File:  [local] / rpl / lapack / lapack / dgeesx.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:48 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGEESX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeesx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeesx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeesx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
   22: *                          WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
   23: *                          IWORK, LIWORK, BWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBVS, SENSE, SORT
   27: *       INTEGER            INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
   28: *       DOUBLE PRECISION   RCONDE, RCONDV
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       LOGICAL            BWORK( * )
   32: *       INTEGER            IWORK( * )
   33: *       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
   34: *      $                   WR( * )
   35: *       ..
   36: *       .. Function Arguments ..
   37: *       LOGICAL            SELECT
   38: *       EXTERNAL           SELECT
   39: *       ..
   40: *
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *> DGEESX computes for an N-by-N real nonsymmetric matrix A, the
   48: *> eigenvalues, the real Schur form T, and, optionally, the matrix of
   49: *> Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
   50: *>
   51: *> Optionally, it also orders the eigenvalues on the diagonal of the
   52: *> real Schur form so that selected eigenvalues are at the top left;
   53: *> computes a reciprocal condition number for the average of the
   54: *> selected eigenvalues (RCONDE); and computes a reciprocal condition
   55: *> number for the right invariant subspace corresponding to the
   56: *> selected eigenvalues (RCONDV).  The leading columns of Z form an
   57: *> orthonormal basis for this invariant subspace.
   58: *>
   59: *> For further explanation of the reciprocal condition numbers RCONDE
   60: *> and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
   61: *> these quantities are called s and sep respectively).
   62: *>
   63: *> A real matrix is in real Schur form if it is upper quasi-triangular
   64: *> with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
   65: *> the form
   66: *>           [  a  b  ]
   67: *>           [  c  a  ]
   68: *>
   69: *> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
   70: *> \endverbatim
   71: *
   72: *  Arguments:
   73: *  ==========
   74: *
   75: *> \param[in] JOBVS
   76: *> \verbatim
   77: *>          JOBVS is CHARACTER*1
   78: *>          = 'N': Schur vectors are not computed;
   79: *>          = 'V': Schur vectors are computed.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] SORT
   83: *> \verbatim
   84: *>          SORT is CHARACTER*1
   85: *>          Specifies whether or not to order the eigenvalues on the
   86: *>          diagonal of the Schur form.
   87: *>          = 'N': Eigenvalues are not ordered;
   88: *>          = 'S': Eigenvalues are ordered (see SELECT).
   89: *> \endverbatim
   90: *>
   91: *> \param[in] SELECT
   92: *> \verbatim
   93: *>          SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments
   94: *>          SELECT must be declared EXTERNAL in the calling subroutine.
   95: *>          If SORT = 'S', SELECT is used to select eigenvalues to sort
   96: *>          to the top left of the Schur form.
   97: *>          If SORT = 'N', SELECT is not referenced.
   98: *>          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
   99: *>          SELECT(WR(j),WI(j)) is true; i.e., if either one of a
  100: *>          complex conjugate pair of eigenvalues is selected, then both
  101: *>          are.  Note that a selected complex eigenvalue may no longer
  102: *>          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
  103: *>          ordering may change the value of complex eigenvalues
  104: *>          (especially if the eigenvalue is ill-conditioned); in this
  105: *>          case INFO may be set to N+3 (see INFO below).
  106: *> \endverbatim
  107: *>
  108: *> \param[in] SENSE
  109: *> \verbatim
  110: *>          SENSE is CHARACTER*1
  111: *>          Determines which reciprocal condition numbers are computed.
  112: *>          = 'N': None are computed;
  113: *>          = 'E': Computed for average of selected eigenvalues only;
  114: *>          = 'V': Computed for selected right invariant subspace only;
  115: *>          = 'B': Computed for both.
  116: *>          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] N
  120: *> \verbatim
  121: *>          N is INTEGER
  122: *>          The order of the matrix A. N >= 0.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] A
  126: *> \verbatim
  127: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
  128: *>          On entry, the N-by-N matrix A.
  129: *>          On exit, A is overwritten by its real Schur form T.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDA
  133: *> \verbatim
  134: *>          LDA is INTEGER
  135: *>          The leading dimension of the array A.  LDA >= max(1,N).
  136: *> \endverbatim
  137: *>
  138: *> \param[out] SDIM
  139: *> \verbatim
  140: *>          SDIM is INTEGER
  141: *>          If SORT = 'N', SDIM = 0.
  142: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  143: *>                         for which SELECT is true. (Complex conjugate
  144: *>                         pairs for which SELECT is true for either
  145: *>                         eigenvalue count as 2.)
  146: *> \endverbatim
  147: *>
  148: *> \param[out] WR
  149: *> \verbatim
  150: *>          WR is DOUBLE PRECISION array, dimension (N)
  151: *> \endverbatim
  152: *>
  153: *> \param[out] WI
  154: *> \verbatim
  155: *>          WI is DOUBLE PRECISION array, dimension (N)
  156: *>          WR and WI contain the real and imaginary parts, respectively,
  157: *>          of the computed eigenvalues, in the same order that they
  158: *>          appear on the diagonal of the output Schur form T.  Complex
  159: *>          conjugate pairs of eigenvalues appear consecutively with the
  160: *>          eigenvalue having the positive imaginary part first.
  161: *> \endverbatim
  162: *>
  163: *> \param[out] VS
  164: *> \verbatim
  165: *>          VS is DOUBLE PRECISION array, dimension (LDVS,N)
  166: *>          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
  167: *>          vectors.
  168: *>          If JOBVS = 'N', VS is not referenced.
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDVS
  172: *> \verbatim
  173: *>          LDVS is INTEGER
  174: *>          The leading dimension of the array VS.  LDVS >= 1, and if
  175: *>          JOBVS = 'V', LDVS >= N.
  176: *> \endverbatim
  177: *>
  178: *> \param[out] RCONDE
  179: *> \verbatim
  180: *>          RCONDE is DOUBLE PRECISION
  181: *>          If SENSE = 'E' or 'B', RCONDE contains the reciprocal
  182: *>          condition number for the average of the selected eigenvalues.
  183: *>          Not referenced if SENSE = 'N' or 'V'.
  184: *> \endverbatim
  185: *>
  186: *> \param[out] RCONDV
  187: *> \verbatim
  188: *>          RCONDV is DOUBLE PRECISION
  189: *>          If SENSE = 'V' or 'B', RCONDV contains the reciprocal
  190: *>          condition number for the selected right invariant subspace.
  191: *>          Not referenced if SENSE = 'N' or 'E'.
  192: *> \endverbatim
  193: *>
  194: *> \param[out] WORK
  195: *> \verbatim
  196: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  197: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  198: *> \endverbatim
  199: *>
  200: *> \param[in] LWORK
  201: *> \verbatim
  202: *>          LWORK is INTEGER
  203: *>          The dimension of the array WORK.  LWORK >= max(1,3*N).
  204: *>          Also, if SENSE = 'E' or 'V' or 'B',
  205: *>          LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
  206: *>          selected eigenvalues computed by this routine.  Note that
  207: *>          N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
  208: *>          returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
  209: *>          'B' this may not be large enough.
  210: *>          For good performance, LWORK must generally be larger.
  211: *>
  212: *>          If LWORK = -1, then a workspace query is assumed; the routine
  213: *>          only calculates upper bounds on the optimal sizes of the
  214: *>          arrays WORK and IWORK, returns these values as the first
  215: *>          entries of the WORK and IWORK arrays, and no error messages
  216: *>          related to LWORK or LIWORK are issued by XERBLA.
  217: *> \endverbatim
  218: *>
  219: *> \param[out] IWORK
  220: *> \verbatim
  221: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  222: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  223: *> \endverbatim
  224: *>
  225: *> \param[in] LIWORK
  226: *> \verbatim
  227: *>          LIWORK is INTEGER
  228: *>          The dimension of the array IWORK.
  229: *>          LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
  230: *>          Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
  231: *>          only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
  232: *>          may not be large enough.
  233: *>
  234: *>          If LIWORK = -1, then a workspace query is assumed; the
  235: *>          routine only calculates upper bounds on the optimal sizes of
  236: *>          the arrays WORK and IWORK, returns these values as the first
  237: *>          entries of the WORK and IWORK arrays, and no error messages
  238: *>          related to LWORK or LIWORK are issued by XERBLA.
  239: *> \endverbatim
  240: *>
  241: *> \param[out] BWORK
  242: *> \verbatim
  243: *>          BWORK is LOGICAL array, dimension (N)
  244: *>          Not referenced if SORT = 'N'.
  245: *> \endverbatim
  246: *>
  247: *> \param[out] INFO
  248: *> \verbatim
  249: *>          INFO is INTEGER
  250: *>          = 0: successful exit
  251: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
  252: *>          > 0: if INFO = i, and i is
  253: *>             <= N: the QR algorithm failed to compute all the
  254: *>                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
  255: *>                   contain those eigenvalues which have converged; if
  256: *>                   JOBVS = 'V', VS contains the transformation which
  257: *>                   reduces A to its partially converged Schur form.
  258: *>             = N+1: the eigenvalues could not be reordered because some
  259: *>                   eigenvalues were too close to separate (the problem
  260: *>                   is very ill-conditioned);
  261: *>             = N+2: after reordering, roundoff changed values of some
  262: *>                   complex eigenvalues so that leading eigenvalues in
  263: *>                   the Schur form no longer satisfy SELECT=.TRUE.  This
  264: *>                   could also be caused by underflow due to scaling.
  265: *> \endverbatim
  266: *
  267: *  Authors:
  268: *  ========
  269: *
  270: *> \author Univ. of Tennessee
  271: *> \author Univ. of California Berkeley
  272: *> \author Univ. of Colorado Denver
  273: *> \author NAG Ltd.
  274: *
  275: *> \ingroup doubleGEeigen
  276: *
  277: *  =====================================================================
  278:       SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
  279:      $                   WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
  280:      $                   IWORK, LIWORK, BWORK, INFO )
  281: *
  282: *  -- LAPACK driver routine --
  283: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  284: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  285: *
  286: *     .. Scalar Arguments ..
  287:       CHARACTER          JOBVS, SENSE, SORT
  288:       INTEGER            INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
  289:       DOUBLE PRECISION   RCONDE, RCONDV
  290: *     ..
  291: *     .. Array Arguments ..
  292:       LOGICAL            BWORK( * )
  293:       INTEGER            IWORK( * )
  294:       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
  295:      $                   WR( * )
  296: *     ..
  297: *     .. Function Arguments ..
  298:       LOGICAL            SELECT
  299:       EXTERNAL           SELECT
  300: *     ..
  301: *
  302: *  =====================================================================
  303: *
  304: *     .. Parameters ..
  305:       DOUBLE PRECISION   ZERO, ONE
  306:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  307: *     ..
  308: *     .. Local Scalars ..
  309:       LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTSB,
  310:      $                   WANTSE, WANTSN, WANTST, WANTSV, WANTVS
  311:       INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
  312:      $                   IHI, ILO, INXT, IP, ITAU, IWRK, LIWRK, LWRK,
  313:      $                   MAXWRK, MINWRK
  314:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SMLNUM
  315: *     ..
  316: *     .. Local Arrays ..
  317:       DOUBLE PRECISION   DUM( 1 )
  318: *     ..
  319: *     .. External Subroutines ..
  320:       EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
  321:      $                   DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
  322: *     ..
  323: *     .. External Functions ..
  324:       LOGICAL            LSAME
  325:       INTEGER            ILAENV
  326:       DOUBLE PRECISION   DLAMCH, DLANGE
  327:       EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
  328: *     ..
  329: *     .. Intrinsic Functions ..
  330:       INTRINSIC          MAX, SQRT
  331: *     ..
  332: *     .. Executable Statements ..
  333: *
  334: *     Test the input arguments
  335: *
  336:       INFO = 0
  337:       WANTVS = LSAME( JOBVS, 'V' )
  338:       WANTST = LSAME( SORT, 'S' )
  339:       WANTSN = LSAME( SENSE, 'N' )
  340:       WANTSE = LSAME( SENSE, 'E' )
  341:       WANTSV = LSAME( SENSE, 'V' )
  342:       WANTSB = LSAME( SENSE, 'B' )
  343:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  344: *
  345:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
  346:          INFO = -1
  347:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  348:          INFO = -2
  349:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
  350:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
  351:          INFO = -4
  352:       ELSE IF( N.LT.0 ) THEN
  353:          INFO = -5
  354:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  355:          INFO = -7
  356:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
  357:          INFO = -12
  358:       END IF
  359: *
  360: *     Compute workspace
  361: *      (Note: Comments in the code beginning "RWorkspace:" describe the
  362: *       minimal amount of real workspace needed at that point in the
  363: *       code, as well as the preferred amount for good performance.
  364: *       IWorkspace refers to integer workspace.
  365: *       NB refers to the optimal block size for the immediately
  366: *       following subroutine, as returned by ILAENV.
  367: *       HSWORK refers to the workspace preferred by DHSEQR, as
  368: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  369: *       the worst case.
  370: *       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
  371: *       depends on SDIM, which is computed by the routine DTRSEN later
  372: *       in the code.)
  373: *
  374:       IF( INFO.EQ.0 ) THEN
  375:          LIWRK = 1
  376:          IF( N.EQ.0 ) THEN
  377:             MINWRK = 1
  378:             LWRK = 1
  379:          ELSE
  380:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
  381:             MINWRK = 3*N
  382: *
  383:             CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
  384:      $             WORK, -1, IEVAL )
  385:             HSWORK = INT( WORK( 1 ) )
  386: *
  387:             IF( .NOT.WANTVS ) THEN
  388:                MAXWRK = MAX( MAXWRK, N + HSWORK )
  389:             ELSE
  390:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  391:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
  392:                MAXWRK = MAX( MAXWRK, N + HSWORK )
  393:             END IF
  394:             LWRK = MAXWRK
  395:             IF( .NOT.WANTSN )
  396:      $         LWRK = MAX( LWRK, N + ( N*N )/2 )
  397:             IF( WANTSV .OR. WANTSB )
  398:      $         LIWRK = ( N*N )/4
  399:          END IF
  400:          IWORK( 1 ) = LIWRK
  401:          WORK( 1 ) = LWRK
  402: *
  403:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  404:             INFO = -16
  405:          ELSE IF( LIWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  406:             INFO = -18
  407:          END IF
  408:       END IF
  409: *
  410:       IF( INFO.NE.0 ) THEN
  411:          CALL XERBLA( 'DGEESX', -INFO )
  412:          RETURN
  413:       ELSE IF( LQUERY ) THEN
  414:          RETURN
  415:       END IF
  416: *
  417: *     Quick return if possible
  418: *
  419:       IF( N.EQ.0 ) THEN
  420:          SDIM = 0
  421:          RETURN
  422:       END IF
  423: *
  424: *     Get machine constants
  425: *
  426:       EPS = DLAMCH( 'P' )
  427:       SMLNUM = DLAMCH( 'S' )
  428:       BIGNUM = ONE / SMLNUM
  429:       CALL DLABAD( SMLNUM, BIGNUM )
  430:       SMLNUM = SQRT( SMLNUM ) / EPS
  431:       BIGNUM = ONE / SMLNUM
  432: *
  433: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  434: *
  435:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
  436:       SCALEA = .FALSE.
  437:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  438:          SCALEA = .TRUE.
  439:          CSCALE = SMLNUM
  440:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  441:          SCALEA = .TRUE.
  442:          CSCALE = BIGNUM
  443:       END IF
  444:       IF( SCALEA )
  445:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  446: *
  447: *     Permute the matrix to make it more nearly triangular
  448: *     (RWorkspace: need N)
  449: *
  450:       IBAL = 1
  451:       CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
  452: *
  453: *     Reduce to upper Hessenberg form
  454: *     (RWorkspace: need 3*N, prefer 2*N+N*NB)
  455: *
  456:       ITAU = N + IBAL
  457:       IWRK = N + ITAU
  458:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  459:      $             LWORK-IWRK+1, IERR )
  460: *
  461:       IF( WANTVS ) THEN
  462: *
  463: *        Copy Householder vectors to VS
  464: *
  465:          CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
  466: *
  467: *        Generate orthogonal matrix in VS
  468: *        (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  469: *
  470:          CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
  471:      $                LWORK-IWRK+1, IERR )
  472:       END IF
  473: *
  474:       SDIM = 0
  475: *
  476: *     Perform QR iteration, accumulating Schur vectors in VS if desired
  477: *     (RWorkspace: need N+1, prefer N+HSWORK (see comments) )
  478: *
  479:       IWRK = ITAU
  480:       CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
  481:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
  482:       IF( IEVAL.GT.0 )
  483:      $   INFO = IEVAL
  484: *
  485: *     Sort eigenvalues if desired
  486: *
  487:       IF( WANTST .AND. INFO.EQ.0 ) THEN
  488:          IF( SCALEA ) THEN
  489:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
  490:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
  491:          END IF
  492:          DO 10 I = 1, N
  493:             BWORK( I ) = SELECT( WR( I ), WI( I ) )
  494:    10    CONTINUE
  495: *
  496: *        Reorder eigenvalues, transform Schur vectors, and compute
  497: *        reciprocal condition numbers
  498: *        (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM)
  499: *                     otherwise, need N )
  500: *        (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM)
  501: *                     otherwise, need 0 )
  502: *
  503:          CALL DTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
  504:      $                SDIM, RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
  505:      $                IWORK, LIWORK, ICOND )
  506:          IF( .NOT.WANTSN )
  507:      $      MAXWRK = MAX( MAXWRK, N+2*SDIM*( N-SDIM ) )
  508:          IF( ICOND.EQ.-15 ) THEN
  509: *
  510: *           Not enough real workspace
  511: *
  512:             INFO = -16
  513:          ELSE IF( ICOND.EQ.-17 ) THEN
  514: *
  515: *           Not enough integer workspace
  516: *
  517:             INFO = -18
  518:          ELSE IF( ICOND.GT.0 ) THEN
  519: *
  520: *           DTRSEN failed to reorder or to restore standard Schur form
  521: *
  522:             INFO = ICOND + N
  523:          END IF
  524:       END IF
  525: *
  526:       IF( WANTVS ) THEN
  527: *
  528: *        Undo balancing
  529: *        (RWorkspace: need N)
  530: *
  531:          CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
  532:      $                IERR )
  533:       END IF
  534: *
  535:       IF( SCALEA ) THEN
  536: *
  537: *        Undo scaling for the Schur form of A
  538: *
  539:          CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
  540:          CALL DCOPY( N, A, LDA+1, WR, 1 )
  541:          IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
  542:             DUM( 1 ) = RCONDV
  543:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
  544:             RCONDV = DUM( 1 )
  545:          END IF
  546:          IF( CSCALE.EQ.SMLNUM ) THEN
  547: *
  548: *           If scaling back towards underflow, adjust WI if an
  549: *           offdiagonal element of a 2-by-2 block in the Schur form
  550: *           underflows.
  551: *
  552:             IF( IEVAL.GT.0 ) THEN
  553:                I1 = IEVAL + 1
  554:                I2 = IHI - 1
  555:                CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
  556:      $                      IERR )
  557:             ELSE IF( WANTST ) THEN
  558:                I1 = 1
  559:                I2 = N - 1
  560:             ELSE
  561:                I1 = ILO
  562:                I2 = IHI - 1
  563:             END IF
  564:             INXT = I1 - 1
  565:             DO 20 I = I1, I2
  566:                IF( I.LT.INXT )
  567:      $            GO TO 20
  568:                IF( WI( I ).EQ.ZERO ) THEN
  569:                   INXT = I + 1
  570:                ELSE
  571:                   IF( A( I+1, I ).EQ.ZERO ) THEN
  572:                      WI( I ) = ZERO
  573:                      WI( I+1 ) = ZERO
  574:                   ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
  575:      $                     ZERO ) THEN
  576:                      WI( I ) = ZERO
  577:                      WI( I+1 ) = ZERO
  578:                      IF( I.GT.1 )
  579:      $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
  580:                      IF( N.GT.I+1 )
  581:      $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
  582:      $                              A( I+1, I+2 ), LDA )
  583:                      IF( WANTVS ) THEN
  584:                        CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
  585:                      END IF
  586:                      A( I, I+1 ) = A( I+1, I )
  587:                      A( I+1, I ) = ZERO
  588:                   END IF
  589:                   INXT = I + 2
  590:                END IF
  591:    20       CONTINUE
  592:          END IF
  593:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
  594:      $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
  595:       END IF
  596: *
  597:       IF( WANTST .AND. INFO.EQ.0 ) THEN
  598: *
  599: *        Check if reordering successful
  600: *
  601:          LASTSL = .TRUE.
  602:          LST2SL = .TRUE.
  603:          SDIM = 0
  604:          IP = 0
  605:          DO 30 I = 1, N
  606:             CURSL = SELECT( WR( I ), WI( I ) )
  607:             IF( WI( I ).EQ.ZERO ) THEN
  608:                IF( CURSL )
  609:      $            SDIM = SDIM + 1
  610:                IP = 0
  611:                IF( CURSL .AND. .NOT.LASTSL )
  612:      $            INFO = N + 2
  613:             ELSE
  614:                IF( IP.EQ.1 ) THEN
  615: *
  616: *                 Last eigenvalue of conjugate pair
  617: *
  618:                   CURSL = CURSL .OR. LASTSL
  619:                   LASTSL = CURSL
  620:                   IF( CURSL )
  621:      $               SDIM = SDIM + 2
  622:                   IP = -1
  623:                   IF( CURSL .AND. .NOT.LST2SL )
  624:      $               INFO = N + 2
  625:                ELSE
  626: *
  627: *                 First eigenvalue of conjugate pair
  628: *
  629:                   IP = 1
  630:                END IF
  631:             END IF
  632:             LST2SL = LASTSL
  633:             LASTSL = CURSL
  634:    30    CONTINUE
  635:       END IF
  636: *
  637:       WORK( 1 ) = MAXWRK
  638:       IF( WANTSV .OR. WANTSB ) THEN
  639:          IWORK( 1 ) = MAX( 1, SDIM*( N-SDIM ) )
  640:       ELSE
  641:          IWORK( 1 ) = 1
  642:       END IF
  643: *
  644:       RETURN
  645: *
  646: *     End of DGEESX
  647: *
  648:       END

CVSweb interface <joel.bertrand@systella.fr>