File:  [local] / rpl / lapack / lapack / dgeev.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
    2:      $                  LDVR, WORK, LWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          JOBVL, JOBVR
   11:       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
   15:      $                   WI( * ), WORK( * ), WR( * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DGEEV computes for an N-by-N real nonsymmetric matrix A, the
   22: *  eigenvalues and, optionally, the left and/or right eigenvectors.
   23: *
   24: *  The right eigenvector v(j) of A satisfies
   25: *                   A * v(j) = lambda(j) * v(j)
   26: *  where lambda(j) is its eigenvalue.
   27: *  The left eigenvector u(j) of A satisfies
   28: *                u(j)**H * A = lambda(j) * u(j)**H
   29: *  where u(j)**H denotes the conjugate transpose of u(j).
   30: *
   31: *  The computed eigenvectors are normalized to have Euclidean norm
   32: *  equal to 1 and largest component real.
   33: *
   34: *  Arguments
   35: *  =========
   36: *
   37: *  JOBVL   (input) CHARACTER*1
   38: *          = 'N': left eigenvectors of A are not computed;
   39: *          = 'V': left eigenvectors of A are computed.
   40: *
   41: *  JOBVR   (input) CHARACTER*1
   42: *          = 'N': right eigenvectors of A are not computed;
   43: *          = 'V': right eigenvectors of A are computed.
   44: *
   45: *  N       (input) INTEGER
   46: *          The order of the matrix A. N >= 0.
   47: *
   48: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   49: *          On entry, the N-by-N matrix A.
   50: *          On exit, A has been overwritten.
   51: *
   52: *  LDA     (input) INTEGER
   53: *          The leading dimension of the array A.  LDA >= max(1,N).
   54: *
   55: *  WR      (output) DOUBLE PRECISION array, dimension (N)
   56: *  WI      (output) DOUBLE PRECISION array, dimension (N)
   57: *          WR and WI contain the real and imaginary parts,
   58: *          respectively, of the computed eigenvalues.  Complex
   59: *          conjugate pairs of eigenvalues appear consecutively
   60: *          with the eigenvalue having the positive imaginary part
   61: *          first.
   62: *
   63: *  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
   64: *          If JOBVL = 'V', the left eigenvectors u(j) are stored one
   65: *          after another in the columns of VL, in the same order
   66: *          as their eigenvalues.
   67: *          If JOBVL = 'N', VL is not referenced.
   68: *          If the j-th eigenvalue is real, then u(j) = VL(:,j),
   69: *          the j-th column of VL.
   70: *          If the j-th and (j+1)-st eigenvalues form a complex
   71: *          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
   72: *          u(j+1) = VL(:,j) - i*VL(:,j+1).
   73: *
   74: *  LDVL    (input) INTEGER
   75: *          The leading dimension of the array VL.  LDVL >= 1; if
   76: *          JOBVL = 'V', LDVL >= N.
   77: *
   78: *  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
   79: *          If JOBVR = 'V', the right eigenvectors v(j) are stored one
   80: *          after another in the columns of VR, in the same order
   81: *          as their eigenvalues.
   82: *          If JOBVR = 'N', VR is not referenced.
   83: *          If the j-th eigenvalue is real, then v(j) = VR(:,j),
   84: *          the j-th column of VR.
   85: *          If the j-th and (j+1)-st eigenvalues form a complex
   86: *          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
   87: *          v(j+1) = VR(:,j) - i*VR(:,j+1).
   88: *
   89: *  LDVR    (input) INTEGER
   90: *          The leading dimension of the array VR.  LDVR >= 1; if
   91: *          JOBVR = 'V', LDVR >= N.
   92: *
   93: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   94: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   95: *
   96: *  LWORK   (input) INTEGER
   97: *          The dimension of the array WORK.  LWORK >= max(1,3*N), and
   98: *          if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.  For good
   99: *          performance, LWORK must generally be larger.
  100: *
  101: *          If LWORK = -1, then a workspace query is assumed; the routine
  102: *          only calculates the optimal size of the WORK array, returns
  103: *          this value as the first entry of the WORK array, and no error
  104: *          message related to LWORK is issued by XERBLA.
  105: *
  106: *  INFO    (output) INTEGER
  107: *          = 0:  successful exit
  108: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  109: *          > 0:  if INFO = i, the QR algorithm failed to compute all the
  110: *                eigenvalues, and no eigenvectors have been computed;
  111: *                elements i+1:N of WR and WI contain eigenvalues which
  112: *                have converged.
  113: *
  114: *  =====================================================================
  115: *
  116: *     .. Parameters ..
  117:       DOUBLE PRECISION   ZERO, ONE
  118:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  119: *     ..
  120: *     .. Local Scalars ..
  121:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
  122:       CHARACTER          SIDE
  123:       INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K,
  124:      $                   MAXWRK, MINWRK, NOUT
  125:       DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
  126:      $                   SN
  127: *     ..
  128: *     .. Local Arrays ..
  129:       LOGICAL            SELECT( 1 )
  130:       DOUBLE PRECISION   DUM( 1 )
  131: *     ..
  132: *     .. External Subroutines ..
  133:       EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
  134:      $                   DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC,
  135:      $                   XERBLA
  136: *     ..
  137: *     .. External Functions ..
  138:       LOGICAL            LSAME
  139:       INTEGER            IDAMAX, ILAENV
  140:       DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
  141:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
  142:      $                   DNRM2
  143: *     ..
  144: *     .. Intrinsic Functions ..
  145:       INTRINSIC          MAX, SQRT
  146: *     ..
  147: *     .. Executable Statements ..
  148: *
  149: *     Test the input arguments
  150: *
  151:       INFO = 0
  152:       LQUERY = ( LWORK.EQ.-1 )
  153:       WANTVL = LSAME( JOBVL, 'V' )
  154:       WANTVR = LSAME( JOBVR, 'V' )
  155:       IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
  156:          INFO = -1
  157:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
  158:          INFO = -2
  159:       ELSE IF( N.LT.0 ) THEN
  160:          INFO = -3
  161:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  162:          INFO = -5
  163:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
  164:          INFO = -9
  165:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
  166:          INFO = -11
  167:       END IF
  168: *
  169: *     Compute workspace
  170: *      (Note: Comments in the code beginning "Workspace:" describe the
  171: *       minimal amount of workspace needed at that point in the code,
  172: *       as well as the preferred amount for good performance.
  173: *       NB refers to the optimal block size for the immediately
  174: *       following subroutine, as returned by ILAENV.
  175: *       HSWORK refers to the workspace preferred by DHSEQR, as
  176: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  177: *       the worst case.)
  178: *
  179:       IF( INFO.EQ.0 ) THEN
  180:          IF( N.EQ.0 ) THEN
  181:             MINWRK = 1
  182:             MAXWRK = 1
  183:          ELSE
  184:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
  185:             IF( WANTVL ) THEN
  186:                MINWRK = 4*N
  187:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  188:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
  189:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
  190:      $                WORK, -1, INFO )
  191:                HSWORK = WORK( 1 )
  192:                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  193:                MAXWRK = MAX( MAXWRK, 4*N )
  194:             ELSE IF( WANTVR ) THEN
  195:                MINWRK = 4*N
  196:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  197:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
  198:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
  199:      $                WORK, -1, INFO )
  200:                HSWORK = WORK( 1 )
  201:                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  202:                MAXWRK = MAX( MAXWRK, 4*N )
  203:             ELSE 
  204:                MINWRK = 3*N
  205:                CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR, LDVR,
  206:      $                WORK, -1, INFO )
  207:                HSWORK = WORK( 1 )
  208:                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  209:             END IF
  210:             MAXWRK = MAX( MAXWRK, MINWRK )
  211:          END IF
  212:          WORK( 1 ) = MAXWRK
  213: *
  214:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  215:             INFO = -13
  216:          END IF
  217:       END IF
  218: *
  219:       IF( INFO.NE.0 ) THEN
  220:          CALL XERBLA( 'DGEEV ', -INFO )
  221:          RETURN
  222:       ELSE IF( LQUERY ) THEN
  223:          RETURN
  224:       END IF
  225: *
  226: *     Quick return if possible
  227: *
  228:       IF( N.EQ.0 )
  229:      $   RETURN
  230: *
  231: *     Get machine constants
  232: *
  233:       EPS = DLAMCH( 'P' )
  234:       SMLNUM = DLAMCH( 'S' )
  235:       BIGNUM = ONE / SMLNUM
  236:       CALL DLABAD( SMLNUM, BIGNUM )
  237:       SMLNUM = SQRT( SMLNUM ) / EPS
  238:       BIGNUM = ONE / SMLNUM
  239: *
  240: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  241: *
  242:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
  243:       SCALEA = .FALSE.
  244:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  245:          SCALEA = .TRUE.
  246:          CSCALE = SMLNUM
  247:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  248:          SCALEA = .TRUE.
  249:          CSCALE = BIGNUM
  250:       END IF
  251:       IF( SCALEA )
  252:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  253: *
  254: *     Balance the matrix
  255: *     (Workspace: need N)
  256: *
  257:       IBAL = 1
  258:       CALL DGEBAL( 'B', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
  259: *
  260: *     Reduce to upper Hessenberg form
  261: *     (Workspace: need 3*N, prefer 2*N+N*NB)
  262: *
  263:       ITAU = IBAL + N
  264:       IWRK = ITAU + N
  265:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  266:      $             LWORK-IWRK+1, IERR )
  267: *
  268:       IF( WANTVL ) THEN
  269: *
  270: *        Want left eigenvectors
  271: *        Copy Householder vectors to VL
  272: *
  273:          SIDE = 'L'
  274:          CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
  275: *
  276: *        Generate orthogonal matrix in VL
  277: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  278: *
  279:          CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
  280:      $                LWORK-IWRK+1, IERR )
  281: *
  282: *        Perform QR iteration, accumulating Schur vectors in VL
  283: *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
  284: *
  285:          IWRK = ITAU
  286:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
  287:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  288: *
  289:          IF( WANTVR ) THEN
  290: *
  291: *           Want left and right eigenvectors
  292: *           Copy Schur vectors to VR
  293: *
  294:             SIDE = 'B'
  295:             CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
  296:          END IF
  297: *
  298:       ELSE IF( WANTVR ) THEN
  299: *
  300: *        Want right eigenvectors
  301: *        Copy Householder vectors to VR
  302: *
  303:          SIDE = 'R'
  304:          CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
  305: *
  306: *        Generate orthogonal matrix in VR
  307: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  308: *
  309:          CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
  310:      $                LWORK-IWRK+1, IERR )
  311: *
  312: *        Perform QR iteration, accumulating Schur vectors in VR
  313: *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
  314: *
  315:          IWRK = ITAU
  316:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
  317:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  318: *
  319:       ELSE
  320: *
  321: *        Compute eigenvalues only
  322: *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
  323: *
  324:          IWRK = ITAU
  325:          CALL DHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
  326:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  327:       END IF
  328: *
  329: *     If INFO > 0 from DHSEQR, then quit
  330: *
  331:       IF( INFO.GT.0 )
  332:      $   GO TO 50
  333: *
  334:       IF( WANTVL .OR. WANTVR ) THEN
  335: *
  336: *        Compute left and/or right eigenvectors
  337: *        (Workspace: need 4*N)
  338: *
  339:          CALL DTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  340:      $                N, NOUT, WORK( IWRK ), IERR )
  341:       END IF
  342: *
  343:       IF( WANTVL ) THEN
  344: *
  345: *        Undo balancing of left eigenvectors
  346: *        (Workspace: need N)
  347: *
  348:          CALL DGEBAK( 'B', 'L', N, ILO, IHI, WORK( IBAL ), N, VL, LDVL,
  349:      $                IERR )
  350: *
  351: *        Normalize left eigenvectors and make largest component real
  352: *
  353:          DO 20 I = 1, N
  354:             IF( WI( I ).EQ.ZERO ) THEN
  355:                SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
  356:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
  357:             ELSE IF( WI( I ).GT.ZERO ) THEN
  358:                SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
  359:      $               DNRM2( N, VL( 1, I+1 ), 1 ) )
  360:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
  361:                CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
  362:                DO 10 K = 1, N
  363:                   WORK( IWRK+K-1 ) = VL( K, I )**2 + VL( K, I+1 )**2
  364:    10          CONTINUE
  365:                K = IDAMAX( N, WORK( IWRK ), 1 )
  366:                CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
  367:                CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
  368:                VL( K, I+1 ) = ZERO
  369:             END IF
  370:    20    CONTINUE
  371:       END IF
  372: *
  373:       IF( WANTVR ) THEN
  374: *
  375: *        Undo balancing of right eigenvectors
  376: *        (Workspace: need N)
  377: *
  378:          CALL DGEBAK( 'B', 'R', N, ILO, IHI, WORK( IBAL ), N, VR, LDVR,
  379:      $                IERR )
  380: *
  381: *        Normalize right eigenvectors and make largest component real
  382: *
  383:          DO 40 I = 1, N
  384:             IF( WI( I ).EQ.ZERO ) THEN
  385:                SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
  386:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
  387:             ELSE IF( WI( I ).GT.ZERO ) THEN
  388:                SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
  389:      $               DNRM2( N, VR( 1, I+1 ), 1 ) )
  390:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
  391:                CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
  392:                DO 30 K = 1, N
  393:                   WORK( IWRK+K-1 ) = VR( K, I )**2 + VR( K, I+1 )**2
  394:    30          CONTINUE
  395:                K = IDAMAX( N, WORK( IWRK ), 1 )
  396:                CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
  397:                CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
  398:                VR( K, I+1 ) = ZERO
  399:             END IF
  400:    40    CONTINUE
  401:       END IF
  402: *
  403: *     Undo scaling if necessary
  404: *
  405:    50 CONTINUE
  406:       IF( SCALEA ) THEN
  407:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
  408:      $                MAX( N-INFO, 1 ), IERR )
  409:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
  410:      $                MAX( N-INFO, 1 ), IERR )
  411:          IF( INFO.GT.0 ) THEN
  412:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
  413:      $                   IERR )
  414:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
  415:      $                   IERR )
  416:          END IF
  417:       END IF
  418: *
  419:       WORK( 1 ) = MAXWRK
  420:       RETURN
  421: *
  422: *     End of DGEEV
  423: *
  424:       END

CVSweb interface <joel.bertrand@systella.fr>