Annotation of rpl/lapack/lapack/dgeesx.f, revision 1.20

1.9       bertrand    1: *> \brief <b> DGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DGEESX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeesx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeesx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeesx.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
                     22: *                          WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
                     23: *                          IWORK, LIWORK, BWORK, INFO )
1.16      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBVS, SENSE, SORT
                     27: *       INTEGER            INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
                     28: *       DOUBLE PRECISION   RCONDE, RCONDV
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       LOGICAL            BWORK( * )
                     32: *       INTEGER            IWORK( * )
                     33: *       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
                     34: *      $                   WR( * )
                     35: *       ..
                     36: *       .. Function Arguments ..
                     37: *       LOGICAL            SELECT
                     38: *       EXTERNAL           SELECT
                     39: *       ..
1.16      bertrand   40: *
1.9       bertrand   41: *
                     42: *> \par Purpose:
                     43: *  =============
                     44: *>
                     45: *> \verbatim
                     46: *>
                     47: *> DGEESX computes for an N-by-N real nonsymmetric matrix A, the
                     48: *> eigenvalues, the real Schur form T, and, optionally, the matrix of
                     49: *> Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
                     50: *>
                     51: *> Optionally, it also orders the eigenvalues on the diagonal of the
                     52: *> real Schur form so that selected eigenvalues are at the top left;
                     53: *> computes a reciprocal condition number for the average of the
                     54: *> selected eigenvalues (RCONDE); and computes a reciprocal condition
                     55: *> number for the right invariant subspace corresponding to the
                     56: *> selected eigenvalues (RCONDV).  The leading columns of Z form an
                     57: *> orthonormal basis for this invariant subspace.
                     58: *>
                     59: *> For further explanation of the reciprocal condition numbers RCONDE
                     60: *> and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
                     61: *> these quantities are called s and sep respectively).
                     62: *>
                     63: *> A real matrix is in real Schur form if it is upper quasi-triangular
                     64: *> with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
                     65: *> the form
                     66: *>           [  a  b  ]
                     67: *>           [  c  a  ]
                     68: *>
                     69: *> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
                     70: *> \endverbatim
                     71: *
                     72: *  Arguments:
                     73: *  ==========
                     74: *
                     75: *> \param[in] JOBVS
                     76: *> \verbatim
                     77: *>          JOBVS is CHARACTER*1
                     78: *>          = 'N': Schur vectors are not computed;
                     79: *>          = 'V': Schur vectors are computed.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] SORT
                     83: *> \verbatim
                     84: *>          SORT is CHARACTER*1
                     85: *>          Specifies whether or not to order the eigenvalues on the
                     86: *>          diagonal of the Schur form.
                     87: *>          = 'N': Eigenvalues are not ordered;
                     88: *>          = 'S': Eigenvalues are ordered (see SELECT).
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] SELECT
                     92: *> \verbatim
1.14      bertrand   93: *>          SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments
1.9       bertrand   94: *>          SELECT must be declared EXTERNAL in the calling subroutine.
                     95: *>          If SORT = 'S', SELECT is used to select eigenvalues to sort
                     96: *>          to the top left of the Schur form.
                     97: *>          If SORT = 'N', SELECT is not referenced.
                     98: *>          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
                     99: *>          SELECT(WR(j),WI(j)) is true; i.e., if either one of a
                    100: *>          complex conjugate pair of eigenvalues is selected, then both
                    101: *>          are.  Note that a selected complex eigenvalue may no longer
                    102: *>          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
                    103: *>          ordering may change the value of complex eigenvalues
                    104: *>          (especially if the eigenvalue is ill-conditioned); in this
                    105: *>          case INFO may be set to N+3 (see INFO below).
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] SENSE
                    109: *> \verbatim
                    110: *>          SENSE is CHARACTER*1
                    111: *>          Determines which reciprocal condition numbers are computed.
                    112: *>          = 'N': None are computed;
                    113: *>          = 'E': Computed for average of selected eigenvalues only;
                    114: *>          = 'V': Computed for selected right invariant subspace only;
                    115: *>          = 'B': Computed for both.
                    116: *>          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] N
                    120: *> \verbatim
                    121: *>          N is INTEGER
                    122: *>          The order of the matrix A. N >= 0.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in,out] A
                    126: *> \verbatim
                    127: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                    128: *>          On entry, the N-by-N matrix A.
                    129: *>          On exit, A is overwritten by its real Schur form T.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] LDA
                    133: *> \verbatim
                    134: *>          LDA is INTEGER
                    135: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[out] SDIM
                    139: *> \verbatim
                    140: *>          SDIM is INTEGER
                    141: *>          If SORT = 'N', SDIM = 0.
                    142: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    143: *>                         for which SELECT is true. (Complex conjugate
                    144: *>                         pairs for which SELECT is true for either
                    145: *>                         eigenvalue count as 2.)
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[out] WR
                    149: *> \verbatim
                    150: *>          WR is DOUBLE PRECISION array, dimension (N)
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] WI
                    154: *> \verbatim
                    155: *>          WI is DOUBLE PRECISION array, dimension (N)
                    156: *>          WR and WI contain the real and imaginary parts, respectively,
                    157: *>          of the computed eigenvalues, in the same order that they
                    158: *>          appear on the diagonal of the output Schur form T.  Complex
                    159: *>          conjugate pairs of eigenvalues appear consecutively with the
                    160: *>          eigenvalue having the positive imaginary part first.
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[out] VS
                    164: *> \verbatim
                    165: *>          VS is DOUBLE PRECISION array, dimension (LDVS,N)
                    166: *>          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
                    167: *>          vectors.
                    168: *>          If JOBVS = 'N', VS is not referenced.
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[in] LDVS
                    172: *> \verbatim
                    173: *>          LDVS is INTEGER
                    174: *>          The leading dimension of the array VS.  LDVS >= 1, and if
                    175: *>          JOBVS = 'V', LDVS >= N.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[out] RCONDE
                    179: *> \verbatim
                    180: *>          RCONDE is DOUBLE PRECISION
                    181: *>          If SENSE = 'E' or 'B', RCONDE contains the reciprocal
                    182: *>          condition number for the average of the selected eigenvalues.
                    183: *>          Not referenced if SENSE = 'N' or 'V'.
                    184: *> \endverbatim
                    185: *>
                    186: *> \param[out] RCONDV
                    187: *> \verbatim
                    188: *>          RCONDV is DOUBLE PRECISION
                    189: *>          If SENSE = 'V' or 'B', RCONDV contains the reciprocal
                    190: *>          condition number for the selected right invariant subspace.
                    191: *>          Not referenced if SENSE = 'N' or 'E'.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] WORK
                    195: *> \verbatim
                    196: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    197: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] LWORK
                    201: *> \verbatim
                    202: *>          LWORK is INTEGER
                    203: *>          The dimension of the array WORK.  LWORK >= max(1,3*N).
                    204: *>          Also, if SENSE = 'E' or 'V' or 'B',
                    205: *>          LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
                    206: *>          selected eigenvalues computed by this routine.  Note that
                    207: *>          N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
                    208: *>          returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
                    209: *>          'B' this may not be large enough.
                    210: *>          For good performance, LWORK must generally be larger.
                    211: *>
                    212: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    213: *>          only calculates upper bounds on the optimal sizes of the
                    214: *>          arrays WORK and IWORK, returns these values as the first
                    215: *>          entries of the WORK and IWORK arrays, and no error messages
                    216: *>          related to LWORK or LIWORK are issued by XERBLA.
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[out] IWORK
                    220: *> \verbatim
                    221: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    222: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    223: *> \endverbatim
                    224: *>
                    225: *> \param[in] LIWORK
                    226: *> \verbatim
                    227: *>          LIWORK is INTEGER
                    228: *>          The dimension of the array IWORK.
                    229: *>          LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
                    230: *>          Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
                    231: *>          only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
                    232: *>          may not be large enough.
                    233: *>
                    234: *>          If LIWORK = -1, then a workspace query is assumed; the
                    235: *>          routine only calculates upper bounds on the optimal sizes of
                    236: *>          the arrays WORK and IWORK, returns these values as the first
                    237: *>          entries of the WORK and IWORK arrays, and no error messages
                    238: *>          related to LWORK or LIWORK are issued by XERBLA.
                    239: *> \endverbatim
                    240: *>
                    241: *> \param[out] BWORK
                    242: *> \verbatim
                    243: *>          BWORK is LOGICAL array, dimension (N)
                    244: *>          Not referenced if SORT = 'N'.
                    245: *> \endverbatim
                    246: *>
                    247: *> \param[out] INFO
                    248: *> \verbatim
                    249: *>          INFO is INTEGER
                    250: *>          = 0: successful exit
                    251: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
                    252: *>          > 0: if INFO = i, and i is
                    253: *>             <= N: the QR algorithm failed to compute all the
                    254: *>                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
                    255: *>                   contain those eigenvalues which have converged; if
                    256: *>                   JOBVS = 'V', VS contains the transformation which
                    257: *>                   reduces A to its partially converged Schur form.
                    258: *>             = N+1: the eigenvalues could not be reordered because some
                    259: *>                   eigenvalues were too close to separate (the problem
                    260: *>                   is very ill-conditioned);
                    261: *>             = N+2: after reordering, roundoff changed values of some
                    262: *>                   complex eigenvalues so that leading eigenvalues in
                    263: *>                   the Schur form no longer satisfy SELECT=.TRUE.  This
                    264: *>                   could also be caused by underflow due to scaling.
                    265: *> \endverbatim
                    266: *
                    267: *  Authors:
                    268: *  ========
                    269: *
1.16      bertrand  270: *> \author Univ. of Tennessee
                    271: *> \author Univ. of California Berkeley
                    272: *> \author Univ. of Colorado Denver
                    273: *> \author NAG Ltd.
1.9       bertrand  274: *
                    275: *> \ingroup doubleGEeigen
                    276: *
                    277: *  =====================================================================
1.1       bertrand  278:       SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
                    279:      $                   WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
                    280:      $                   IWORK, LIWORK, BWORK, INFO )
                    281: *
1.20    ! bertrand  282: *  -- LAPACK driver routine --
1.1       bertrand  283: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    284: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    285: *
                    286: *     .. Scalar Arguments ..
                    287:       CHARACTER          JOBVS, SENSE, SORT
                    288:       INTEGER            INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
                    289:       DOUBLE PRECISION   RCONDE, RCONDV
                    290: *     ..
                    291: *     .. Array Arguments ..
                    292:       LOGICAL            BWORK( * )
                    293:       INTEGER            IWORK( * )
                    294:       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
                    295:      $                   WR( * )
                    296: *     ..
                    297: *     .. Function Arguments ..
                    298:       LOGICAL            SELECT
                    299:       EXTERNAL           SELECT
                    300: *     ..
                    301: *
                    302: *  =====================================================================
                    303: *
                    304: *     .. Parameters ..
                    305:       DOUBLE PRECISION   ZERO, ONE
                    306:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    307: *     ..
                    308: *     .. Local Scalars ..
                    309:       LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTSB,
                    310:      $                   WANTSE, WANTSN, WANTST, WANTSV, WANTVS
                    311:       INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
                    312:      $                   IHI, ILO, INXT, IP, ITAU, IWRK, LIWRK, LWRK,
                    313:      $                   MAXWRK, MINWRK
                    314:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SMLNUM
                    315: *     ..
                    316: *     .. Local Arrays ..
                    317:       DOUBLE PRECISION   DUM( 1 )
                    318: *     ..
                    319: *     .. External Subroutines ..
                    320:       EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
                    321:      $                   DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
                    322: *     ..
                    323: *     .. External Functions ..
                    324:       LOGICAL            LSAME
                    325:       INTEGER            ILAENV
                    326:       DOUBLE PRECISION   DLAMCH, DLANGE
                    327:       EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
                    328: *     ..
                    329: *     .. Intrinsic Functions ..
                    330:       INTRINSIC          MAX, SQRT
                    331: *     ..
                    332: *     .. Executable Statements ..
                    333: *
                    334: *     Test the input arguments
                    335: *
                    336:       INFO = 0
                    337:       WANTVS = LSAME( JOBVS, 'V' )
                    338:       WANTST = LSAME( SORT, 'S' )
                    339:       WANTSN = LSAME( SENSE, 'N' )
                    340:       WANTSE = LSAME( SENSE, 'E' )
                    341:       WANTSV = LSAME( SENSE, 'V' )
                    342:       WANTSB = LSAME( SENSE, 'B' )
                    343:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
1.5       bertrand  344: *
1.1       bertrand  345:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
                    346:          INFO = -1
                    347:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    348:          INFO = -2
                    349:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    350:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    351:          INFO = -4
                    352:       ELSE IF( N.LT.0 ) THEN
                    353:          INFO = -5
                    354:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    355:          INFO = -7
                    356:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
                    357:          INFO = -12
                    358:       END IF
                    359: *
                    360: *     Compute workspace
                    361: *      (Note: Comments in the code beginning "RWorkspace:" describe the
                    362: *       minimal amount of real workspace needed at that point in the
                    363: *       code, as well as the preferred amount for good performance.
                    364: *       IWorkspace refers to integer workspace.
                    365: *       NB refers to the optimal block size for the immediately
                    366: *       following subroutine, as returned by ILAENV.
                    367: *       HSWORK refers to the workspace preferred by DHSEQR, as
                    368: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    369: *       the worst case.
                    370: *       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
                    371: *       depends on SDIM, which is computed by the routine DTRSEN later
                    372: *       in the code.)
                    373: *
                    374:       IF( INFO.EQ.0 ) THEN
                    375:          LIWRK = 1
                    376:          IF( N.EQ.0 ) THEN
                    377:             MINWRK = 1
                    378:             LWRK = 1
                    379:          ELSE
                    380:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
                    381:             MINWRK = 3*N
                    382: *
                    383:             CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
                    384:      $             WORK, -1, IEVAL )
1.20    ! bertrand  385:             HSWORK = INT( WORK( 1 ) )
1.1       bertrand  386: *
                    387:             IF( .NOT.WANTVS ) THEN
                    388:                MAXWRK = MAX( MAXWRK, N + HSWORK )
                    389:             ELSE
                    390:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
                    391:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
                    392:                MAXWRK = MAX( MAXWRK, N + HSWORK )
                    393:             END IF
                    394:             LWRK = MAXWRK
                    395:             IF( .NOT.WANTSN )
                    396:      $         LWRK = MAX( LWRK, N + ( N*N )/2 )
                    397:             IF( WANTSV .OR. WANTSB )
                    398:      $         LIWRK = ( N*N )/4
                    399:          END IF
                    400:          IWORK( 1 ) = LIWRK
                    401:          WORK( 1 ) = LWRK
                    402: *
                    403:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    404:             INFO = -16
                    405:          ELSE IF( LIWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    406:             INFO = -18
                    407:          END IF
                    408:       END IF
                    409: *
                    410:       IF( INFO.NE.0 ) THEN
                    411:          CALL XERBLA( 'DGEESX', -INFO )
                    412:          RETURN
1.5       bertrand  413:       ELSE IF( LQUERY ) THEN
                    414:          RETURN
1.1       bertrand  415:       END IF
                    416: *
                    417: *     Quick return if possible
                    418: *
                    419:       IF( N.EQ.0 ) THEN
                    420:          SDIM = 0
                    421:          RETURN
                    422:       END IF
                    423: *
                    424: *     Get machine constants
                    425: *
                    426:       EPS = DLAMCH( 'P' )
                    427:       SMLNUM = DLAMCH( 'S' )
                    428:       BIGNUM = ONE / SMLNUM
                    429:       CALL DLABAD( SMLNUM, BIGNUM )
                    430:       SMLNUM = SQRT( SMLNUM ) / EPS
                    431:       BIGNUM = ONE / SMLNUM
                    432: *
                    433: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    434: *
                    435:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
                    436:       SCALEA = .FALSE.
                    437:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    438:          SCALEA = .TRUE.
                    439:          CSCALE = SMLNUM
                    440:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    441:          SCALEA = .TRUE.
                    442:          CSCALE = BIGNUM
                    443:       END IF
                    444:       IF( SCALEA )
                    445:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    446: *
                    447: *     Permute the matrix to make it more nearly triangular
                    448: *     (RWorkspace: need N)
                    449: *
                    450:       IBAL = 1
                    451:       CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
                    452: *
                    453: *     Reduce to upper Hessenberg form
                    454: *     (RWorkspace: need 3*N, prefer 2*N+N*NB)
                    455: *
                    456:       ITAU = N + IBAL
                    457:       IWRK = N + ITAU
                    458:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    459:      $             LWORK-IWRK+1, IERR )
                    460: *
                    461:       IF( WANTVS ) THEN
                    462: *
                    463: *        Copy Householder vectors to VS
                    464: *
                    465:          CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
                    466: *
                    467: *        Generate orthogonal matrix in VS
                    468: *        (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
                    469: *
                    470:          CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
                    471:      $                LWORK-IWRK+1, IERR )
                    472:       END IF
                    473: *
                    474:       SDIM = 0
                    475: *
                    476: *     Perform QR iteration, accumulating Schur vectors in VS if desired
                    477: *     (RWorkspace: need N+1, prefer N+HSWORK (see comments) )
                    478: *
                    479:       IWRK = ITAU
                    480:       CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
                    481:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
                    482:       IF( IEVAL.GT.0 )
                    483:      $   INFO = IEVAL
                    484: *
                    485: *     Sort eigenvalues if desired
                    486: *
                    487:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    488:          IF( SCALEA ) THEN
                    489:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
                    490:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
                    491:          END IF
                    492:          DO 10 I = 1, N
                    493:             BWORK( I ) = SELECT( WR( I ), WI( I ) )
                    494:    10    CONTINUE
                    495: *
                    496: *        Reorder eigenvalues, transform Schur vectors, and compute
                    497: *        reciprocal condition numbers
                    498: *        (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM)
                    499: *                     otherwise, need N )
                    500: *        (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM)
                    501: *                     otherwise, need 0 )
                    502: *
                    503:          CALL DTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
                    504:      $                SDIM, RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
                    505:      $                IWORK, LIWORK, ICOND )
                    506:          IF( .NOT.WANTSN )
                    507:      $      MAXWRK = MAX( MAXWRK, N+2*SDIM*( N-SDIM ) )
                    508:          IF( ICOND.EQ.-15 ) THEN
                    509: *
                    510: *           Not enough real workspace
                    511: *
                    512:             INFO = -16
                    513:          ELSE IF( ICOND.EQ.-17 ) THEN
                    514: *
                    515: *           Not enough integer workspace
                    516: *
                    517:             INFO = -18
                    518:          ELSE IF( ICOND.GT.0 ) THEN
                    519: *
                    520: *           DTRSEN failed to reorder or to restore standard Schur form
                    521: *
                    522:             INFO = ICOND + N
                    523:          END IF
                    524:       END IF
                    525: *
                    526:       IF( WANTVS ) THEN
                    527: *
                    528: *        Undo balancing
                    529: *        (RWorkspace: need N)
                    530: *
                    531:          CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
                    532:      $                IERR )
                    533:       END IF
                    534: *
                    535:       IF( SCALEA ) THEN
                    536: *
                    537: *        Undo scaling for the Schur form of A
                    538: *
                    539:          CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
                    540:          CALL DCOPY( N, A, LDA+1, WR, 1 )
                    541:          IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
                    542:             DUM( 1 ) = RCONDV
                    543:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
                    544:             RCONDV = DUM( 1 )
                    545:          END IF
                    546:          IF( CSCALE.EQ.SMLNUM ) THEN
                    547: *
                    548: *           If scaling back towards underflow, adjust WI if an
                    549: *           offdiagonal element of a 2-by-2 block in the Schur form
                    550: *           underflows.
                    551: *
                    552:             IF( IEVAL.GT.0 ) THEN
                    553:                I1 = IEVAL + 1
                    554:                I2 = IHI - 1
                    555:                CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
                    556:      $                      IERR )
                    557:             ELSE IF( WANTST ) THEN
                    558:                I1 = 1
                    559:                I2 = N - 1
                    560:             ELSE
                    561:                I1 = ILO
                    562:                I2 = IHI - 1
                    563:             END IF
                    564:             INXT = I1 - 1
                    565:             DO 20 I = I1, I2
                    566:                IF( I.LT.INXT )
                    567:      $            GO TO 20
                    568:                IF( WI( I ).EQ.ZERO ) THEN
                    569:                   INXT = I + 1
                    570:                ELSE
                    571:                   IF( A( I+1, I ).EQ.ZERO ) THEN
                    572:                      WI( I ) = ZERO
                    573:                      WI( I+1 ) = ZERO
                    574:                   ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
                    575:      $                     ZERO ) THEN
                    576:                      WI( I ) = ZERO
                    577:                      WI( I+1 ) = ZERO
                    578:                      IF( I.GT.1 )
                    579:      $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
                    580:                      IF( N.GT.I+1 )
                    581:      $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
                    582:      $                              A( I+1, I+2 ), LDA )
1.19      bertrand  583:                      IF( WANTVS ) THEN
                    584:                        CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
                    585:                      END IF
1.1       bertrand  586:                      A( I, I+1 ) = A( I+1, I )
                    587:                      A( I+1, I ) = ZERO
                    588:                   END IF
                    589:                   INXT = I + 2
                    590:                END IF
                    591:    20       CONTINUE
                    592:          END IF
                    593:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
                    594:      $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
                    595:       END IF
                    596: *
                    597:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    598: *
                    599: *        Check if reordering successful
                    600: *
                    601:          LASTSL = .TRUE.
                    602:          LST2SL = .TRUE.
                    603:          SDIM = 0
                    604:          IP = 0
                    605:          DO 30 I = 1, N
                    606:             CURSL = SELECT( WR( I ), WI( I ) )
                    607:             IF( WI( I ).EQ.ZERO ) THEN
                    608:                IF( CURSL )
                    609:      $            SDIM = SDIM + 1
                    610:                IP = 0
                    611:                IF( CURSL .AND. .NOT.LASTSL )
                    612:      $            INFO = N + 2
                    613:             ELSE
                    614:                IF( IP.EQ.1 ) THEN
                    615: *
                    616: *                 Last eigenvalue of conjugate pair
                    617: *
                    618:                   CURSL = CURSL .OR. LASTSL
                    619:                   LASTSL = CURSL
                    620:                   IF( CURSL )
                    621:      $               SDIM = SDIM + 2
                    622:                   IP = -1
                    623:                   IF( CURSL .AND. .NOT.LST2SL )
                    624:      $               INFO = N + 2
                    625:                ELSE
                    626: *
                    627: *                 First eigenvalue of conjugate pair
                    628: *
                    629:                   IP = 1
                    630:                END IF
                    631:             END IF
                    632:             LST2SL = LASTSL
                    633:             LASTSL = CURSL
                    634:    30    CONTINUE
                    635:       END IF
                    636: *
                    637:       WORK( 1 ) = MAXWRK
                    638:       IF( WANTSV .OR. WANTSB ) THEN
                    639:          IWORK( 1 ) = MAX( 1, SDIM*( N-SDIM ) )
                    640:       ELSE
                    641:          IWORK( 1 ) = 1
                    642:       END IF
                    643: *
                    644:       RETURN
                    645: *
                    646: *     End of DGEESX
                    647: *
                    648:       END

CVSweb interface <joel.bertrand@systella.fr>