File:  [local] / rpl / lapack / lapack / dgees.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:23 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
    2:      $                  VS, LDVS, WORK, LWORK, BWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          JOBVS, SORT
   11:       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
   12: *     ..
   13: *     .. Array Arguments ..
   14:       LOGICAL            BWORK( * )
   15:       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
   16:      $                   WR( * )
   17: *     ..
   18: *     .. Function Arguments ..
   19:       LOGICAL            SELECT
   20:       EXTERNAL           SELECT
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25: *
   26: *  DGEES computes for an N-by-N real nonsymmetric matrix A, the
   27: *  eigenvalues, the real Schur form T, and, optionally, the matrix of
   28: *  Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
   29: *
   30: *  Optionally, it also orders the eigenvalues on the diagonal of the
   31: *  real Schur form so that selected eigenvalues are at the top left.
   32: *  The leading columns of Z then form an orthonormal basis for the
   33: *  invariant subspace corresponding to the selected eigenvalues.
   34: *
   35: *  A matrix is in real Schur form if it is upper quasi-triangular with
   36: *  1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
   37: *  form
   38: *          [  a  b  ]
   39: *          [  c  a  ]
   40: *
   41: *  where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
   42: *
   43: *  Arguments
   44: *  =========
   45: *
   46: *  JOBVS   (input) CHARACTER*1
   47: *          = 'N': Schur vectors are not computed;
   48: *          = 'V': Schur vectors are computed.
   49: *
   50: *  SORT    (input) CHARACTER*1
   51: *          Specifies whether or not to order the eigenvalues on the
   52: *          diagonal of the Schur form.
   53: *          = 'N': Eigenvalues are not ordered;
   54: *          = 'S': Eigenvalues are ordered (see SELECT).
   55: *
   56: *  SELECT  (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments
   57: *          SELECT must be declared EXTERNAL in the calling subroutine.
   58: *          If SORT = 'S', SELECT is used to select eigenvalues to sort
   59: *          to the top left of the Schur form.
   60: *          If SORT = 'N', SELECT is not referenced.
   61: *          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
   62: *          SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
   63: *          conjugate pair of eigenvalues is selected, then both complex
   64: *          eigenvalues are selected.
   65: *          Note that a selected complex eigenvalue may no longer
   66: *          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
   67: *          ordering may change the value of complex eigenvalues
   68: *          (especially if the eigenvalue is ill-conditioned); in this
   69: *          case INFO is set to N+2 (see INFO below).
   70: *
   71: *  N       (input) INTEGER
   72: *          The order of the matrix A. N >= 0.
   73: *
   74: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   75: *          On entry, the N-by-N matrix A.
   76: *          On exit, A has been overwritten by its real Schur form T.
   77: *
   78: *  LDA     (input) INTEGER
   79: *          The leading dimension of the array A.  LDA >= max(1,N).
   80: *
   81: *  SDIM    (output) INTEGER
   82: *          If SORT = 'N', SDIM = 0.
   83: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
   84: *                         for which SELECT is true. (Complex conjugate
   85: *                         pairs for which SELECT is true for either
   86: *                         eigenvalue count as 2.)
   87: *
   88: *  WR      (output) DOUBLE PRECISION array, dimension (N)
   89: *  WI      (output) DOUBLE PRECISION array, dimension (N)
   90: *          WR and WI contain the real and imaginary parts,
   91: *          respectively, of the computed eigenvalues in the same order
   92: *          that they appear on the diagonal of the output Schur form T.
   93: *          Complex conjugate pairs of eigenvalues will appear
   94: *          consecutively with the eigenvalue having the positive
   95: *          imaginary part first.
   96: *
   97: *  VS      (output) DOUBLE PRECISION array, dimension (LDVS,N)
   98: *          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
   99: *          vectors.
  100: *          If JOBVS = 'N', VS is not referenced.
  101: *
  102: *  LDVS    (input) INTEGER
  103: *          The leading dimension of the array VS.  LDVS >= 1; if
  104: *          JOBVS = 'V', LDVS >= N.
  105: *
  106: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  107: *          On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
  108: *
  109: *  LWORK   (input) INTEGER
  110: *          The dimension of the array WORK.  LWORK >= max(1,3*N).
  111: *          For good performance, LWORK must generally be larger.
  112: *
  113: *          If LWORK = -1, then a workspace query is assumed; the routine
  114: *          only calculates the optimal size of the WORK array, returns
  115: *          this value as the first entry of the WORK array, and no error
  116: *          message related to LWORK is issued by XERBLA.
  117: *
  118: *  BWORK   (workspace) LOGICAL array, dimension (N)
  119: *          Not referenced if SORT = 'N'.
  120: *
  121: *  INFO    (output) INTEGER
  122: *          = 0: successful exit
  123: *          < 0: if INFO = -i, the i-th argument had an illegal value.
  124: *          > 0: if INFO = i, and i is
  125: *             <= N: the QR algorithm failed to compute all the
  126: *                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
  127: *                   contain those eigenvalues which have converged; if
  128: *                   JOBVS = 'V', VS contains the matrix which reduces A
  129: *                   to its partially converged Schur form.
  130: *             = N+1: the eigenvalues could not be reordered because some
  131: *                   eigenvalues were too close to separate (the problem
  132: *                   is very ill-conditioned);
  133: *             = N+2: after reordering, roundoff changed values of some
  134: *                   complex eigenvalues so that leading eigenvalues in
  135: *                   the Schur form no longer satisfy SELECT=.TRUE.  This
  136: *                   could also be caused by underflow due to scaling.
  137: *
  138: *  =====================================================================
  139: *
  140: *     .. Parameters ..
  141:       DOUBLE PRECISION   ZERO, ONE
  142:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  143: *     ..
  144: *     .. Local Scalars ..
  145:       LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTST,
  146:      $                   WANTVS
  147:       INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
  148:      $                   IHI, ILO, INXT, IP, ITAU, IWRK, MAXWRK, MINWRK
  149:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
  150: *     ..
  151: *     .. Local Arrays ..
  152:       INTEGER            IDUM( 1 )
  153:       DOUBLE PRECISION   DUM( 1 )
  154: *     ..
  155: *     .. External Subroutines ..
  156:       EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
  157:      $                   DLABAD, DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
  158: *     ..
  159: *     .. External Functions ..
  160:       LOGICAL            LSAME
  161:       INTEGER            ILAENV
  162:       DOUBLE PRECISION   DLAMCH, DLANGE
  163:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
  164: *     ..
  165: *     .. Intrinsic Functions ..
  166:       INTRINSIC          MAX, SQRT
  167: *     ..
  168: *     .. Executable Statements ..
  169: *
  170: *     Test the input arguments
  171: *
  172:       INFO = 0
  173:       LQUERY = ( LWORK.EQ.-1 )
  174:       WANTVS = LSAME( JOBVS, 'V' )
  175:       WANTST = LSAME( SORT, 'S' )
  176:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
  177:          INFO = -1
  178:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  179:          INFO = -2
  180:       ELSE IF( N.LT.0 ) THEN
  181:          INFO = -4
  182:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  183:          INFO = -6
  184:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
  185:          INFO = -11
  186:       END IF
  187: *
  188: *     Compute workspace
  189: *      (Note: Comments in the code beginning "Workspace:" describe the
  190: *       minimal amount of workspace needed at that point in the code,
  191: *       as well as the preferred amount for good performance.
  192: *       NB refers to the optimal block size for the immediately
  193: *       following subroutine, as returned by ILAENV.
  194: *       HSWORK refers to the workspace preferred by DHSEQR, as
  195: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  196: *       the worst case.)
  197: *
  198:       IF( INFO.EQ.0 ) THEN
  199:          IF( N.EQ.0 ) THEN
  200:             MINWRK = 1
  201:             MAXWRK = 1
  202:          ELSE
  203:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
  204:             MINWRK = 3*N
  205: *
  206:             CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
  207:      $             WORK, -1, IEVAL )
  208:             HSWORK = WORK( 1 )
  209: *
  210:             IF( .NOT.WANTVS ) THEN
  211:                MAXWRK = MAX( MAXWRK, N + HSWORK )
  212:             ELSE
  213:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  214:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
  215:                MAXWRK = MAX( MAXWRK, N + HSWORK )
  216:             END IF
  217:          END IF
  218:          WORK( 1 ) = MAXWRK
  219: *
  220:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  221:             INFO = -13
  222:          END IF
  223:       END IF
  224: *
  225:       IF( INFO.NE.0 ) THEN
  226:          CALL XERBLA( 'DGEES ', -INFO )
  227:          RETURN
  228:       ELSE IF( LQUERY ) THEN
  229:          RETURN
  230:       END IF
  231: *
  232: *     Quick return if possible
  233: *
  234:       IF( N.EQ.0 ) THEN
  235:          SDIM = 0
  236:          RETURN
  237:       END IF
  238: *
  239: *     Get machine constants
  240: *
  241:       EPS = DLAMCH( 'P' )
  242:       SMLNUM = DLAMCH( 'S' )
  243:       BIGNUM = ONE / SMLNUM
  244:       CALL DLABAD( SMLNUM, BIGNUM )
  245:       SMLNUM = SQRT( SMLNUM ) / EPS
  246:       BIGNUM = ONE / SMLNUM
  247: *
  248: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  249: *
  250:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
  251:       SCALEA = .FALSE.
  252:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  253:          SCALEA = .TRUE.
  254:          CSCALE = SMLNUM
  255:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  256:          SCALEA = .TRUE.
  257:          CSCALE = BIGNUM
  258:       END IF
  259:       IF( SCALEA )
  260:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  261: *
  262: *     Permute the matrix to make it more nearly triangular
  263: *     (Workspace: need N)
  264: *
  265:       IBAL = 1
  266:       CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
  267: *
  268: *     Reduce to upper Hessenberg form
  269: *     (Workspace: need 3*N, prefer 2*N+N*NB)
  270: *
  271:       ITAU = N + IBAL
  272:       IWRK = N + ITAU
  273:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  274:      $             LWORK-IWRK+1, IERR )
  275: *
  276:       IF( WANTVS ) THEN
  277: *
  278: *        Copy Householder vectors to VS
  279: *
  280:          CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
  281: *
  282: *        Generate orthogonal matrix in VS
  283: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  284: *
  285:          CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
  286:      $                LWORK-IWRK+1, IERR )
  287:       END IF
  288: *
  289:       SDIM = 0
  290: *
  291: *     Perform QR iteration, accumulating Schur vectors in VS if desired
  292: *     (Workspace: need N+1, prefer N+HSWORK (see comments) )
  293: *
  294:       IWRK = ITAU
  295:       CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
  296:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
  297:       IF( IEVAL.GT.0 )
  298:      $   INFO = IEVAL
  299: *
  300: *     Sort eigenvalues if desired
  301: *
  302:       IF( WANTST .AND. INFO.EQ.0 ) THEN
  303:          IF( SCALEA ) THEN
  304:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
  305:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
  306:          END IF
  307:          DO 10 I = 1, N
  308:             BWORK( I ) = SELECT( WR( I ), WI( I ) )
  309:    10    CONTINUE
  310: *
  311: *        Reorder eigenvalues and transform Schur vectors
  312: *        (Workspace: none needed)
  313: *
  314:          CALL DTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
  315:      $                SDIM, S, SEP, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
  316:      $                ICOND )
  317:          IF( ICOND.GT.0 )
  318:      $      INFO = N + ICOND
  319:       END IF
  320: *
  321:       IF( WANTVS ) THEN
  322: *
  323: *        Undo balancing
  324: *        (Workspace: need N)
  325: *
  326:          CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
  327:      $                IERR )
  328:       END IF
  329: *
  330:       IF( SCALEA ) THEN
  331: *
  332: *        Undo scaling for the Schur form of A
  333: *
  334:          CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
  335:          CALL DCOPY( N, A, LDA+1, WR, 1 )
  336:          IF( CSCALE.EQ.SMLNUM ) THEN
  337: *
  338: *           If scaling back towards underflow, adjust WI if an
  339: *           offdiagonal element of a 2-by-2 block in the Schur form
  340: *           underflows.
  341: *
  342:             IF( IEVAL.GT.0 ) THEN
  343:                I1 = IEVAL + 1
  344:                I2 = IHI - 1
  345:                CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI,
  346:      $                      MAX( ILO-1, 1 ), IERR )
  347:             ELSE IF( WANTST ) THEN
  348:                I1 = 1
  349:                I2 = N - 1
  350:             ELSE
  351:                I1 = ILO
  352:                I2 = IHI - 1
  353:             END IF
  354:             INXT = I1 - 1
  355:             DO 20 I = I1, I2
  356:                IF( I.LT.INXT )
  357:      $            GO TO 20
  358:                IF( WI( I ).EQ.ZERO ) THEN
  359:                   INXT = I + 1
  360:                ELSE
  361:                   IF( A( I+1, I ).EQ.ZERO ) THEN
  362:                      WI( I ) = ZERO
  363:                      WI( I+1 ) = ZERO
  364:                   ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
  365:      $                     ZERO ) THEN
  366:                      WI( I ) = ZERO
  367:                      WI( I+1 ) = ZERO
  368:                      IF( I.GT.1 )
  369:      $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
  370:                      IF( N.GT.I+1 )
  371:      $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
  372:      $                              A( I+1, I+2 ), LDA )
  373:                      IF( WANTVS ) THEN
  374:                         CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
  375:                      END IF
  376:                      A( I, I+1 ) = A( I+1, I )
  377:                      A( I+1, I ) = ZERO
  378:                   END IF
  379:                   INXT = I + 2
  380:                END IF
  381:    20       CONTINUE
  382:          END IF
  383: *
  384: *        Undo scaling for the imaginary part of the eigenvalues
  385: *
  386:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
  387:      $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
  388:       END IF
  389: *
  390:       IF( WANTST .AND. INFO.EQ.0 ) THEN
  391: *
  392: *        Check if reordering successful
  393: *
  394:          LASTSL = .TRUE.
  395:          LST2SL = .TRUE.
  396:          SDIM = 0
  397:          IP = 0
  398:          DO 30 I = 1, N
  399:             CURSL = SELECT( WR( I ), WI( I ) )
  400:             IF( WI( I ).EQ.ZERO ) THEN
  401:                IF( CURSL )
  402:      $            SDIM = SDIM + 1
  403:                IP = 0
  404:                IF( CURSL .AND. .NOT.LASTSL )
  405:      $            INFO = N + 2
  406:             ELSE
  407:                IF( IP.EQ.1 ) THEN
  408: *
  409: *                 Last eigenvalue of conjugate pair
  410: *
  411:                   CURSL = CURSL .OR. LASTSL
  412:                   LASTSL = CURSL
  413:                   IF( CURSL )
  414:      $               SDIM = SDIM + 2
  415:                   IP = -1
  416:                   IF( CURSL .AND. .NOT.LST2SL )
  417:      $               INFO = N + 2
  418:                ELSE
  419: *
  420: *                 First eigenvalue of conjugate pair
  421: *
  422:                   IP = 1
  423:                END IF
  424:             END IF
  425:             LST2SL = LASTSL
  426:             LASTSL = CURSL
  427:    30    CONTINUE
  428:       END IF
  429: *
  430:       WORK( 1 ) = MAXWRK
  431:       RETURN
  432: *
  433: *     End of DGEES
  434: *
  435:       END

CVSweb interface <joel.bertrand@systella.fr>