONTINUE
                   1535:                DO 973 p = 1, N
                   1536:                   V(p,q) = WORK(2*N+N*NR+NR+p)
                   1537:   973          CONTINUE
                   1538:                XSC = ONE / DNRM2( N, V(1,q), 1 )
                   1539:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
1.6       bertrand 1540:      $           CALL DSCAL( N, XSC, V(1,q), 1 )
1.1       bertrand 1541:  1972       CONTINUE
                   1542: *           At this moment, V contains the right singular vectors of A.
                   1543: *           Next, assemble the left singular vector matrix U (M x N).
                   1544:             IF ( NR .LT. M ) THEN
                   1545:                CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
                   1546:                IF ( NR .LT. N1 ) THEN
                   1547:                   CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
                   1548:                   CALL DLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),LDU)
                   1549:                END IF
                   1550:             END IF
                   1551: *
                   1552: *           The Q matrix from the first QRF is built into the left singular
                   1553: *           matrix U. This applies to all cases.
                   1554: *
                   1555:             CALL DORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U,
1.6       bertrand 1556:      $           LDU, WORK(N+1), LWORK-N, IERR )
1.1       bertrand 1557: 
                   1558: *           The columns of U are normalized. The cost is O(M*N) flops.
                   1559:             TEMP1 = DSQRT(DBLE(M)) * EPSLN
                   1560:             DO 1973 p = 1, NR
                   1561:                XSC = ONE / DNRM2( M, U(1,p), 1 )
                   1562:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
1.6       bertrand 1563:      $          CALL DSCAL( M, XSC, U(1,p), 1 )
1.1       bertrand 1564:  1973       CONTINUE
                   1565: *
                   1566: *           If the initial QRF is computed with row pivoting, the left
                   1567: *           singular vectors must be adjusted.
                   1568: *
                   1569:             IF ( ROWPIV )
1.6       bertrand 1570:      $          CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
1.1       bertrand 1571: *
                   1572:          ELSE
                   1573: *
                   1574: *        .. the initial matrix A has almost orthogonal columns and
                   1575: *        the second QRF is not needed
                   1576: *
                   1577:             CALL DLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N )
                   1578:             IF ( L2PERT ) THEN
                   1579:                XSC = DSQRT(SMALL)
                   1580:                DO 5970 p = 2, N
                   1581:                   TEMP1 = XSC * WORK( N + (p-1)*N + p )
                   1582:                   DO 5971 q = 1, p - 1
                   1583:                      WORK(N+(q-1)*N+p)=-DSIGN(TEMP1,WORK(N+(p-1)*N+q))
                   1584:  5971             CONTINUE
                   1585:  5970          CONTINUE
                   1586:             ELSE
                   1587:                CALL DLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N )
                   1588:             END IF
                   1589: *
                   1590:             CALL DGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA,
1.6       bertrand 1591:      $           N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO )
1.1       bertrand 1592: *
                   1593:             SCALEM  = WORK(N+N*N+1)
                   1594:             NUMRANK = IDNINT(WORK(N+N*N+2))
                   1595:             DO 6970 p = 1, N
                   1596:                CALL DCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 )
                   1597:                CALL DSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 )
                   1598:  6970       CONTINUE
                   1599: *
                   1600:             CALL DTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,
1.6       bertrand 1601:      $           ONE, A, LDA, WORK(N+1), N )
1.1       bertrand 1602:             DO 6972 p = 1, N
                   1603:                CALL DCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV )
                   1604:  6972       CONTINUE
                   1605:             TEMP1 = DSQRT(DBLE(N))*EPSLN
                   1606:             DO 6971 p = 1, N
                   1607:                XSC = ONE / DNRM2( N, V(1,p), 1 )
                   1608:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
1.6       bertrand 1609:      $            CALL DSCAL( N, XSC, V(1,p), 1 )
1.1       bertrand 1610:  6971       CONTINUE
                   1611: *
                   1612: *           Assemble the left singular vector matrix U (M x N).
                   1613: *
                   1614:             IF ( N .LT. M ) THEN
1.4       bertrand 1615:                CALL DLASET( 'A',  M-N, N, ZERO, ZERO, U(N+1,1), LDU )
1.1       bertrand 1616:                IF ( N .LT. N1 ) THEN
                   1617:                   CALL DLASET( 'A',N,  N1-N, ZERO, ZERO,  U(1,N+1),LDU )
1.4       bertrand 1618:                   CALL DLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),LDU )
1.1       bertrand 1619:                END IF
                   1620:             END IF
                   1621:             CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
1.6       bertrand 1622:      $           LDU, WORK(N+1), LWORK-N, IERR )
1.1       bertrand 1623:             TEMP1 = DSQRT(DBLE(M))*EPSLN
                   1624:             DO 6973 p = 1, N1
                   1625:                XSC = ONE / DNRM2( M, U(1,p), 1 )
                   1626:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
1.6       bertrand 1627:      $            CALL DSCAL( M, XSC, U(1,p), 1 )
1.1       bertrand 1628:  6973       CONTINUE
                   1629: *
                   1630:             IF ( ROWPIV )
1.6       bertrand 1631:      $         CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
1.1       bertrand 1632: *
                   1633:          END IF
                   1634: *
                   1635: *        end of the  >> almost orthogonal case <<  in the full SVD
                   1636: *
                   1637:          ELSE
                   1638: *
                   1639: *        This branch deploys a preconditioned Jacobi SVD with explicitly
                   1640: *        accumulated rotations. It is included as optional, mainly for
                   1641: *        experimental purposes. It does perfom well, and can also be used.
                   1642: *        In this implementation, this branch will be automatically activated
                   1643: *        if the  condition number sigma_max(A) / sigma_min(A) is predicted
                   1644: *        to be greater than the overflow threshold. This is because the
                   1645: *        a posteriori computation of the singular vectors assumes robust
                   1646: *        implementation of BLAS and some LAPACK procedures, capable of working
                   1647: *        in presence of extreme values. Since that is not always the case, ...
                   1648: *
                   1649:          DO 7968 p = 1, NR
                   1650:             CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
                   1651:  7968    CONTINUE
                   1652: *
                   1653:          IF ( L2PERT ) THEN
                   1654:             XSC = DSQRT(SMALL/EPSLN)
                   1655:             DO 5969 q = 1, NR
                   1656:                TEMP1 = XSC*DABS( V(q,q) )
                   1657:                DO 5968 p = 1, N
                   1658:                   IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
1.6       bertrand 1659:      $                .OR. ( p .LT. q ) )
                   1660:      $                V(p,q) = DSIGN( TEMP1, V(p,q) )
                   1661:                   IF ( p .LT. q ) V(p,q) = - V(p,q)
1.1       bertrand 1662:  5968          CONTINUE
                   1663:  5969       CONTINUE
                   1664:          ELSE
                   1665:             CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
                   1666:          END IF
                   1667: 
                   1668:          CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
1.6       bertrand 1669:      $        LWORK-2*N, IERR )
1.1       bertrand 1670:          CALL DLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N )
                   1671: *
                   1672:          DO 7969 p = 1, NR
                   1673:             CALL DCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
                   1674:  7969    CONTINUE
                   1675: 
                   1676:          IF ( L2PERT ) THEN
                   1677:             XSC = DSQRT(SMALL/EPSLN)
                   1678:             DO 9970 q = 2, NR
                   1679:                DO 9971 p = 1, q - 1
1.13      bertrand 1680:                   TEMP1 = XSC * MIN(DABS(U(p,p)),DABS(U(q,q)))
1.1       bertrand 1681:                   U(p,q) = - DSIGN( TEMP1, U(q,p) )
                   1682:  9971          CONTINUE
                   1683:  9970       CONTINUE
                   1684:          ELSE
                   1685:             CALL DLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
                   1686:          END IF
                   1687: 
                   1688:          CALL DGESVJ( 'G', 'U', 'V', NR, NR, U, LDU, SVA,
1.6       bertrand 1689:      $        N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO )
1.1       bertrand 1690:          SCALEM  = WORK(2*N+N*NR+1)
                   1691:          NUMRANK = IDNINT(WORK(2*N+N*NR+2))
                   1692: 
                   1693:          IF ( NR .LT. N ) THEN
                   1694:             CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
                   1695:             CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
                   1696:             CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
                   1697:          END IF
                   1698: 
                   1699:          CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
1.6       bertrand 1700:      $        V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
1.1       bertrand 1701: *
                   1702: *           Permute the rows of V using the (column) permutation from the
                   1703: *           first QRF. Also, scale the columns to make them unit in
                   1704: *           Euclidean norm. This applies to all cases.
                   1705: *
                   1706:             TEMP1 = DSQRT(DBLE(N)) * EPSLN
                   1707:             DO 7972 q = 1, N
                   1708:                DO 8972 p = 1, N
                   1709:                   WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
                   1710:  8972          CONTINUE
                   1711:                DO 8973 p = 1, N
                   1712:                   V(p,q) = WORK(2*N+N*NR+NR+p)
                   1713:  8973          CONTINUE
                   1714:                XSC = ONE / DNRM2( N, V(1,q), 1 )
                   1715:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
1.6       bertrand 1716:      $           CALL DSCAL( N, XSC, V(1,q), 1 )
1.1       bertrand 1717:  7972       CONTINUE
                   1718: *
                   1719: *           At this moment, V contains the right singular vectors of A.
                   1720: *           Next, assemble the left singular vector matrix U (M x N).
                   1721: *
1.4       bertrand 1722:          IF ( NR .LT. M ) THEN
                   1723:             CALL DLASET( 'A',  M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
                   1724:             IF ( NR .LT. N1 ) THEN
                   1725:                CALL DLASET( 'A',NR,  N1-NR, ZERO, ZERO,  U(1,NR+1),LDU )
                   1726:                CALL DLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),LDU )
1.1       bertrand 1727:             END IF
                   1728:          END IF
                   1729: *
                   1730:          CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
1.6       bertrand 1731:      $        LDU, WORK(N+1), LWORK-N, IERR )
1.1       bertrand 1732: *
                   1733:             IF ( ROWPIV )
1.6       bertrand 1734:      $         CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
1.1       bertrand 1735: *
                   1736: *
                   1737:          END IF
                   1738:          IF ( TRANSP ) THEN
                   1739: *           .. swap U and V because the procedure worked on A^t
                   1740:             DO 6974 p = 1, N
                   1741:                CALL DSWAP( N, U(1,p), 1, V(1,p), 1 )
                   1742:  6974       CONTINUE
                   1743:          END IF
                   1744: *
                   1745:       END IF
                   1746: *     end of the full SVD
                   1747: *
                   1748: *     Undo scaling, if necessary (and possible)
                   1749: *
                   1750:       IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
                   1751:          CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
                   1752:          USCAL1 = ONE
                   1753:          USCAL2 = ONE
                   1754:       END IF
                   1755: *
                   1756:       IF ( NR .LT. N ) THEN
                   1757:          DO 3004 p = NR+1, N
                   1758:             SVA(p) = ZERO
                   1759:  3004    CONTINUE
                   1760:       END IF
                   1761: *
                   1762:       WORK(1) = USCAL2 * SCALEM
                   1763:       WORK(2) = USCAL1
                   1764:       IF ( ERREST ) WORK(3) = SCONDA
                   1765:       IF ( LSVEC .AND. RSVEC ) THEN
                   1766:          WORK(4) = CONDR1
                   1767:          WORK(5) = CONDR2
                   1768:       END IF
                   1769:       IF ( L2TRAN ) THEN
                   1770:          WORK(6) = ENTRA
                   1771:          WORK(7) = ENTRAT
                   1772:       END IF
                   1773: *
                   1774:       IWORK(1) = NR
                   1775:       IWORK(2) = NUMRANK
                   1776:       IWORK(3) = WARNING
                   1777: *
                   1778:       RETURN
                   1779: *     ..
                   1780: *     .. END OF DGEJSV
                   1781: *     ..
                   1782:       END
                   1783: *

CVSweb interface <joel.bertrand@systella.fr>