Annotation of rpl/lapack/lapack/dgeev.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
        !             2:      $                  LDVR, WORK, LWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBVL, JOBVR
        !            11:       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       DOUBLE PRECISION   A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
        !            15:      $                   WI( * ), WORK( * ), WR( * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DGEEV computes for an N-by-N real nonsymmetric matrix A, the
        !            22: *  eigenvalues and, optionally, the left and/or right eigenvectors.
        !            23: *
        !            24: *  The right eigenvector v(j) of A satisfies
        !            25: *                   A * v(j) = lambda(j) * v(j)
        !            26: *  where lambda(j) is its eigenvalue.
        !            27: *  The left eigenvector u(j) of A satisfies
        !            28: *                u(j)**H * A = lambda(j) * u(j)**H
        !            29: *  where u(j)**H denotes the conjugate transpose of u(j).
        !            30: *
        !            31: *  The computed eigenvectors are normalized to have Euclidean norm
        !            32: *  equal to 1 and largest component real.
        !            33: *
        !            34: *  Arguments
        !            35: *  =========
        !            36: *
        !            37: *  JOBVL   (input) CHARACTER*1
        !            38: *          = 'N': left eigenvectors of A are not computed;
        !            39: *          = 'V': left eigenvectors of A are computed.
        !            40: *
        !            41: *  JOBVR   (input) CHARACTER*1
        !            42: *          = 'N': right eigenvectors of A are not computed;
        !            43: *          = 'V': right eigenvectors of A are computed.
        !            44: *
        !            45: *  N       (input) INTEGER
        !            46: *          The order of the matrix A. N >= 0.
        !            47: *
        !            48: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
        !            49: *          On entry, the N-by-N matrix A.
        !            50: *          On exit, A has been overwritten.
        !            51: *
        !            52: *  LDA     (input) INTEGER
        !            53: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            54: *
        !            55: *  WR      (output) DOUBLE PRECISION array, dimension (N)
        !            56: *  WI      (output) DOUBLE PRECISION array, dimension (N)
        !            57: *          WR and WI contain the real and imaginary parts,
        !            58: *          respectively, of the computed eigenvalues.  Complex
        !            59: *          conjugate pairs of eigenvalues appear consecutively
        !            60: *          with the eigenvalue having the positive imaginary part
        !            61: *          first.
        !            62: *
        !            63: *  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
        !            64: *          If JOBVL = 'V', the left eigenvectors u(j) are stored one
        !            65: *          after another in the columns of VL, in the same order
        !            66: *          as their eigenvalues.
        !            67: *          If JOBVL = 'N', VL is not referenced.
        !            68: *          If the j-th eigenvalue is real, then u(j) = VL(:,j),
        !            69: *          the j-th column of VL.
        !            70: *          If the j-th and (j+1)-st eigenvalues form a complex
        !            71: *          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
        !            72: *          u(j+1) = VL(:,j) - i*VL(:,j+1).
        !            73: *
        !            74: *  LDVL    (input) INTEGER
        !            75: *          The leading dimension of the array VL.  LDVL >= 1; if
        !            76: *          JOBVL = 'V', LDVL >= N.
        !            77: *
        !            78: *  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
        !            79: *          If JOBVR = 'V', the right eigenvectors v(j) are stored one
        !            80: *          after another in the columns of VR, in the same order
        !            81: *          as their eigenvalues.
        !            82: *          If JOBVR = 'N', VR is not referenced.
        !            83: *          If the j-th eigenvalue is real, then v(j) = VR(:,j),
        !            84: *          the j-th column of VR.
        !            85: *          If the j-th and (j+1)-st eigenvalues form a complex
        !            86: *          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
        !            87: *          v(j+1) = VR(:,j) - i*VR(:,j+1).
        !            88: *
        !            89: *  LDVR    (input) INTEGER
        !            90: *          The leading dimension of the array VR.  LDVR >= 1; if
        !            91: *          JOBVR = 'V', LDVR >= N.
        !            92: *
        !            93: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !            94: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            95: *
        !            96: *  LWORK   (input) INTEGER
        !            97: *          The dimension of the array WORK.  LWORK >= max(1,3*N), and
        !            98: *          if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.  For good
        !            99: *          performance, LWORK must generally be larger.
        !           100: *
        !           101: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           102: *          only calculates the optimal size of the WORK array, returns
        !           103: *          this value as the first entry of the WORK array, and no error
        !           104: *          message related to LWORK is issued by XERBLA.
        !           105: *
        !           106: *  INFO    (output) INTEGER
        !           107: *          = 0:  successful exit
        !           108: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           109: *          > 0:  if INFO = i, the QR algorithm failed to compute all the
        !           110: *                eigenvalues, and no eigenvectors have been computed;
        !           111: *                elements i+1:N of WR and WI contain eigenvalues which
        !           112: *                have converged.
        !           113: *
        !           114: *  =====================================================================
        !           115: *
        !           116: *     .. Parameters ..
        !           117:       DOUBLE PRECISION   ZERO, ONE
        !           118:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           119: *     ..
        !           120: *     .. Local Scalars ..
        !           121:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
        !           122:       CHARACTER          SIDE
        !           123:       INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K,
        !           124:      $                   MAXWRK, MINWRK, NOUT
        !           125:       DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
        !           126:      $                   SN
        !           127: *     ..
        !           128: *     .. Local Arrays ..
        !           129:       LOGICAL            SELECT( 1 )
        !           130:       DOUBLE PRECISION   DUM( 1 )
        !           131: *     ..
        !           132: *     .. External Subroutines ..
        !           133:       EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
        !           134:      $                   DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC,
        !           135:      $                   XERBLA
        !           136: *     ..
        !           137: *     .. External Functions ..
        !           138:       LOGICAL            LSAME
        !           139:       INTEGER            IDAMAX, ILAENV
        !           140:       DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
        !           141:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
        !           142:      $                   DNRM2
        !           143: *     ..
        !           144: *     .. Intrinsic Functions ..
        !           145:       INTRINSIC          MAX, SQRT
        !           146: *     ..
        !           147: *     .. Executable Statements ..
        !           148: *
        !           149: *     Test the input arguments
        !           150: *
        !           151:       INFO = 0
        !           152:       LQUERY = ( LWORK.EQ.-1 )
        !           153:       WANTVL = LSAME( JOBVL, 'V' )
        !           154:       WANTVR = LSAME( JOBVR, 'V' )
        !           155:       IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
        !           156:          INFO = -1
        !           157:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
        !           158:          INFO = -2
        !           159:       ELSE IF( N.LT.0 ) THEN
        !           160:          INFO = -3
        !           161:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           162:          INFO = -5
        !           163:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
        !           164:          INFO = -9
        !           165:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
        !           166:          INFO = -11
        !           167:       END IF
        !           168: *
        !           169: *     Compute workspace
        !           170: *      (Note: Comments in the code beginning "Workspace:" describe the
        !           171: *       minimal amount of workspace needed at that point in the code,
        !           172: *       as well as the preferred amount for good performance.
        !           173: *       NB refers to the optimal block size for the immediately
        !           174: *       following subroutine, as returned by ILAENV.
        !           175: *       HSWORK refers to the workspace preferred by DHSEQR, as
        !           176: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
        !           177: *       the worst case.)
        !           178: *
        !           179:       IF( INFO.EQ.0 ) THEN
        !           180:          IF( N.EQ.0 ) THEN
        !           181:             MINWRK = 1
        !           182:             MAXWRK = 1
        !           183:          ELSE
        !           184:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
        !           185:             IF( WANTVL ) THEN
        !           186:                MINWRK = 4*N
        !           187:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
        !           188:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
        !           189:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
        !           190:      $                WORK, -1, INFO )
        !           191:                HSWORK = WORK( 1 )
        !           192:                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
        !           193:                MAXWRK = MAX( MAXWRK, 4*N )
        !           194:             ELSE IF( WANTVR ) THEN
        !           195:                MINWRK = 4*N
        !           196:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
        !           197:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
        !           198:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
        !           199:      $                WORK, -1, INFO )
        !           200:                HSWORK = WORK( 1 )
        !           201:                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
        !           202:                MAXWRK = MAX( MAXWRK, 4*N )
        !           203:             ELSE 
        !           204:                MINWRK = 3*N
        !           205:                CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR, LDVR,
        !           206:      $                WORK, -1, INFO )
        !           207:                HSWORK = WORK( 1 )
        !           208:                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
        !           209:             END IF
        !           210:             MAXWRK = MAX( MAXWRK, MINWRK )
        !           211:          END IF
        !           212:          WORK( 1 ) = MAXWRK
        !           213: *
        !           214:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
        !           215:             INFO = -13
        !           216:          END IF
        !           217:       END IF
        !           218: *
        !           219:       IF( INFO.NE.0 ) THEN
        !           220:          CALL XERBLA( 'DGEEV ', -INFO )
        !           221:          RETURN
        !           222:       ELSE IF( LQUERY ) THEN
        !           223:          RETURN
        !           224:       END IF
        !           225: *
        !           226: *     Quick return if possible
        !           227: *
        !           228:       IF( N.EQ.0 )
        !           229:      $   RETURN
        !           230: *
        !           231: *     Get machine constants
        !           232: *
        !           233:       EPS = DLAMCH( 'P' )
        !           234:       SMLNUM = DLAMCH( 'S' )
        !           235:       BIGNUM = ONE / SMLNUM
        !           236:       CALL DLABAD( SMLNUM, BIGNUM )
        !           237:       SMLNUM = SQRT( SMLNUM ) / EPS
        !           238:       BIGNUM = ONE / SMLNUM
        !           239: *
        !           240: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           241: *
        !           242:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
        !           243:       SCALEA = .FALSE.
        !           244:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           245:          SCALEA = .TRUE.
        !           246:          CSCALE = SMLNUM
        !           247:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           248:          SCALEA = .TRUE.
        !           249:          CSCALE = BIGNUM
        !           250:       END IF
        !           251:       IF( SCALEA )
        !           252:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
        !           253: *
        !           254: *     Balance the matrix
        !           255: *     (Workspace: need N)
        !           256: *
        !           257:       IBAL = 1
        !           258:       CALL DGEBAL( 'B', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
        !           259: *
        !           260: *     Reduce to upper Hessenberg form
        !           261: *     (Workspace: need 3*N, prefer 2*N+N*NB)
        !           262: *
        !           263:       ITAU = IBAL + N
        !           264:       IWRK = ITAU + N
        !           265:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
        !           266:      $             LWORK-IWRK+1, IERR )
        !           267: *
        !           268:       IF( WANTVL ) THEN
        !           269: *
        !           270: *        Want left eigenvectors
        !           271: *        Copy Householder vectors to VL
        !           272: *
        !           273:          SIDE = 'L'
        !           274:          CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
        !           275: *
        !           276: *        Generate orthogonal matrix in VL
        !           277: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
        !           278: *
        !           279:          CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
        !           280:      $                LWORK-IWRK+1, IERR )
        !           281: *
        !           282: *        Perform QR iteration, accumulating Schur vectors in VL
        !           283: *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
        !           284: *
        !           285:          IWRK = ITAU
        !           286:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
        !           287:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
        !           288: *
        !           289:          IF( WANTVR ) THEN
        !           290: *
        !           291: *           Want left and right eigenvectors
        !           292: *           Copy Schur vectors to VR
        !           293: *
        !           294:             SIDE = 'B'
        !           295:             CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
        !           296:          END IF
        !           297: *
        !           298:       ELSE IF( WANTVR ) THEN
        !           299: *
        !           300: *        Want right eigenvectors
        !           301: *        Copy Householder vectors to VR
        !           302: *
        !           303:          SIDE = 'R'
        !           304:          CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
        !           305: *
        !           306: *        Generate orthogonal matrix in VR
        !           307: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
        !           308: *
        !           309:          CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
        !           310:      $                LWORK-IWRK+1, IERR )
        !           311: *
        !           312: *        Perform QR iteration, accumulating Schur vectors in VR
        !           313: *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
        !           314: *
        !           315:          IWRK = ITAU
        !           316:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
        !           317:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
        !           318: *
        !           319:       ELSE
        !           320: *
        !           321: *        Compute eigenvalues only
        !           322: *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
        !           323: *
        !           324:          IWRK = ITAU
        !           325:          CALL DHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
        !           326:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
        !           327:       END IF
        !           328: *
        !           329: *     If INFO > 0 from DHSEQR, then quit
        !           330: *
        !           331:       IF( INFO.GT.0 )
        !           332:      $   GO TO 50
        !           333: *
        !           334:       IF( WANTVL .OR. WANTVR ) THEN
        !           335: *
        !           336: *        Compute left and/or right eigenvectors
        !           337: *        (Workspace: need 4*N)
        !           338: *
        !           339:          CALL DTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
        !           340:      $                N, NOUT, WORK( IWRK ), IERR )
        !           341:       END IF
        !           342: *
        !           343:       IF( WANTVL ) THEN
        !           344: *
        !           345: *        Undo balancing of left eigenvectors
        !           346: *        (Workspace: need N)
        !           347: *
        !           348:          CALL DGEBAK( 'B', 'L', N, ILO, IHI, WORK( IBAL ), N, VL, LDVL,
        !           349:      $                IERR )
        !           350: *
        !           351: *        Normalize left eigenvectors and make largest component real
        !           352: *
        !           353:          DO 20 I = 1, N
        !           354:             IF( WI( I ).EQ.ZERO ) THEN
        !           355:                SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
        !           356:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
        !           357:             ELSE IF( WI( I ).GT.ZERO ) THEN
        !           358:                SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
        !           359:      $               DNRM2( N, VL( 1, I+1 ), 1 ) )
        !           360:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
        !           361:                CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
        !           362:                DO 10 K = 1, N
        !           363:                   WORK( IWRK+K-1 ) = VL( K, I )**2 + VL( K, I+1 )**2
        !           364:    10          CONTINUE
        !           365:                K = IDAMAX( N, WORK( IWRK ), 1 )
        !           366:                CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
        !           367:                CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
        !           368:                VL( K, I+1 ) = ZERO
        !           369:             END IF
        !           370:    20    CONTINUE
        !           371:       END IF
        !           372: *
        !           373:       IF( WANTVR ) THEN
        !           374: *
        !           375: *        Undo balancing of right eigenvectors
        !           376: *        (Workspace: need N)
        !           377: *
        !           378:          CALL DGEBAK( 'B', 'R', N, ILO, IHI, WORK( IBAL ), N, VR, LDVR,
        !           379:      $                IERR )
        !           380: *
        !           381: *        Normalize right eigenvectors and make largest component real
        !           382: *
        !           383:          DO 40 I = 1, N
        !           384:             IF( WI( I ).EQ.ZERO ) THEN
        !           385:                SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
        !           386:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
        !           387:             ELSE IF( WI( I ).GT.ZERO ) THEN
        !           388:                SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
        !           389:      $               DNRM2( N, VR( 1, I+1 ), 1 ) )
        !           390:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
        !           391:                CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
        !           392:                DO 30 K = 1, N
        !           393:                   WORK( IWRK+K-1 ) = VR( K, I )**2 + VR( K, I+1 )**2
        !           394:    30          CONTINUE
        !           395:                K = IDAMAX( N, WORK( IWRK ), 1 )
        !           396:                CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
        !           397:                CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
        !           398:                VR( K, I+1 ) = ZERO
        !           399:             END IF
        !           400:    40    CONTINUE
        !           401:       END IF
        !           402: *
        !           403: *     Undo scaling if necessary
        !           404: *
        !           405:    50 CONTINUE
        !           406:       IF( SCALEA ) THEN
        !           407:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
        !           408:      $                MAX( N-INFO, 1 ), IERR )
        !           409:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
        !           410:      $                MAX( N-INFO, 1 ), IERR )
        !           411:          IF( INFO.GT.0 ) THEN
        !           412:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
        !           413:      $                   IERR )
        !           414:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
        !           415:      $                   IERR )
        !           416:          END IF
        !           417:       END IF
        !           418: *
        !           419:       WORK( 1 ) = MAXWRK
        !           420:       RETURN
        !           421: *
        !           422: *     End of DGEEV
        !           423: *
        !           424:       END

CVSweb interface <joel.bertrand@systella.fr>