File:  [local] / rpl / lapack / lapack / dgees.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:28 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief <b> DGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DGEES + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgees.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgees.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgees.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
   22: *                         VS, LDVS, WORK, LWORK, BWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOBVS, SORT
   26: *       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       LOGICAL            BWORK( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
   31: *      $                   WR( * )
   32: *       ..
   33: *       .. Function Arguments ..
   34: *       LOGICAL            SELECT
   35: *       EXTERNAL           SELECT
   36: *       ..
   37: *  
   38: *
   39: *> \par Purpose:
   40: *  =============
   41: *>
   42: *> \verbatim
   43: *>
   44: *> DGEES computes for an N-by-N real nonsymmetric matrix A, the
   45: *> eigenvalues, the real Schur form T, and, optionally, the matrix of
   46: *> Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
   47: *>
   48: *> Optionally, it also orders the eigenvalues on the diagonal of the
   49: *> real Schur form so that selected eigenvalues are at the top left.
   50: *> The leading columns of Z then form an orthonormal basis for the
   51: *> invariant subspace corresponding to the selected eigenvalues.
   52: *>
   53: *> A matrix is in real Schur form if it is upper quasi-triangular with
   54: *> 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
   55: *> form
   56: *>         [  a  b  ]
   57: *>         [  c  a  ]
   58: *>
   59: *> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
   60: *> \endverbatim
   61: *
   62: *  Arguments:
   63: *  ==========
   64: *
   65: *> \param[in] JOBVS
   66: *> \verbatim
   67: *>          JOBVS is CHARACTER*1
   68: *>          = 'N': Schur vectors are not computed;
   69: *>          = 'V': Schur vectors are computed.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] SORT
   73: *> \verbatim
   74: *>          SORT is CHARACTER*1
   75: *>          Specifies whether or not to order the eigenvalues on the
   76: *>          diagonal of the Schur form.
   77: *>          = 'N': Eigenvalues are not ordered;
   78: *>          = 'S': Eigenvalues are ordered (see SELECT).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] SELECT
   82: *> \verbatim
   83: *>          SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments
   84: *>          SELECT must be declared EXTERNAL in the calling subroutine.
   85: *>          If SORT = 'S', SELECT is used to select eigenvalues to sort
   86: *>          to the top left of the Schur form.
   87: *>          If SORT = 'N', SELECT is not referenced.
   88: *>          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
   89: *>          SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
   90: *>          conjugate pair of eigenvalues is selected, then both complex
   91: *>          eigenvalues are selected.
   92: *>          Note that a selected complex eigenvalue may no longer
   93: *>          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
   94: *>          ordering may change the value of complex eigenvalues
   95: *>          (especially if the eigenvalue is ill-conditioned); in this
   96: *>          case INFO is set to N+2 (see INFO below).
   97: *> \endverbatim
   98: *>
   99: *> \param[in] N
  100: *> \verbatim
  101: *>          N is INTEGER
  102: *>          The order of the matrix A. N >= 0.
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] A
  106: *> \verbatim
  107: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  108: *>          On entry, the N-by-N matrix A.
  109: *>          On exit, A has been overwritten by its real Schur form T.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDA
  113: *> \verbatim
  114: *>          LDA is INTEGER
  115: *>          The leading dimension of the array A.  LDA >= max(1,N).
  116: *> \endverbatim
  117: *>
  118: *> \param[out] SDIM
  119: *> \verbatim
  120: *>          SDIM is INTEGER
  121: *>          If SORT = 'N', SDIM = 0.
  122: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  123: *>                         for which SELECT is true. (Complex conjugate
  124: *>                         pairs for which SELECT is true for either
  125: *>                         eigenvalue count as 2.)
  126: *> \endverbatim
  127: *>
  128: *> \param[out] WR
  129: *> \verbatim
  130: *>          WR is DOUBLE PRECISION array, dimension (N)
  131: *> \endverbatim
  132: *>
  133: *> \param[out] WI
  134: *> \verbatim
  135: *>          WI is DOUBLE PRECISION array, dimension (N)
  136: *>          WR and WI contain the real and imaginary parts,
  137: *>          respectively, of the computed eigenvalues in the same order
  138: *>          that they appear on the diagonal of the output Schur form T.
  139: *>          Complex conjugate pairs of eigenvalues will appear
  140: *>          consecutively with the eigenvalue having the positive
  141: *>          imaginary part first.
  142: *> \endverbatim
  143: *>
  144: *> \param[out] VS
  145: *> \verbatim
  146: *>          VS is DOUBLE PRECISION array, dimension (LDVS,N)
  147: *>          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
  148: *>          vectors.
  149: *>          If JOBVS = 'N', VS is not referenced.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] LDVS
  153: *> \verbatim
  154: *>          LDVS is INTEGER
  155: *>          The leading dimension of the array VS.  LDVS >= 1; if
  156: *>          JOBVS = 'V', LDVS >= N.
  157: *> \endverbatim
  158: *>
  159: *> \param[out] WORK
  160: *> \verbatim
  161: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  162: *>          On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
  163: *> \endverbatim
  164: *>
  165: *> \param[in] LWORK
  166: *> \verbatim
  167: *>          LWORK is INTEGER
  168: *>          The dimension of the array WORK.  LWORK >= max(1,3*N).
  169: *>          For good performance, LWORK must generally be larger.
  170: *>
  171: *>          If LWORK = -1, then a workspace query is assumed; the routine
  172: *>          only calculates the optimal size of the WORK array, returns
  173: *>          this value as the first entry of the WORK array, and no error
  174: *>          message related to LWORK is issued by XERBLA.
  175: *> \endverbatim
  176: *>
  177: *> \param[out] BWORK
  178: *> \verbatim
  179: *>          BWORK is LOGICAL array, dimension (N)
  180: *>          Not referenced if SORT = 'N'.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] INFO
  184: *> \verbatim
  185: *>          INFO is INTEGER
  186: *>          = 0: successful exit
  187: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
  188: *>          > 0: if INFO = i, and i is
  189: *>             <= N: the QR algorithm failed to compute all the
  190: *>                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
  191: *>                   contain those eigenvalues which have converged; if
  192: *>                   JOBVS = 'V', VS contains the matrix which reduces A
  193: *>                   to its partially converged Schur form.
  194: *>             = N+1: the eigenvalues could not be reordered because some
  195: *>                   eigenvalues were too close to separate (the problem
  196: *>                   is very ill-conditioned);
  197: *>             = N+2: after reordering, roundoff changed values of some
  198: *>                   complex eigenvalues so that leading eigenvalues in
  199: *>                   the Schur form no longer satisfy SELECT=.TRUE.  This
  200: *>                   could also be caused by underflow due to scaling.
  201: *> \endverbatim
  202: *
  203: *  Authors:
  204: *  ========
  205: *
  206: *> \author Univ. of Tennessee 
  207: *> \author Univ. of California Berkeley 
  208: *> \author Univ. of Colorado Denver 
  209: *> \author NAG Ltd. 
  210: *
  211: *> \date November 2011
  212: *
  213: *> \ingroup doubleGEeigen
  214: *
  215: *  =====================================================================
  216:       SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
  217:      $                  VS, LDVS, WORK, LWORK, BWORK, INFO )
  218: *
  219: *  -- LAPACK driver routine (version 3.4.0) --
  220: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  221: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  222: *     November 2011
  223: *
  224: *     .. Scalar Arguments ..
  225:       CHARACTER          JOBVS, SORT
  226:       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
  227: *     ..
  228: *     .. Array Arguments ..
  229:       LOGICAL            BWORK( * )
  230:       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
  231:      $                   WR( * )
  232: *     ..
  233: *     .. Function Arguments ..
  234:       LOGICAL            SELECT
  235:       EXTERNAL           SELECT
  236: *     ..
  237: *
  238: *  =====================================================================
  239: *
  240: *     .. Parameters ..
  241:       DOUBLE PRECISION   ZERO, ONE
  242:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  243: *     ..
  244: *     .. Local Scalars ..
  245:       LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTST,
  246:      $                   WANTVS
  247:       INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
  248:      $                   IHI, ILO, INXT, IP, ITAU, IWRK, MAXWRK, MINWRK
  249:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
  250: *     ..
  251: *     .. Local Arrays ..
  252:       INTEGER            IDUM( 1 )
  253:       DOUBLE PRECISION   DUM( 1 )
  254: *     ..
  255: *     .. External Subroutines ..
  256:       EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
  257:      $                   DLABAD, DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
  258: *     ..
  259: *     .. External Functions ..
  260:       LOGICAL            LSAME
  261:       INTEGER            ILAENV
  262:       DOUBLE PRECISION   DLAMCH, DLANGE
  263:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
  264: *     ..
  265: *     .. Intrinsic Functions ..
  266:       INTRINSIC          MAX, SQRT
  267: *     ..
  268: *     .. Executable Statements ..
  269: *
  270: *     Test the input arguments
  271: *
  272:       INFO = 0
  273:       LQUERY = ( LWORK.EQ.-1 )
  274:       WANTVS = LSAME( JOBVS, 'V' )
  275:       WANTST = LSAME( SORT, 'S' )
  276:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
  277:          INFO = -1
  278:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  279:          INFO = -2
  280:       ELSE IF( N.LT.0 ) THEN
  281:          INFO = -4
  282:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  283:          INFO = -6
  284:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
  285:          INFO = -11
  286:       END IF
  287: *
  288: *     Compute workspace
  289: *      (Note: Comments in the code beginning "Workspace:" describe the
  290: *       minimal amount of workspace needed at that point in the code,
  291: *       as well as the preferred amount for good performance.
  292: *       NB refers to the optimal block size for the immediately
  293: *       following subroutine, as returned by ILAENV.
  294: *       HSWORK refers to the workspace preferred by DHSEQR, as
  295: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  296: *       the worst case.)
  297: *
  298:       IF( INFO.EQ.0 ) THEN
  299:          IF( N.EQ.0 ) THEN
  300:             MINWRK = 1
  301:             MAXWRK = 1
  302:          ELSE
  303:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
  304:             MINWRK = 3*N
  305: *
  306:             CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
  307:      $             WORK, -1, IEVAL )
  308:             HSWORK = WORK( 1 )
  309: *
  310:             IF( .NOT.WANTVS ) THEN
  311:                MAXWRK = MAX( MAXWRK, N + HSWORK )
  312:             ELSE
  313:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  314:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
  315:                MAXWRK = MAX( MAXWRK, N + HSWORK )
  316:             END IF
  317:          END IF
  318:          WORK( 1 ) = MAXWRK
  319: *
  320:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  321:             INFO = -13
  322:          END IF
  323:       END IF
  324: *
  325:       IF( INFO.NE.0 ) THEN
  326:          CALL XERBLA( 'DGEES ', -INFO )
  327:          RETURN
  328:       ELSE IF( LQUERY ) THEN
  329:          RETURN
  330:       END IF
  331: *
  332: *     Quick return if possible
  333: *
  334:       IF( N.EQ.0 ) THEN
  335:          SDIM = 0
  336:          RETURN
  337:       END IF
  338: *
  339: *     Get machine constants
  340: *
  341:       EPS = DLAMCH( 'P' )
  342:       SMLNUM = DLAMCH( 'S' )
  343:       BIGNUM = ONE / SMLNUM
  344:       CALL DLABAD( SMLNUM, BIGNUM )
  345:       SMLNUM = SQRT( SMLNUM ) / EPS
  346:       BIGNUM = ONE / SMLNUM
  347: *
  348: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  349: *
  350:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
  351:       SCALEA = .FALSE.
  352:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  353:          SCALEA = .TRUE.
  354:          CSCALE = SMLNUM
  355:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  356:          SCALEA = .TRUE.
  357:          CSCALE = BIGNUM
  358:       END IF
  359:       IF( SCALEA )
  360:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  361: *
  362: *     Permute the matrix to make it more nearly triangular
  363: *     (Workspace: need N)
  364: *
  365:       IBAL = 1
  366:       CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
  367: *
  368: *     Reduce to upper Hessenberg form
  369: *     (Workspace: need 3*N, prefer 2*N+N*NB)
  370: *
  371:       ITAU = N + IBAL
  372:       IWRK = N + ITAU
  373:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  374:      $             LWORK-IWRK+1, IERR )
  375: *
  376:       IF( WANTVS ) THEN
  377: *
  378: *        Copy Householder vectors to VS
  379: *
  380:          CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
  381: *
  382: *        Generate orthogonal matrix in VS
  383: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  384: *
  385:          CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
  386:      $                LWORK-IWRK+1, IERR )
  387:       END IF
  388: *
  389:       SDIM = 0
  390: *
  391: *     Perform QR iteration, accumulating Schur vectors in VS if desired
  392: *     (Workspace: need N+1, prefer N+HSWORK (see comments) )
  393: *
  394:       IWRK = ITAU
  395:       CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
  396:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
  397:       IF( IEVAL.GT.0 )
  398:      $   INFO = IEVAL
  399: *
  400: *     Sort eigenvalues if desired
  401: *
  402:       IF( WANTST .AND. INFO.EQ.0 ) THEN
  403:          IF( SCALEA ) THEN
  404:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
  405:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
  406:          END IF
  407:          DO 10 I = 1, N
  408:             BWORK( I ) = SELECT( WR( I ), WI( I ) )
  409:    10    CONTINUE
  410: *
  411: *        Reorder eigenvalues and transform Schur vectors
  412: *        (Workspace: none needed)
  413: *
  414:          CALL DTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
  415:      $                SDIM, S, SEP, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
  416:      $                ICOND )
  417:          IF( ICOND.GT.0 )
  418:      $      INFO = N + ICOND
  419:       END IF
  420: *
  421:       IF( WANTVS ) THEN
  422: *
  423: *        Undo balancing
  424: *        (Workspace: need N)
  425: *
  426:          CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
  427:      $                IERR )
  428:       END IF
  429: *
  430:       IF( SCALEA ) THEN
  431: *
  432: *        Undo scaling for the Schur form of A
  433: *
  434:          CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
  435:          CALL DCOPY( N, A, LDA+1, WR, 1 )
  436:          IF( CSCALE.EQ.SMLNUM ) THEN
  437: *
  438: *           If scaling back towards underflow, adjust WI if an
  439: *           offdiagonal element of a 2-by-2 block in the Schur form
  440: *           underflows.
  441: *
  442:             IF( IEVAL.GT.0 ) THEN
  443:                I1 = IEVAL + 1
  444:                I2 = IHI - 1
  445:                CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI,
  446:      $                      MAX( ILO-1, 1 ), IERR )
  447:             ELSE IF( WANTST ) THEN
  448:                I1 = 1
  449:                I2 = N - 1
  450:             ELSE
  451:                I1 = ILO
  452:                I2 = IHI - 1
  453:             END IF
  454:             INXT = I1 - 1
  455:             DO 20 I = I1, I2
  456:                IF( I.LT.INXT )
  457:      $            GO TO 20
  458:                IF( WI( I ).EQ.ZERO ) THEN
  459:                   INXT = I + 1
  460:                ELSE
  461:                   IF( A( I+1, I ).EQ.ZERO ) THEN
  462:                      WI( I ) = ZERO
  463:                      WI( I+1 ) = ZERO
  464:                   ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
  465:      $                     ZERO ) THEN
  466:                      WI( I ) = ZERO
  467:                      WI( I+1 ) = ZERO
  468:                      IF( I.GT.1 )
  469:      $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
  470:                      IF( N.GT.I+1 )
  471:      $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
  472:      $                              A( I+1, I+2 ), LDA )
  473:                      IF( WANTVS ) THEN
  474:                         CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
  475:                      END IF
  476:                      A( I, I+1 ) = A( I+1, I )
  477:                      A( I+1, I ) = ZERO
  478:                   END IF
  479:                   INXT = I + 2
  480:                END IF
  481:    20       CONTINUE
  482:          END IF
  483: *
  484: *        Undo scaling for the imaginary part of the eigenvalues
  485: *
  486:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
  487:      $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
  488:       END IF
  489: *
  490:       IF( WANTST .AND. INFO.EQ.0 ) THEN
  491: *
  492: *        Check if reordering successful
  493: *
  494:          LASTSL = .TRUE.
  495:          LST2SL = .TRUE.
  496:          SDIM = 0
  497:          IP = 0
  498:          DO 30 I = 1, N
  499:             CURSL = SELECT( WR( I ), WI( I ) )
  500:             IF( WI( I ).EQ.ZERO ) THEN
  501:                IF( CURSL )
  502:      $            SDIM = SDIM + 1
  503:                IP = 0
  504:                IF( CURSL .AND. .NOT.LASTSL )
  505:      $            INFO = N + 2
  506:             ELSE
  507:                IF( IP.EQ.1 ) THEN
  508: *
  509: *                 Last eigenvalue of conjugate pair
  510: *
  511:                   CURSL = CURSL .OR. LASTSL
  512:                   LASTSL = CURSL
  513:                   IF( CURSL )
  514:      $               SDIM = SDIM + 2
  515:                   IP = -1
  516:                   IF( CURSL .AND. .NOT.LST2SL )
  517:      $               INFO = N + 2
  518:                ELSE
  519: *
  520: *                 First eigenvalue of conjugate pair
  521: *
  522:                   IP = 1
  523:                END IF
  524:             END IF
  525:             LST2SL = LASTSL
  526:             LASTSL = CURSL
  527:    30    CONTINUE
  528:       END IF
  529: *
  530:       WORK( 1 ) = MAXWRK
  531:       RETURN
  532: *
  533: *     End of DGEES
  534: *
  535:       END

CVSweb interface <joel.bertrand@systella.fr>