Annotation of rpl/lapack/lapack/dgees.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
                      2:      $                  VS, LDVS, WORK, LWORK, BWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBVS, SORT
                     11:       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       LOGICAL            BWORK( * )
                     15:       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
                     16:      $                   WR( * )
                     17: *     ..
                     18: *     .. Function Arguments ..
                     19:       LOGICAL            SELECT
                     20:       EXTERNAL           SELECT
                     21: *     ..
                     22: *
                     23: *  Purpose
                     24: *  =======
                     25: *
                     26: *  DGEES computes for an N-by-N real nonsymmetric matrix A, the
                     27: *  eigenvalues, the real Schur form T, and, optionally, the matrix of
                     28: *  Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
                     29: *
                     30: *  Optionally, it also orders the eigenvalues on the diagonal of the
                     31: *  real Schur form so that selected eigenvalues are at the top left.
                     32: *  The leading columns of Z then form an orthonormal basis for the
                     33: *  invariant subspace corresponding to the selected eigenvalues.
                     34: *
                     35: *  A matrix is in real Schur form if it is upper quasi-triangular with
                     36: *  1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
                     37: *  form
                     38: *          [  a  b  ]
                     39: *          [  c  a  ]
                     40: *
                     41: *  where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
                     42: *
                     43: *  Arguments
                     44: *  =========
                     45: *
                     46: *  JOBVS   (input) CHARACTER*1
                     47: *          = 'N': Schur vectors are not computed;
                     48: *          = 'V': Schur vectors are computed.
                     49: *
                     50: *  SORT    (input) CHARACTER*1
                     51: *          Specifies whether or not to order the eigenvalues on the
                     52: *          diagonal of the Schur form.
                     53: *          = 'N': Eigenvalues are not ordered;
                     54: *          = 'S': Eigenvalues are ordered (see SELECT).
                     55: *
                     56: *  SELECT  (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments
                     57: *          SELECT must be declared EXTERNAL in the calling subroutine.
                     58: *          If SORT = 'S', SELECT is used to select eigenvalues to sort
                     59: *          to the top left of the Schur form.
                     60: *          If SORT = 'N', SELECT is not referenced.
                     61: *          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
                     62: *          SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
                     63: *          conjugate pair of eigenvalues is selected, then both complex
                     64: *          eigenvalues are selected.
                     65: *          Note that a selected complex eigenvalue may no longer
                     66: *          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
                     67: *          ordering may change the value of complex eigenvalues
                     68: *          (especially if the eigenvalue is ill-conditioned); in this
                     69: *          case INFO is set to N+2 (see INFO below).
                     70: *
                     71: *  N       (input) INTEGER
                     72: *          The order of the matrix A. N >= 0.
                     73: *
                     74: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     75: *          On entry, the N-by-N matrix A.
                     76: *          On exit, A has been overwritten by its real Schur form T.
                     77: *
                     78: *  LDA     (input) INTEGER
                     79: *          The leading dimension of the array A.  LDA >= max(1,N).
                     80: *
                     81: *  SDIM    (output) INTEGER
                     82: *          If SORT = 'N', SDIM = 0.
                     83: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                     84: *                         for which SELECT is true. (Complex conjugate
                     85: *                         pairs for which SELECT is true for either
                     86: *                         eigenvalue count as 2.)
                     87: *
                     88: *  WR      (output) DOUBLE PRECISION array, dimension (N)
                     89: *  WI      (output) DOUBLE PRECISION array, dimension (N)
                     90: *          WR and WI contain the real and imaginary parts,
                     91: *          respectively, of the computed eigenvalues in the same order
                     92: *          that they appear on the diagonal of the output Schur form T.
                     93: *          Complex conjugate pairs of eigenvalues will appear
                     94: *          consecutively with the eigenvalue having the positive
                     95: *          imaginary part first.
                     96: *
                     97: *  VS      (output) DOUBLE PRECISION array, dimension (LDVS,N)
                     98: *          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
                     99: *          vectors.
                    100: *          If JOBVS = 'N', VS is not referenced.
                    101: *
                    102: *  LDVS    (input) INTEGER
                    103: *          The leading dimension of the array VS.  LDVS >= 1; if
                    104: *          JOBVS = 'V', LDVS >= N.
                    105: *
                    106: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    107: *          On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
                    108: *
                    109: *  LWORK   (input) INTEGER
                    110: *          The dimension of the array WORK.  LWORK >= max(1,3*N).
                    111: *          For good performance, LWORK must generally be larger.
                    112: *
                    113: *          If LWORK = -1, then a workspace query is assumed; the routine
                    114: *          only calculates the optimal size of the WORK array, returns
                    115: *          this value as the first entry of the WORK array, and no error
                    116: *          message related to LWORK is issued by XERBLA.
                    117: *
                    118: *  BWORK   (workspace) LOGICAL array, dimension (N)
                    119: *          Not referenced if SORT = 'N'.
                    120: *
                    121: *  INFO    (output) INTEGER
                    122: *          = 0: successful exit
                    123: *          < 0: if INFO = -i, the i-th argument had an illegal value.
                    124: *          > 0: if INFO = i, and i is
                    125: *             <= N: the QR algorithm failed to compute all the
                    126: *                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
                    127: *                   contain those eigenvalues which have converged; if
                    128: *                   JOBVS = 'V', VS contains the matrix which reduces A
                    129: *                   to its partially converged Schur form.
                    130: *             = N+1: the eigenvalues could not be reordered because some
                    131: *                   eigenvalues were too close to separate (the problem
                    132: *                   is very ill-conditioned);
                    133: *             = N+2: after reordering, roundoff changed values of some
                    134: *                   complex eigenvalues so that leading eigenvalues in
                    135: *                   the Schur form no longer satisfy SELECT=.TRUE.  This
                    136: *                   could also be caused by underflow due to scaling.
                    137: *
                    138: *  =====================================================================
                    139: *
                    140: *     .. Parameters ..
                    141:       DOUBLE PRECISION   ZERO, ONE
                    142:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    143: *     ..
                    144: *     .. Local Scalars ..
                    145:       LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTST,
                    146:      $                   WANTVS
                    147:       INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
                    148:      $                   IHI, ILO, INXT, IP, ITAU, IWRK, MAXWRK, MINWRK
                    149:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
                    150: *     ..
                    151: *     .. Local Arrays ..
                    152:       INTEGER            IDUM( 1 )
                    153:       DOUBLE PRECISION   DUM( 1 )
                    154: *     ..
                    155: *     .. External Subroutines ..
                    156:       EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
                    157:      $                   DLABAD, DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
                    158: *     ..
                    159: *     .. External Functions ..
                    160:       LOGICAL            LSAME
                    161:       INTEGER            ILAENV
                    162:       DOUBLE PRECISION   DLAMCH, DLANGE
                    163:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
                    164: *     ..
                    165: *     .. Intrinsic Functions ..
                    166:       INTRINSIC          MAX, SQRT
                    167: *     ..
                    168: *     .. Executable Statements ..
                    169: *
                    170: *     Test the input arguments
                    171: *
                    172:       INFO = 0
                    173:       LQUERY = ( LWORK.EQ.-1 )
                    174:       WANTVS = LSAME( JOBVS, 'V' )
                    175:       WANTST = LSAME( SORT, 'S' )
                    176:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
                    177:          INFO = -1
                    178:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    179:          INFO = -2
                    180:       ELSE IF( N.LT.0 ) THEN
                    181:          INFO = -4
                    182:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    183:          INFO = -6
                    184:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
                    185:          INFO = -11
                    186:       END IF
                    187: *
                    188: *     Compute workspace
                    189: *      (Note: Comments in the code beginning "Workspace:" describe the
                    190: *       minimal amount of workspace needed at that point in the code,
                    191: *       as well as the preferred amount for good performance.
                    192: *       NB refers to the optimal block size for the immediately
                    193: *       following subroutine, as returned by ILAENV.
                    194: *       HSWORK refers to the workspace preferred by DHSEQR, as
                    195: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    196: *       the worst case.)
                    197: *
                    198:       IF( INFO.EQ.0 ) THEN
                    199:          IF( N.EQ.0 ) THEN
                    200:             MINWRK = 1
                    201:             MAXWRK = 1
                    202:          ELSE
                    203:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
                    204:             MINWRK = 3*N
                    205: *
                    206:             CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
                    207:      $             WORK, -1, IEVAL )
                    208:             HSWORK = WORK( 1 )
                    209: *
                    210:             IF( .NOT.WANTVS ) THEN
                    211:                MAXWRK = MAX( MAXWRK, N + HSWORK )
                    212:             ELSE
                    213:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
                    214:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
                    215:                MAXWRK = MAX( MAXWRK, N + HSWORK )
                    216:             END IF
                    217:          END IF
                    218:          WORK( 1 ) = MAXWRK
                    219: *
                    220:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    221:             INFO = -13
                    222:          END IF
                    223:       END IF
                    224: *
                    225:       IF( INFO.NE.0 ) THEN
                    226:          CALL XERBLA( 'DGEES ', -INFO )
                    227:          RETURN
                    228:       ELSE IF( LQUERY ) THEN
                    229:          RETURN
                    230:       END IF
                    231: *
                    232: *     Quick return if possible
                    233: *
                    234:       IF( N.EQ.0 ) THEN
                    235:          SDIM = 0
                    236:          RETURN
                    237:       END IF
                    238: *
                    239: *     Get machine constants
                    240: *
                    241:       EPS = DLAMCH( 'P' )
                    242:       SMLNUM = DLAMCH( 'S' )
                    243:       BIGNUM = ONE / SMLNUM
                    244:       CALL DLABAD( SMLNUM, BIGNUM )
                    245:       SMLNUM = SQRT( SMLNUM ) / EPS
                    246:       BIGNUM = ONE / SMLNUM
                    247: *
                    248: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    249: *
                    250:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
                    251:       SCALEA = .FALSE.
                    252:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    253:          SCALEA = .TRUE.
                    254:          CSCALE = SMLNUM
                    255:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    256:          SCALEA = .TRUE.
                    257:          CSCALE = BIGNUM
                    258:       END IF
                    259:       IF( SCALEA )
                    260:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    261: *
                    262: *     Permute the matrix to make it more nearly triangular
                    263: *     (Workspace: need N)
                    264: *
                    265:       IBAL = 1
                    266:       CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
                    267: *
                    268: *     Reduce to upper Hessenberg form
                    269: *     (Workspace: need 3*N, prefer 2*N+N*NB)
                    270: *
                    271:       ITAU = N + IBAL
                    272:       IWRK = N + ITAU
                    273:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    274:      $             LWORK-IWRK+1, IERR )
                    275: *
                    276:       IF( WANTVS ) THEN
                    277: *
                    278: *        Copy Householder vectors to VS
                    279: *
                    280:          CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
                    281: *
                    282: *        Generate orthogonal matrix in VS
                    283: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
                    284: *
                    285:          CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
                    286:      $                LWORK-IWRK+1, IERR )
                    287:       END IF
                    288: *
                    289:       SDIM = 0
                    290: *
                    291: *     Perform QR iteration, accumulating Schur vectors in VS if desired
                    292: *     (Workspace: need N+1, prefer N+HSWORK (see comments) )
                    293: *
                    294:       IWRK = ITAU
                    295:       CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
                    296:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
                    297:       IF( IEVAL.GT.0 )
                    298:      $   INFO = IEVAL
                    299: *
                    300: *     Sort eigenvalues if desired
                    301: *
                    302:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    303:          IF( SCALEA ) THEN
                    304:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
                    305:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
                    306:          END IF
                    307:          DO 10 I = 1, N
                    308:             BWORK( I ) = SELECT( WR( I ), WI( I ) )
                    309:    10    CONTINUE
                    310: *
                    311: *        Reorder eigenvalues and transform Schur vectors
                    312: *        (Workspace: none needed)
                    313: *
                    314:          CALL DTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
                    315:      $                SDIM, S, SEP, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
                    316:      $                ICOND )
                    317:          IF( ICOND.GT.0 )
                    318:      $      INFO = N + ICOND
                    319:       END IF
                    320: *
                    321:       IF( WANTVS ) THEN
                    322: *
                    323: *        Undo balancing
                    324: *        (Workspace: need N)
                    325: *
                    326:          CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
                    327:      $                IERR )
                    328:       END IF
                    329: *
                    330:       IF( SCALEA ) THEN
                    331: *
                    332: *        Undo scaling for the Schur form of A
                    333: *
                    334:          CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
                    335:          CALL DCOPY( N, A, LDA+1, WR, 1 )
                    336:          IF( CSCALE.EQ.SMLNUM ) THEN
                    337: *
                    338: *           If scaling back towards underflow, adjust WI if an
                    339: *           offdiagonal element of a 2-by-2 block in the Schur form
                    340: *           underflows.
                    341: *
                    342:             IF( IEVAL.GT.0 ) THEN
                    343:                I1 = IEVAL + 1
                    344:                I2 = IHI - 1
                    345:                CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI,
                    346:      $                      MAX( ILO-1, 1 ), IERR )
                    347:             ELSE IF( WANTST ) THEN
                    348:                I1 = 1
                    349:                I2 = N - 1
                    350:             ELSE
                    351:                I1 = ILO
                    352:                I2 = IHI - 1
                    353:             END IF
                    354:             INXT = I1 - 1
                    355:             DO 20 I = I1, I2
                    356:                IF( I.LT.INXT )
                    357:      $            GO TO 20
                    358:                IF( WI( I ).EQ.ZERO ) THEN
                    359:                   INXT = I + 1
                    360:                ELSE
                    361:                   IF( A( I+1, I ).EQ.ZERO ) THEN
                    362:                      WI( I ) = ZERO
                    363:                      WI( I+1 ) = ZERO
                    364:                   ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
                    365:      $                     ZERO ) THEN
                    366:                      WI( I ) = ZERO
                    367:                      WI( I+1 ) = ZERO
                    368:                      IF( I.GT.1 )
                    369:      $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
                    370:                      IF( N.GT.I+1 )
                    371:      $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
                    372:      $                              A( I+1, I+2 ), LDA )
                    373:                      IF( WANTVS ) THEN
                    374:                         CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
                    375:                      END IF
                    376:                      A( I, I+1 ) = A( I+1, I )
                    377:                      A( I+1, I ) = ZERO
                    378:                   END IF
                    379:                   INXT = I + 2
                    380:                END IF
                    381:    20       CONTINUE
                    382:          END IF
                    383: *
                    384: *        Undo scaling for the imaginary part of the eigenvalues
                    385: *
                    386:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
                    387:      $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
                    388:       END IF
                    389: *
                    390:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    391: *
                    392: *        Check if reordering successful
                    393: *
                    394:          LASTSL = .TRUE.
                    395:          LST2SL = .TRUE.
                    396:          SDIM = 0
                    397:          IP = 0
                    398:          DO 30 I = 1, N
                    399:             CURSL = SELECT( WR( I ), WI( I ) )
                    400:             IF( WI( I ).EQ.ZERO ) THEN
                    401:                IF( CURSL )
                    402:      $            SDIM = SDIM + 1
                    403:                IP = 0
                    404:                IF( CURSL .AND. .NOT.LASTSL )
                    405:      $            INFO = N + 2
                    406:             ELSE
                    407:                IF( IP.EQ.1 ) THEN
                    408: *
                    409: *                 Last eigenvalue of conjugate pair
                    410: *
                    411:                   CURSL = CURSL .OR. LASTSL
                    412:                   LASTSL = CURSL
                    413:                   IF( CURSL )
                    414:      $               SDIM = SDIM + 2
                    415:                   IP = -1
                    416:                   IF( CURSL .AND. .NOT.LST2SL )
                    417:      $               INFO = N + 2
                    418:                ELSE
                    419: *
                    420: *                 First eigenvalue of conjugate pair
                    421: *
                    422:                   IP = 1
                    423:                END IF
                    424:             END IF
                    425:             LST2SL = LASTSL
                    426:             LASTSL = CURSL
                    427:    30    CONTINUE
                    428:       END IF
                    429: *
                    430:       WORK( 1 ) = MAXWRK
                    431:       RETURN
                    432: *
                    433: *     End of DGEES
                    434: *
                    435:       END

CVSweb interface <joel.bertrand@systella.fr>